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A new characterization of computable functions
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Abstract
LetE, ={x; =1, xi+x; = x¢, x; - x; = x;.: 1, k€ {l,...,n}}. We present

two algorithms. The first accepts as input any computable function f: N — N
and returns a positive integer m(f) and a computable function g which to each
integer n > m(f) assigns a system S C E, such that § is satisfiable over integers
and each integer tuple (xy,..., x,) that solves S satisfies x; = f(n). The second
accepts as input any computable function f : N — N and returns a positive in-
teger w(f) and a computable function /# which to each integer n > w(f) assigns
a system S C E, such that S is satisfiable over non-negative integers and each
tuple (xy, ..., x,) of non-negative integers that solves S satisfies x; = f(n).

Let
E,={xi=1, xi+x;=x3, ;- x; = : 1, k€ {l,...,n}},

and let Rng denote the class of all rings K that extend Z. Th. Skolem proved that
any Diophantine equation can be algorithmically transformed into an equivalent sys-
tem of Diophantine equations of degree at most 2, see [6, pp. 2-3], [5, pp.- 341,
[1, pp. 386387, proof of Theorem 1], and [3, pp. 262-263, proof of Theorem 7.5].
The following result strengthens Skolem’s theorem.

Lemma ([7]). Let D(xy, ..., xp) € Z[xy, ..., Xp]. Assume that d; = deg(D, x;) > 1 for
eachie{l,...,p}. We can compute a positive integer n > p and a system T C E,
which satisfies the following two conditions:
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Condition 1. IfK € Rng U {N, N\ {0}}, then

Vi, % €K (D(F),....%,) =0 =

Apits. . g € K (F1, .oy %o i, F) s0lves T)

Condition 2. If K€ RngU{N, N\ {0}}, then for each %,...,%, € K with
D(X,...,X,) =0, there exists a unique tuple (Xp1, . .., X,) € K" such that the tuple
Xty ooy Xp, Xpits ..., Xy) solves T.

Conditions 1 and 2 imply that for each K € Rng U{N, N\ {0}}, the equation
D(x1,...,xp) = 0and the system T have the same number of solutions in K.

For K € Rng, the Lemma is proved in [8]. For concrete Diophantine equations, it
is possible to find much smaller equivalent systems of equations of the forms x; = 1,
X+ Xj = Xp, X; - X; = X, see [2].

The Davis-Putnam-Robinson-Matiyasevich theorem states that every recursively
enumerable set M C N” has a Diophantine representation, that is

(ar,...,ap) e M= Axy,....,xn €N W(ay,...,an,x1,..., %) =0

for some polynomial W with integer coefficients, see [5] and [4]. The polynomial W
can be computed, if we know a Turing machine M such that, for all (a,,...,a,) € N",
M halts on (ay, .. .,a,) if and only if (ay, ..., a,) € M, see [5] and [4].

Theorem 1. There is an algorithm which accepts as input any computable function
f : N — N and returns a positive integer m(f) and a computable function g which to
each integer n > m(f) assigns a system S C E, such that S is satisfiable over integers
and each integer tuple (x1, ..., x,) that solves S satisfies x; = f(n).

Proof. By the Davis-Putnam-Robinson-Matiyasevich theorem, the function f has a
Diophantine representation. It means that there is a polynomial W(xy, x5, x3, ..., x;)
with integer coefficients such that for each non-negative integers xi, x,,

x1 = f(x) & Axz,...,x, € N W(x,x2,x3,...,%) =0 (ED)

By the equivalence (E1) and Lagrange’s four-square theorem, for any integers xi, x»,
the conjunction (x; > 0) A (x; = f(x2)) holds true if and only if there exist integers

a,b,c,d,a,,7,0,X3,X3,1,X32, X33, X34, - - - » Xry X, 15 X2, X3, X4
such that

W2(x1, X2, X3, ..., X)) + (x) —a* = b* = % — dz)2 +(x—a? - —»? —62)2+
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2 2 2 2 \2 2 2 2 2 \2
(=23 = X5, = X553 —x3,) +.. (G —x, — X, - X3 —x,) =0
By the Lemma for K = Z, there is an integer s > 3 such that for any integers xi, xy,
(xz >0AXx = f(xz)) — Axz,...,x; €Z W(x1, X2, X3,...,Xg) (E2)

where the formula W(xy, x, x3, . .., x;) is algorithmically determined as a conjunction
of formulae of the forms:

xi=1, xi+x;=x, xi-xj=x (i, ,ke{l,...,s})

Let m(f) = 4 + 2s, and let [-] denote the integer part function. For each integer
n > m(f),

n— E]—2—szm(f)— LS P S L. L P S
2 2 2
Let S denote the following system
all equations occurring in W (x1, x2, x3, ..., Xy)
n-— [g] — 2 — s equations of the form z; = 1
n = 1
Hh+n = I
h + 1 = R
gl th = 13
Ts1+is = W
wH+y = x
y+y = y(ifniseven)
y = 1 (if nisodd)

with n variables. By the equivalence (E2), the system S is satisfiable over integers. If
an integer n-tuple (xy, X2, X3, ..., X5, ..., w,y) solves S, then by the equivalence (E2),

x1= ) = v+ = £(2: 5] +3) =

O

A simpler proof, not using Lagrange’s four-square theorem, suffices if we con-
sider solutions in non-negative integers.

Theorem 2. There is an algorithm which accepts as input any computable func-
tion f: N — N and returns a positive integer w(f) and a computable function h
which to each integer n > w(f) assigns a system S C E, such that S is satisfiable
over non-negative integers and each tuple (xy,...,X,) of non-negative integers that
solves S satisfies x; = f(n).
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Proof. We omit the construction of S because a similar construction is carried out in
the proof of Theorem 1. The rest of the proof follows from the Lemmafor K = N. 0O

For a function f: N — N, let Z(f) denote the smallest m € {1,2,3,...} U {oo}
such that for any integer n > m there exists a system S C E, such that § is satisfiable
over integers and each integer tuple (x1, ..., x,) that solves S satisfies x; = f(n).

For a function f: N — N, let N(f) denote the smallest w € {1,2,3,...} U {oo}
such that for any integer n > w there exists a system S C E, such that § is satisfiable
over non-negative integers and each tuple (xi,..., x,) of non-negative integers that
solves S satisfies x; = f(n).

The definition of Z(f) immediately implies that Z(f) = 1 for any f : N — {0, 1}.
By this and Theorem 1, we have the following.

Theorem 3. For any f:N — N, if f is computable, then Z(f) < oo, but not vice
versa.

The analogous theorem holds for N(f).
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