
DOI: 10.2478/auom-2013-0059
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A new characterization of computable functions

Apoloniusz Tyszka

Abstract

Let En = {xi = 1, xi + x j = xk, xi · x j = xk : i, j, k ∈ {1, . . . , n}}. We present
two algorithms. The first accepts as input any computable function f : N→ N
and returns a positive integer m( f ) and a computable function g which to each
integer n ≥ m( f ) assigns a system S ⊆ En such that S is satisfiable over integers
and each integer tuple (x1, . . . , xn) that solves S satisfies x1 = f (n). The second
accepts as input any computable function f : N→ N and returns a positive in-
teger w( f ) and a computable function h which to each integer n ≥ w( f ) assigns
a system S ⊆ En such that S is satisfiable over non-negative integers and each
tuple (x1, . . . , xn) of non-negative integers that solves S satisfies x1 = f (n).

Let
En = {xi = 1, xi + x j = xk, xi · x j = xk : i, j, k ∈ {1, . . . , n}},

and let Rng denote the class of all rings K that extend Z. Th. Skolem proved that
any Diophantine equation can be algorithmically transformed into an equivalent sys-
tem of Diophantine equations of degree at most 2, see [6, pp. 2–3], [5, pp. 3–4],
[1, pp. 386–387, proof of Theorem 1], and [3, pp. 262–263, proof of Theorem 7.5].
The following result strengthens Skolem’s theorem.

Lemma ([7]). Let D(x1, . . . , xp) ∈ Z[x1, . . . , xp]. Assume that di = deg(D, xi) ≥ 1 for
each i ∈ {1, . . . , p}. We can compute a positive integer n > p and a system T ⊆ En

which satisfies the following two conditions:
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Condition 1. If K ∈ Rng ∪ {N, N \ {0}}, then

∀x̃1, . . . , x̃p ∈ K
(
D(x̃1, . . . , x̃p) = 0⇐⇒

∃x̃p+1, . . . , x̃n ∈ K (x̃1, . . . , x̃p, x̃p+1, . . . , x̃n) solves T
)

Condition 2. If K ∈ Rng ∪ {N, N \ {0}}, then for each x̃1, . . . , x̃p ∈ K with
D(x̃1, . . . , x̃p) = 0, there exists a unique tuple (x̃p+1, . . . , x̃n) ∈ Kn−p such that the tuple
(x̃1, . . . , x̃p, x̃p+1, . . . , x̃n) solves T .

Conditions 1 and 2 imply that for each K ∈ Rng ∪ {N, N \ {0}}, the equation
D(x1, . . . , xp) = 0 and the system T have the same number of solutions in K.

For K ∈ Rng, the Lemma is proved in [8]. For concrete Diophantine equations, it
is possible to find much smaller equivalent systems of equations of the forms xi = 1,
xi + x j = xk, xi · x j = xk, see [2].

The Davis-Putnam-Robinson-Matiyasevich theorem states that every recursively
enumerable set M ⊆ Nn has a Diophantine representation, that is

(a1, . . . , an) ∈M⇐⇒ ∃x1, . . . , xm ∈ N W(a1, . . . , an, x1, . . . , xm) = 0

for some polynomial W with integer coefficients, see [5] and [4]. The polynomial W
can be computed, if we know a Turing machine M such that, for all (a1, . . . , an) ∈ Nn,
M halts on (a1, . . . , an) if and only if (a1, . . . , an) ∈M, see [5] and [4].

Theorem 1. There is an algorithm which accepts as input any computable function
f : N→ N and returns a positive integer m( f ) and a computable function g which to
each integer n ≥ m( f ) assigns a system S ⊆ En such that S is satisfiable over integers
and each integer tuple (x1, . . . , xn) that solves S satisfies x1 = f (n).

Proof. By the Davis-Putnam-Robinson-Matiyasevich theorem, the function f has a
Diophantine representation. It means that there is a polynomial W(x1, x2, x3, . . . , xr)
with integer coefficients such that for each non-negative integers x1, x2,

x1 = f (x2)⇐⇒ ∃x3, . . . , xr ∈ N W(x1, x2, x3, . . . , xr) = 0 (E1)

By the equivalence (E1) and Lagrange’s four-square theorem, for any integers x1, x2,
the conjunction (x2 ≥ 0) ∧ (x1 = f (x2)) holds true if and only if there exist integers

a, b, c, d, α, β, γ, δ, x3, x3,1, x3,2, x3,3, x3,4, . . . , xr, xr,1, xr,2, xr,3, xr,4

such that

W2(x1, x2, x3, . . . , xr) +
(
x1 − a2 − b2 − c2 − d2)2

+
(
x2 − α

2 − β2 − γ2 − δ2)2
+
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(
x3 − x2

3,1 − x2
3,2 − x2

3,3 − x2
3,4

)2
+ . . . +

(
xr − x2

r,1 − x2
r,2 − x2

r,3 − x2
r,4

)2
= 0

By the Lemma for K = Z, there is an integer s ≥ 3 such that for any integers x1, x2,(
x2 ≥ 0 ∧ x1 = f (x2)

)
⇐⇒ ∃x3, . . . , xs ∈ Z Ψ(x1, x2, x3, . . . , xs) (E2)

where the formula Ψ(x1, x2, x3, . . . , xs) is algorithmically determined as a conjunction
of formulae of the forms:

xi = 1, xi + x j = xk, xi · x j = xk (i, j, k ∈ {1, . . . , s})

Let m( f ) = 4 + 2s, and let [·] denote the integer part function. For each integer
n ≥ m( f ),

n −
[n
2

]
− 2 − s ≥ m( f ) −

[
m( f )

2

]
− 2 − s ≥ m( f ) −

m( f )
2
− 2 − s = 0

Let S denote the following system

all equations occurring in Ψ(x1, x2, x3, . . . , xs)
n −

[
n
2

]
− 2 − s equations of the form zi = 1

t1 = 1
t1 + t1 = t2
t2 + t1 = t3

. . .
t[ n

2 ]−1 + t1 = t[ n
2 ]

t[ n
2 ] + t[ n

2 ] = w
w + y = x2
y + y = y (if n is even)

y = 1 (if n is odd)

with n variables. By the equivalence (E2), the system S is satisfiable over integers. If
an integer n-tuple (x1, x2, x3, . . . , xs, . . . ,w, y) solves S , then by the equivalence (E2),

x1 = f (x2) = f (w + y) = f
(
2 ·

[n
2

]
+ y

)
= f (n)

�

A simpler proof, not using Lagrange’s four-square theorem, suffices if we con-
sider solutions in non-negative integers.

Theorem 2. There is an algorithm which accepts as input any computable func-
tion f : N→ N and returns a positive integer w( f ) and a computable function h
which to each integer n ≥ w( f ) assigns a system S ⊆ En such that S is satisfiable
over non-negative integers and each tuple (x1, . . . , xn) of non-negative integers that
solves S satisfies x1 = f (n).
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Proof. We omit the construction of S because a similar construction is carried out in
the proof of Theorem 1. The rest of the proof follows from the Lemma for K = N. �

For a function f : N→ N, let Z( f ) denote the smallest m ∈ {1, 2, 3, . . .} ∪ {∞}
such that for any integer n ≥ m there exists a system S ⊆ En such that S is satisfiable
over integers and each integer tuple (x1, . . . , xn) that solves S satisfies x1 = f (n).

For a function f : N→ N, let N( f ) denote the smallest w ∈ {1, 2, 3, . . .} ∪ {∞}
such that for any integer n ≥ w there exists a system S ⊆ En such that S is satisfiable
over non-negative integers and each tuple (x1, . . . , xn) of non-negative integers that
solves S satisfies x1 = f (n).

The definition of Z( f ) immediately implies that Z( f ) = 1 for any f : N→ {0, 1}.
By this and Theorem 1, we have the following.

Theorem 3. For any f : N→ N, if f is computable, then Z( f ) < ∞, but not vice
versa.

The analogous theorem holds for N( f ).

References

[1] J. L. Britton, Integer solutions of systems of quadratic equations, Math. Proc.
Cambridge Philos. Soc. 86 (1979), no. 3, 385–389.

[2] M. Cipu, Small solutions to systems of polynomial equations with integer
coefficients, An. St. Univ. Ovidius Constanta 19 (2011), no. 2, 89–100,
http://www.emis.de/journals/ASUO/mathematics/pdf23/Cipu.pdf,
http://www.anstuocmath.ro/mathematics/pdf23/Cipu.pdf.

[3] M. Davis, Hilbert’s tenth problem is unsolvable, Amer. Math. Monthly 80
(1973), no. 3, 233–269.

[4] L. B. Kuijer, Creating a diophantine description of a r.e. set and
on the complexity of such a description, MSc thesis, Faculty of
Mathematics and Natural Sciences, University of Groningen, 2010,
http://irs.ub.rug.nl/dbi/4b87adf513823.

[5] Yu. Matiyasevich, Hilbert’s tenth problem, MIT Press, Cambridge, MA, 1993.

[6] Th. Skolem, Diophantische Gleichungen, Julius Springer, Berlin, 1938.

[7] A. Tyszka, Conjecturally computable functions which unconditionally do not
have any finite-fold Diophantine representation, Inform. Process. Lett. 113
(2013), no. 19-21, 719–722.



A NEW CHARACTERIZATION OF COMPUTABLE FUNCTIONS 293

[8] A. Tyszka, Does there exist an algorithm which to each Diophantine equation
assigns an integer which is greater than the modulus of integer solutions, if these
solutions form a finite set? Fund. Inform. 125(1): 95–99, 2013.

Apoloniusz Tyszka
University of Agriculture
Faculty of Production and Power Engineering
Balicka 116B, 30-149 Kraków, Poland
E-mail address: rttyszka@cyf-kr.edu.pl



294 Apoloniusz Tyszka


