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On two systems of non-resonant nonlocal
boundary value problems

Katarzyna Szymańska-Dȩbowska

Abstract

In this paper we consider the following two systems of k equations

x′′ = f(t, x), x(0) = 0, x(1) =

∫ 1

0

x(s)dg(s)

and

x′′ = f(t, x, x′), x(0) = 0, x′(1) =

∫ 1

0

x(s)dg(s),

where f is a vector function and the integrals are meant in the sense of
Riemann-Stieltjes. We give conditions on f and g to ensure the existence
of at least one solution for the above problems. Our result extends some
results in the references.

1 Introduction

Recently much attention has been paid to the study of nonlocal boundary value
problems (BVPs) and their study in the case of linear second-order ordinary
differential equations was, as far as we are aware, initiated by Bitsadze and
Samarski [2] and later continued by Il’in and Moiseev [7].

Nonlocal BVPs arise in different areas of applied mathematics and physics.
Such problems, inter alia, have applications in chemical engineering, thermo-
elasticity, underground water flow and population dynamics (see for instance
[1], [3] and the references therein).
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BVPs with Riemann-Stieltjes integral boundary conditions include as spe-
cial cases multi-point and integral boundary value problems. Nowadays, the
problem of the existence of solutions for various types of nonlocal BVPs is the
subject of many papers. For such problems and comments on their impor-
tance, we refer the reader to [10], [11], [14], [18], [19], [23] and the references
therein.

There are many papers investigating nonlocal BVPs of the second order
ordinary differential equation which boundary conditions in the most general

form can be written down as x(0) = 0, x(1) =
∫ 1

0
x(s)dg(s) (compare for

instance [6], [8], [9], [13], [15], [17], [21], [22]). In the first part of this paper
we will present an existence result for problems of this type.

The second problem (which is considered in this paper) is motivated by
the work of Webb and Infante [20] and Webb and Zima [21] (In both papers,
the Authors also studied other boundary conditions). In [20], the Authors
investigated the existence of positive solutions of the following problem

−x′′(t) = q(t)f(t, x(t)), x(0) = 0, x′(1) =

∫ 1

0

x(s)dg(s),

where f : [0, 1] × R+ → R+, q : [0, 1] → R+ and the integral is meant in the
sense of Riemann-Stieltjes.

In [21], the Authors studied the existence of positive solutions for nonlinear
nonlocal boundary value problem of the form

−x′′(t) = f(t, x(t)) x(0) = 0, x′(1) =

∫ 1

0

x(s)dg(s).

There was considered the case where f(t, x) is not positive for all positive x
but is such that f(t, x) + ω2x ≥ 0 for x ≥ 0 for some constant ω > 0.

In this paper we study two nonlocal BVPs. In the first problem we consider
the following differential equation

x′′ = f(t, x), (1)

with the initial condition

x(0) = 0 (2)

and the non-local boundary condition

x(1) =

∫ 1

0

x(s)dg(s), (3)
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where where f = (f1, . . . , fk) : [0, 1] × Rk → Rk. The second problem is as
follows

x′′ = f(t, x, x′), (4)

with the initial condition

x(0) = 0 (5)

and the non-local boundary condition

x′(1) =

∫ 1

0

x(s)dg(s), (6)

where f = (f1, . . . , fk) : [0, 1] × Rk × Rk → Rk. Moreover, g = (g1, . . . , gk) :
[0, 1]→ Rk has bounded variation and∫ 1

0

x(s)dg(s) =

[∫ 1

0

x1(s)dg1(s), . . . ,

∫ 1

0

xk(s)dgk(s)

]
.

Speaking precisely, (1), (2), (3) and (4), (5), (6) are the systems of k BVPs
x′′i (t) = fi(t, x(t)),
xi(0) = 0,

xi(1) =
∫ 1

0
xi(s)dgi(s)

and 
x′′i (t) = fi(t, x(t), x′(t)),
xi(0) = 0,

x′i(1) =
∫ 1

0
xi(s)dgi(s),

where t ∈ [0, 1], i = 1, . . . , k and the integrals
∫ 1

0
xi(s)dgi(s) are meant in the

sense of Riemann-Stieltjes.
Imposing an a priori bound condition on f and applying Leray-Schauder

fixed point theorem, we have proved the existence of at least one solution to
the problem (1), (2), (3) and (4), (5), (6). Similar a priori bound conditions
one can find for instance in the following papers [4], [5], [12], [16].

2 The existence of solutions for the first BVP

First, let us consider BVP (1), (2), (3). Denote by C([0, 1],Rk) the Banach
space of all continuous functions x : [0, 1]→ Rk with the supremum norm.

The following assumptions will be needed:
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(i) f = (f1, . . . , fk) : [0, 1]× Rk → Rk is a continuous function;

(ii) there exists M > 0 such that 〈x, f(t, x)〉 > 0 for t ∈ [0, 1], |x| ≥ M ,
where | · | means the Euclidean norm in Rk and 〈· , ·〉 means the scalar
product in Rk corresponding to the Euclidean norm;

(iii) g = (g1, . . . , gk) : [0, 1] → Rk and Var(g) < 1, where Var(g) means the
variation of g on the interval [0, 1];

(iv)
∫ 1

0
s dgi(s) 6= 1, i = 1, . . . , k.

By assumption (iv), the considering problem is non-resonant. Hence, there
exists an equivalent integral equation. Let us consider the equation (1) and
integrate it from 0 to t, we get

x′(t) =

∫ t

0

f(s, x(s))ds+ E (7)

Now, integrating (7) from 0 to t, we have

x(t) =

∫ t

0

∫ s

0

f(u, x(u))duds+ Et+ F

=

∫ t

0

(t− u)f(u, x(u))du+ Et+ F. (8)

By (2), F = 0 ∈ Rk. Moreover, by (3) and (8), we obtain∫ 1

0

(1− u)f(u, x(u))du+ E =

=

∫ 1

0

∫ s

0

(s− u)f(u, x(u))dudg(s) + E

∫ 1

0

sdg(s).

Set

αi :=

(
1−

∫ 1

0

sdgi(s)

)−1
,

i = 1, . . . , k. Then, we have

Ei = αi

[∫ 1

0

∫ s

0

(s− u)fi(u, x(u))dudgi(s)−
∫ 1

0

(1− u)fi(u, x(u))du

]
.

Now, is easy to see that the following Lemma holds:
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Lemma 1. A function x ∈ C([0, 1],Rk) is a solution of the problem (1), (2),
(3) only, and only if x = (x1, . . . , xk) satisfies the following integral equation

xi(t) =

∫ t

0

(t− u)fi(u, x(u))du+ Eit,

for every i = 1, . . . , k.

Given x ∈ C([0, 1],Rk) let

(Ax) (t) =

∫ t

0

(t− u)f(u, x(u))du+

+ αt

[∫ 1

0

∫ s

0

(s− u)f(u, x(u))dudg(s)−
∫ 1

0

(1− u)f(u, x(u))du

]
.

By assumptions (i), (iii) and (iv) and the classical Arzelà−Ascoli theorem,
for A : C([0, 1],Rk)→ C([0, 1],Rk), we get

Lemma 2. The operator A is completely continuous.

Now we are in the position to establish the main result.

Theorem 1. Under assumptions (i)-(iv) problem (1), (2) and (3) has at least
one solution.

Proof. Consider the continuous family of BVPs:

ϕ′′(t) = λf(t, ϕ(t)), ϕ(0) = 0, ϕ(1) =

∫ 1

0

ϕ(s)dg(s), (9)

depending on a parameter λ ∈ [0, 1]. Then problem (9) is equivalent to an
integral equation ϕ(t) = λAϕ(t). By Lemma 2 we get that operator λA is
completely continuous.

Let us consider the homotopy H : [0, 1]×C([0, 1],Rk)→ C([0, 1],Rk) given
by

H (λ, ϕ) = ϕ− λAϕ

in Ω =
{
x ∈ C([0, 1],Rk) | ‖x‖ ≤M

}
, where M is the positive constant from

the assumption (ii).
Now, we shall show that H (λ, ϕ) = 0 has no solution for λ ∈ [0, 1] and ϕ

belonging to the boundary of the ball Ω.
Indeed, H (0, ϕ) = 0 has only a trivial solution, which does not lay on the

boundary of Ω, so λ 6= 0.
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Suppose that there exists a solution of the equation H (λ, ϕ) = 0 with
λ ∈ (0, 1] and ϕ ∈ ∂Ω. Notice that ϕ(0) = 0. Hence |ϕ(t)| = M for some
t0 ∈ (0, 1].

Assume that |ϕ(1)| = M . Then, by (3) and (iii), we get a contradiction.
Indeed, we have

M = |ϕ(1)| =
∣∣∣∣∫ 1

0

ϕ(s)dg(s)

∣∣∣∣ ≤MVar(g) < M.

Hence |ϕ(t)| = M for some t0 ∈ (0, 1). Let us consider a function ψ (t) =

|ϕ (t)|2 and observe that ψ has a maximum equal to M2 for t0. Then, by
assumption (ii), since ϕ is a solution of (9) and |ϕ (t0)| = M , we get a con-
tradiction. Indeed, we get

0 ≥ ψ′′ (t0) = 2 |ϕ′(t0)|2 + 2λ 〈ϕ (t0) , ϕ′′ (t0)〉 =

= 2 |ϕ′(t0)|2 + 2λ 〈ϕ (t0) , f(t0, ϕ(t0))〉 > 0.

Hence homotopy H does not vanish on the boundary of Ω for λ > 0.
Finally, H (λ, ϕ) 6= 0 for λ ∈ [0, 1] and ϕ ∈ ∂Ω.

Therefore, by the properties of the Leray-Schauder topological degree, we
have

deg(I −A,Ω) = deg(H (1, ·) ,Ω) = deg(H (0, ·) ,Ω) = deg(I,Ω) = 1 6= 0.

Hence A has a fixed point in Ω, i.e. BVP (1), (2) and (3) has a solution in
Ω.

3 The existence of solutions for the second BVP

Now, we shall prove an existence result for BVP (4), (5) and (6).
Denote by C1([0, 1],Rk) the Banach space of all continuous functions x :

[0, 1]→ Rk which have continuous first derivatives x′ with the norm

‖x‖ = max

{
|x(0)| , sup

t∈[0,1]
|x′(t)|

}
. (10)

Let x ∈ C1
(
[0, 1],Rk

)
and ‖x‖ = M . Observe that

|x (t)| ≤ t sup
t∈[0,1]

|x′ (t)|+ |x (0)| ≤M + |x (0)| . (11)

The Lemma below, which is a straightforward consequence of the classical
Arzelà−Ascoli theorem, gives a compactness criterion in C1

(
[0, 1],Rk

)
.
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Lemma 3. For a set Z ⊂ C1
(
[0, 1],Rk

)
to be relatively compact, it is necessary

and sufficient that:
(1) there exists M > 0 such that for any x ∈ Z and t ∈ [0, 1] we have |x (0)| ≤
M and |x′ (t)| ≤M ;
(2) for every t0 ∈ [0, 1] the family Z ′ := {x′ | x ∈ Z} is equicontinuous at t0.

Let us introduce the following assumptions:

(i) f = (f1, . . . , fk) : [0, 1]× Rk × Rk → Rk is a continuous function;

(ii) there exists M > 0 such that 〈y, f(t, x, y)〉 > 0 for t ∈ [0, 1], x ∈ Rk and
|y| ≥M ;

(iii) g = (g1, . . . , gk) : [0, 1]→ Rk and Var(g) < 1;

(iv)
∫ 1

0
s dgi(s) 6= 1, i = 1, . . . , k.

Proceeding similarly as in the case of the first problem, by assumption (iv),
we get

Lemma 4. A function x ∈ C1([0, 1],Rk) is a solution of the problem (4), (5),
(6) only, and only if x satisfies the following integral equation

xi(t) =

∫ t

0

(t− u)fi(u, x(u), x′(u))du+

+ αit

[∫ 1

0

∫ s

0

(s− u)fi(u, x(u), x′(u))dudgi(s)−
∫ 1

0

fi(u, x(u), x′(u))du

]
,

for every i = 1, . . . , k.

Let B : C1
(
[0, 1],Rk

)
→ C1

(
[0, 1],Rk

)
is given by

(Bx) (t) =

∫ t

0

(t− u)f(u, x(u), x′(u))du+

+ αt

[∫ 1

0

∫ s

0

(s− u)f(u, x(u), x′(u))dudg(s)−
∫ 1

0

f(u, x(u), x′(u))du

]
.

It is clear that Bx, (Bx)′ : [0, 1] → Rk are continuous. It follows that B is
well-defined. Moreover, by assumptions (i) and (iv), (11) and Lemma 3, we
get the following

Lemma 5. The operator B is completely continuous.
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Our main result is given in the following theorem

Theorem 2. Under assumptions (i)-(iv) problem (4), (5), (6) has at least one
solution.

Proof. Let us consider the continuous family of BVPs

ϕ′′(t) = λf(t, ϕ(t), ϕ′(t)), ϕ(0) = 0, ϕ′(1) =

∫ 1

0

ϕ(s)dg(s), (12)

where λ ∈ [0, 1], which is equivalent to an integral equation ϕ(t) = λBϕ(t).
By Lemma 5, λB is completely continuous. Now, let us consider the homotopy
H : [0, 1]× C1

(
[0, 1],Rk

)
→ C1

(
[0, 1],Rk

)
given by

H (λ, ϕ) = ϕ− λBϕ

in Ω =
{
x ∈ C1([0, 1],Rk) | ‖x‖ ≤M

}
, where M is the positive constant from

the assumption (ii).
Now, we show that H does not vanish on the boundary of Ω for λ ∈ [0, 1].
If H (λ, ϕ) = 0 for λ = 0 and ϕ ∈ ∂Ω, then BVP (12) has only a trivial

solution.
Suppose that there exists a solution of H (λ, ϕ) = 0 with λ ∈ (0, 1] and

ϕ ∈ ∂Ω. Notice that ϕ(0) = 0. Hence M = ‖ϕ‖ = supt∈[0,1] |ϕ′(t)|.
Assume that |ϕ′(1)| = M . Then, by (3), (11) and (iv), we have

M = |ϕ′(1)| =
∣∣∣∣∫ 1

0

ϕ(s)dg(s)

∣∣∣∣ ≤MVar(g) < M.

Hence |ϕ′(t)| = M for some t ∈ [0, 1). Let us consider a function ψ (t) =

|ϕ′ (t)|2 and observe that ψ has a maximum equal to M2 for certain t0 ∈ [0, 1).
If t0 = 0, then, by assumptions (ii) and (iii), since |ϕ′ (0)| = M , we have

0 ≥ ψ′ (0) = 2λ 〈ϕ′ (0) , ϕ′′ (0)〉 =

= 2λ 〈ϕ′ (0) | f (0, ϕ(0), ϕ′(0))〉 > 0.

Hence, we get a contradiction.
If t0 ∈ (0, 1), then |ϕ′ (t0)| = M . Now, by assumptions (ii) and (iii), we

get a contradiction

0 = ψ′ (t0) = 2λ 〈ϕ′ (t0) , f (t0, ϕ(t0), ϕ′(t0)〉) > 0.

Finally, H (λ, ϕ) 6= 0 for λ ∈ [0, 1] and ϕ ∈ ∂Ω. Hence B has a fixed point
in Ω, i.e. BVP (4), (5) and (6) has a solution in Ω.
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4 Example

Consider the following BVP

x′′ = f(t, x, x′), x(0) = 0, x′(1) =

∫ 1

0

x(s)dg(s), (13)

where
f1(t, x, y) =

[
sin2 t+ 1

] [
exp(−(x21 + x22)) + 1

]
(y1 + y2),

f2(t, x, y) =
[
sin2 t+ 1

] [
exp(−(x21 + x22)) + 1

]
(y2 − y1 + 1)

and g is arbitrary function satisfying the conditions (iii) and (iv).
Function f is continuous. Let us check if f satisfies the assumption (ii).

For any M > 1 and |y| ≥M , x ∈ R2 and t ∈ [0, 1], we have

〈y, f(t, x, y)〉 =
[
sin2 t+ 1

] [
exp(−(x21 + x22)) + 1

]
y1(y1 + y2) +

+
[
sin2 t+ 1

] [
exp(−(x21 + x22)) + 1

]
y2(y2 − y1 + 1) >

>
[
sin2 t+ 1

]
y21 +

[
sin2 t+ 1

]
y22 +

[
sin2 t+ 1

]
y2 >

>
[
sin2 t+ 1

] (
y21 + y22 + y2

)
.

Notice that y21 + y22 + y2 > 0, if y2 ∈ (−∞,−1] ∪ [0,∞). If y2 ∈ (−1, 0), we
obtain

〈y | f(t, x, y)〉 >
[
sin2 t+ 1

] (
y21 + y22 + y2

)
≥

≥
[
sin2 t+ 1

]
(M2 + y2) >

>
[
sin2 t+ 1

]
(1 + y2) > 0.

Hence, there exists at least one nontrivial solution of (13).
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[12] W. Karpińska, On bounded solutions of nonlinear first- and second-order
equations with a Carathodory function. J. Math. Anal. Appl. 334, no. 2
(2007), 1462-1480.

[13] A. Nowakowski, A. Orpel, On the existence of multiple solutions for a
nonlocal BVP with vector-valued response, Czechoslovak Math. J., vol.
56, no. 2 (2006) 621-640.

[14] R. Ma and Y. An, Global structure of positive solutions for nonlocal
boundary value problems involving integral conditions, Nonlinear Anal.
71 (2009) 4364-4376.

[15] J. Mao, Z. Zhao, N. Xu, On existence and uniqueness of positive solutions
for integral boundary boundary value problems, J. Qual. Theory Differ.
Equ., No. 16 (2010) 1-8.



On two systems of non-resonant nonlocal boundary value problems 267
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