

A new characterization of computable functions

Apoloniusz Tyszka

Abstract

Let $E_n = \{x_i = 1, x_i + x_j = x_k, x_i \cdot x_j = x_k : i, j, k \in \{1, ..., n\}\}$. We present two algorithms. The first accepts as input any computable function $f : \mathbb{N} \to \mathbb{N}$ and returns a positive integer m(f) and a computable function g which to each integer $n \ge m(f)$ assigns a system $S \subseteq E_n$ such that S is satisfiable over integers and each integer tuple $(x_1, ..., x_n)$ that solves S satisfies $x_1 = f(n)$. The second accepts as input any computable function $f : \mathbb{N} \to \mathbb{N}$ and returns a positive integer w(f) and a computable function h which to each integer $n \ge w(f)$ assigns a system $S \subseteq E_n$ such that S is satisfiable over non-negative integers and each tuple $(x_1, ..., x_n)$ of non-negative integers that solves S satisfies $x_1 = f(n)$.

Let

$$E_n = \{x_i = 1, x_i + x_j = x_k, x_i \cdot x_j = x_k : i, j, k \in \{1, \dots, n\}\},\$$

and let $\Re ng$ denote the class of all rings *K* that extend \mathbb{Z} . Th. Skolem proved that any Diophantine equation can be algorithmically transformed into an equivalent system of Diophantine equations of degree at most 2, see [6, pp. 2–3], [5, pp. 3–4], [1, pp. 386–387, proof of Theorem 1], and [3, pp. 262–263, proof of Theorem 7.5]. The following result strengthens Skolem's theorem.

Lemma ([7]). Let $D(x_1, ..., x_p) \in \mathbb{Z}[x_1, ..., x_p]$. Assume that $d_i = \deg(D, x_i) \ge 1$ for each $i \in \{1, ..., p\}$. We can compute a positive integer n > p and a system $T \subseteq E_n$ which satisfies the following two conditions:

2010 Mathematics Subject Classification: Primary 03D20; Secondary 11U09. Received: October 2012 Revised:January 2013

Key Words: computable function, Davis-Putnam-Robinson-Matiyasevich theorem.

Accepted: January 2013

Condition 1. If $K \in \Re ng \cup \{\mathbb{N}, \mathbb{N} \setminus \{0\}\}$, then

 $\forall \tilde{x}_1, \dots, \tilde{x}_p \in \mathbf{K} \left(D(\tilde{x}_1, \dots, \tilde{x}_p) = 0 \iff \right)$

 $\exists \tilde{x}_{p+1}, \ldots, \tilde{x}_n \in \boldsymbol{K} (\tilde{x}_1, \ldots, \tilde{x}_p, \tilde{x}_{p+1}, \ldots, \tilde{x}_n) \text{ solves } T$

Condition 2. If $\mathbf{K} \in \Re ng \cup \{\mathbb{N}, \mathbb{N} \setminus \{0\}\}$, then for each $\tilde{x}_1, \ldots, \tilde{x}_p \in \mathbf{K}$ with $D(\tilde{x}_1, \ldots, \tilde{x}_p) = 0$, there exists a unique tuple $(\tilde{x}_{p+1}, \ldots, \tilde{x}_n) \in \mathbf{K}^{n-p}$ such that the tuple $(\tilde{x}_1, \ldots, \tilde{x}_p, \tilde{x}_{p+1}, \ldots, \tilde{x}_n)$ solves T.

Conditions 1 and 2 imply that for each $\mathbf{K} \in \Re g \cup \{\mathbb{N}, \mathbb{N} \setminus \{0\}\}$, the equation $D(x_1, \ldots, x_p) = 0$ and the system T have the same number of solutions in \mathbf{K} .

For $K \in \Re ng$, the Lemma is proved in [8]. For concrete Diophantine equations, it is possible to find much smaller equivalent systems of equations of the forms $x_i = 1$, $x_i + x_j = x_k$, $x_i \cdot x_j = x_k$, see [2].

The Davis-Putnam-Robinson-Matiyasevich theorem states that every recursively enumerable set $\mathcal{M} \subseteq \mathbb{N}^n$ has a Diophantine representation, that is

$$(a_1,\ldots,a_n) \in \mathcal{M} \iff \exists x_1,\ldots,x_m \in \mathbb{N} \ W(a_1,\ldots,a_n,x_1,\ldots,x_m) = 0$$

for some polynomial *W* with integer coefficients, see [5] and [4]. The polynomial *W* can be computed, if we know a Turing machine *M* such that, for all $(a_1, ..., a_n) \in \mathbb{N}^n$, *M* halts on $(a_1, ..., a_n)$ if and only if $(a_1, ..., a_n) \in \mathcal{M}$, see [5] and [4].

Theorem 1. There is an algorithm which accepts as input any computable function $f : \mathbb{N} \to \mathbb{N}$ and returns a positive integer m(f) and a computable function g which to each integer $n \ge m(f)$ assigns a system $S \subseteq E_n$ such that S is satisfiable over integers and each integer tuple (x_1, \ldots, x_n) that solves S satisfies $x_1 = f(n)$.

Proof. By the Davis-Putnam-Robinson-Matiyasevich theorem, the function f has a Diophantine representation. It means that there is a polynomial $W(x_1, x_2, x_3, ..., x_r)$ with integer coefficients such that for each non-negative integers x_1, x_2 ,

$$x_1 = f(x_2) \Longleftrightarrow \exists x_3, \dots, x_r \in \mathbb{N} \ W(x_1, x_2, x_3, \dots, x_r) = 0$$
(E1)

By the equivalence (E1) and Lagrange's four-square theorem, for any integers x_1 , x_2 , the conjunction ($x_2 \ge 0$) \land ($x_1 = f(x_2)$) holds true if and only if there exist integers

$$a, b, c, d, \alpha, \beta, \gamma, \delta, x_3, x_{3,1}, x_{3,2}, x_{3,3}, x_{3,4}, \dots, x_r, x_{r,1}, x_{r,2}, x_{r,3}, x_{r,4}$$

such that

$$W^{2}(x_{1}, x_{2}, x_{3}, ..., x_{r}) + (x_{1} - a^{2} - b^{2} - c^{2} - d^{2})^{2} + (x_{2} - \alpha^{2} - \beta^{2} - \gamma^{2} - \delta^{2})^{2} +$$

$$(x_3 - x_{3,1}^2 - x_{3,2}^2 - x_{3,3}^2 - x_{3,4}^2)^2 + \ldots + (x_r - x_{r,1}^2 - x_{r,2}^2 - x_{r,3}^2 - x_{r,4}^2)^2 = 0$$

By the Lemma for $K = \mathbb{Z}$, there is an integer $s \ge 3$ such that for any integers x_1, x_2 ,

$$\left(x_2 \ge 0 \land x_1 = f(x_2)\right) \Longleftrightarrow \exists x_3, \dots, x_s \in \mathbb{Z} \ \Psi(x_1, x_2, x_3, \dots, x_s)$$
(E2)

where the formula $\Psi(x_1, x_2, x_3, ..., x_s)$ is algorithmically determined as a conjunction of formulae of the forms:

$$x_i = 1, x_i + x_j = x_k, x_i \cdot x_j = x_k \ (i, j, k \in \{1, \dots, s\})$$

Let m(f) = 4 + 2s, and let [·] denote the integer part function. For each integer $n \ge m(f)$,

$$n - \left[\frac{n}{2}\right] - 2 - s \ge m(f) - \left[\frac{m(f)}{2}\right] - 2 - s \ge m(f) - \frac{m(f)}{2} - 2 - s = 0$$

Let S denote the following system

all equations occurring in
$$\Psi(x_1, x_2, x_3, ..., x_s)$$

 $n - \left[\frac{n}{2}\right] - 2 - s$ equations of the form $z_i = 1$
 $t_1 = 1$
 $t_1 + t_1 = t_2$
 $t_2 + t_1 = t_3$
...
 $t_{\left[\frac{n}{2}\right] - 1} + t_1 = t_{\left[\frac{n}{2}\right]}$
 $t_{\left[\frac{n}{2}\right]} + t_{\left[\frac{n}{2}\right]} = w$
 $w + y = x_2$
 $y + y = y$ (if *n* is even)
 $y = 1$ (if *n* is odd)

with *n* variables. By the equivalence (E2), the system *S* is satisfiable over integers. If an integer *n*-tuple $(x_1, x_2, x_3, ..., x_s, ..., w, y)$ solves *S*, then by the equivalence (E2),

$$x_1 = f(x_2) = f(w + y) = f\left(2 \cdot \left\lfloor \frac{n}{2} \right\rfloor + y\right) = f(n)$$

A simpler proof, not using Lagrange's four-square theorem, suffices if we consider solutions in non-negative integers.

Theorem 2. There is an algorithm which accepts as input any computable function $f : \mathbb{N} \to \mathbb{N}$ and returns a positive integer w(f) and a computable function hwhich to each integer $n \ge w(f)$ assigns a system $S \subseteq E_n$ such that S is satisfiable over non-negative integers and each tuple (x_1, \ldots, x_n) of non-negative integers that solves S satisfies $x_1 = f(n)$.

Proof. We omit the construction of *S* because a similar construction is carried out in the proof of Theorem 1. The rest of the proof follows from the Lemma for $K = \mathbb{N}$. \Box

For a function $f : \mathbb{N} \to \mathbb{N}$, let $\mathbb{Z}(f)$ denote the smallest $m \in \{1, 2, 3, ...\} \cup \{\infty\}$ such that for any integer $n \ge m$ there exists a system $S \subseteq E_n$ such that *S* is satisfiable over integers and each integer tuple $(x_1, ..., x_n)$ that solves *S* satisfies $x_1 = f(n)$.

For a function $f : \mathbb{N} \to \mathbb{N}$, let $\mathbb{N}(f)$ denote the smallest $w \in \{1, 2, 3, ...\} \cup \{\infty\}$ such that for any integer $n \ge w$ there exists a system $S \subseteq E_n$ such that S is satisfiable over non-negative integers and each tuple $(x_1, ..., x_n)$ of non-negative integers that solves S satisfies $x_1 = f(n)$.

The definition of $\mathbb{Z}(f)$ immediately implies that $\mathbb{Z}(f) = 1$ for any $f : \mathbb{N} \to \{0, 1\}$. By this and Theorem 1, we have the following.

Theorem 3. For any $f : \mathbb{N} \to \mathbb{N}$, if f is computable, then $\mathbb{Z}(f) < \infty$, but not vice versa.

The analogous theorem holds for $\mathbb{N}(f)$.

References

- J. L. Britton, *Integer solutions of systems of quadratic equations*, Math. Proc. Cambridge Philos. Soc. 86 (1979), no. 3, 385–389.
- [2] M. Cipu, Small solutions to systems of polynomial equations with integer coefficients, An. St. Univ. Ovidius Constanta 19 (2011), no. 2, 89–100, http://www.emis.de/journals/ASUO/mathematics/pdf23/Cipu.pdf, http://www.anstuocmath.ro/mathematics/pdf23/Cipu.pdf.
- [3] M. Davis, *Hilbert's tenth problem is unsolvable*, Amer. Math. Monthly 80 (1973), no. 3, 233–269.
- [4] L. B. Kuijer, Creating a diophantine description of a r.e. set and on the complexity of such a description, MSc thesis, Faculty of Mathematics and Natural Sciences, University of Groningen, 2010, http://irs.ub.rug.nl/dbi/4b87adf513823.
- [5] Yu. Matiyasevich, Hilbert's tenth problem, MIT Press, Cambridge, MA, 1993.
- [6] Th. Skolem, Diophantische Gleichungen, Julius Springer, Berlin, 1938.
- [7] A. Tyszka, Conjecturally computable functions which unconditionally do not have any finite-fold Diophantine representation, Inform. Process. Lett. 113 (2013), no. 19-21, 719–722.

[8] A. Tyszka, Does there exist an algorithm which to each Diophantine equation assigns an integer which is greater than the modulus of integer solutions, if these solutions form a finite set? Fund. Inform. 125(1): 95–99, 2013.

Apoloniusz Tyszka University of Agriculture Faculty of Production and Power Engineering Balicka 116B, 30-149 Kraków, Poland E-mail address: rttyszka@cyf-kr.edu.pl