
DOI: 10.2478/auom-2013-0050
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Coupled points in ordered generalized metric
spaces and application to integro-differential

equations

Nguyen Van Luong and Nguyen Xuan Thuan

Abstract

In this paper, we prove some coupled fixed point theorems for O-
compatible mappings in partially ordered generalized metric spaces un-
der certain conditions to extend and complement the recent fixed point
theorems due to Bhaskar and Lakshmikantham [Nonlinear Anal. TMA
65 (2006) 1379 - 1393] and Berinde [Nonlinear Anal. TMA 74 (2011)
7347-7355]. We give some examples to illustrate our results. An appli-
cation to integro-differential equations is also given.

1 Introduction and preliminaries

Let (X, d) be a metric space. A mapping T : X → X is called a contraction
mapping if there exists a k ∈ [0, 1) such that

d(Tx, Ty) ≤ kd(x, y), for all x, y ∈ X.

The well-known Banach contraction principle states that a contraction map-
ping of a complete metric space into itself has a unique fixed point. This
celebrated principle is one of the pivotal results of analysis and has applica-
tions in a number of branches of mathematics. The above principle has been
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extended and generalized in various directions for recent years by putting con-
ditions on the mappings or on the spaces.

In [28], Perov extended the Banach contraction principle for contraction
mappings on spaces endowed with vector-valued metrics, namely generalized
metric spaces. The notion of a generalized metric space is stated as follows

Definition 1.1. ([28]) Let X be non-empty set and N ≥ 1. A mapping
d : X × X → RN is said to be a generalized metric on X if the following
conditions are satisfied:

(i) d(x, y) ≥ θ, for all x, y ∈ X and d(x, y) = θ if and only if x = y,

(ii) d(x, y) = d(y, x), for all x, y ∈ X,

(iii) d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X.

A set X equipped with a generalized metric d is called a generalized metric
space. We will denote such a space by (X, d). Here, the order relation on RN

is defined by, for x = (x1, x2, ..., xN ), y = (y1, y2, ..., yN ) ∈ RN ,

x ≤ y ⇔ xi ≤ yi in R, for all i = 1, 2, ..., N.

Notice that a generalized metric space is a usual metric space when N = 1.
For generalized metric spaces, the notions of convergent sequences, Cauchy

sequences, completeness, open subsets, closed subsets and continuous map-
pings are similar to those for usual metric spaces.

Throughout this paper we denote by MN (R+) the set of all N×N matrices
with positive elements, by Θ the zero matrix, by I the identity matrix and by
θ the zero element of RN . Notice also that, for the sake of simplicity, we will
make an identication between row and column vectors in RN .

Recall that a matrix A is said to be convergent to zero if and only if
An → Θ as n → ∞ (see [37]). For the proof of the main result we need the
following Lemma (see [37], [32], [30])

Lemma 1.2. Let A ∈MN (R+). The following statements are equivalent:

(i) A converges to zero.

(ii) An → Θ as n→∞.

(iii) The eigenvalues of A are in the open unique disk i.e.

ρ(A) = max{|λ| : λ ∈ C with det(A− λI) = 0} < 1.

(iv) The matrix I −A is non-singular and

(I −A)−1 = I +A+A2 + ...+An + ...
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(v) The matrix I − A is non-singular and (I − A)−1 has non-negative ele-
ments.

(vi) Anq → θ and qAn → θ as n→∞ for all q ∈ RN .

For examples and considerations on matrices which converge to zero, see
Bica and Muresan [8], Rus [32], Turinici [31] and so on.

The main result for contraction mappings on generalized metric spaces is
the Perov’s fixed point theorem.

Theorem 1.3. ([28]) Let (X, d) be a complete generalized metric space
such that d(x, y) ∈ RN , N ≥ 1, for all x, y ∈ X . Let T : X → X and suppose
there exists a matrix A ∈MN (R+) such that

d (Tx, Ty) ≤ Ad (x, y) , ∀x, y ∈ X.

If A converges to zero, then

(i) T has a unique fixed point,

(ii) the sequence of successive approximations {xn} , xn = Txn−1 is conver-
gent and it has the limit x∗, for all x0 ∈ X,

(iii) one has the following estimate

d (xn, x
∗) ≤ An(I −A)

−1
d (x0, x1) .

For some extensions and applications of the Perov’s fixed point theorem,
one can see in [7]-[9], [13], [24], [29], [30], [26], [31], [38] and references therein.

Recently, existence of fixed points for contraction type mappings in par-
tially ordered metric spaces has been considered in [1] - [6], [10] - [12], [14] -
[24], [33] - [36] and references therein, where some applications to matrix equa-
tions, ordinary differential equations, and integral equations were presented.
Bhaskar and Lakshmikantham [6] introduced notions of mixed monotone map-
pings and coupled fixed points and proved some coupled fixed point theorems
for the mixed monotone mappings and discussed the existence and uniqueness
of solutions for periodic boundary value problems.

Definition 1.4. ([6]) Let (X,�) be a partially ordered set and F : X×X →
X. The mapping F is said to have the mixed monotone property if F (x, y) is
monotone non-decreasing in x and is monotone non-increasing in y, that is,
for any x, y ∈ X,

x1, x2 ∈ X, x1 � x2 ⇒ F (x1, y) � F (x2, y),

and
y1, y2 ∈ X, y1 � y2 ⇒ F (x, y1) � F (x, y2).
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Definition 1.5. ([6]) An element (x, y) ∈ X ×X is called a coupled fixed
point of the mapping F : X ×X → X if

F (x, y) = x, and F (y, x) = y.

Theorem 1.6. ([6]) Let (X,�) be a partially ordered set and suppose there
exists a metric d on X such that (X, d) is a complete metric space. Let F :
X×X → X be a continuous mapping having the mixed monotone property on
X. Assume that there exists a k ∈ [0, 1) with

d(F (x, y), F (u, v)) ≤ k

2
[d(x, u) + d(y, v)], for each x � u and y � v.

If there exist x0, y0 ∈ X such that

x0 � F (x0, y0) and y0 � F (y0, x0),

then there exist x, y ∈ X such that

x = F (x, y) and y = F (y, x).

Theorem 1.7. ([6]) Let (X,�) be a partially ordered set and suppose there
exists a metric d on X such that (X, d) is a complete metric space. Assume
that X has the following property:

(i) if a non-decreasing sequence {xn} → x, then xn � x for all n,

(ii) if a non-increasing sequence {yn} → y, then y � yn for all n.

Let F : X × X → X be a continuous mapping having the mixed monotone
property on X. Assume that there exists a k ∈ [0, 1) with

d(F (x, y), F (u, v)) ≤ k

2
[d(x, u) + d(y, v)], for each x � u and y � v.

If there exist x0, y0 ∈ X such that

x0 � F (x0, y0) and y0 � F (y0, x0),

then there exist x, y ∈ X such that

x = F (x, y) and y = F (y, x).

Afterward, coupled fixed points for mappings having mixed monotone
property were established in various partially ordered spaces such as met-
ric spaces, cone metric spaces, G- metric spaces, partial metric spaces (see
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[4], [5], [6], [10], [11], [14], [17], [18] - [20], [34] - [36] and references therein).
In particular, Lakshmikantham and Ciric [18] established coupled coincidence
and coupled fixed point theorems for two mappings F : X × X → X and
g : X → X, where F has the mixed g-monotone property and the functions F
and g commute, as an extension of the coupled fixed point results in [6].

Later, Choudhury and Kundu in [10] introduced the concept of compatibil-
ity and proved the result established in [18] under a different set of conditions.
Precisely, they established their result by assuming that F and g are compat-
ible mappings and the function g is monotone increasing.

Definition 1.8. ([18]) Let (X,�) be a partially ordered set and let F :
X × X → X and g : X → X are two mappings. We say F has the mixed
g-monotone property if F (x, y) is g- non-decreasing in its first argument and
is g- non-increasing in its second argument, that is, for any x, y ∈ X,

x1, x2 ∈ X, gx1 � gx2 ⇒ F (x1, y) � F (x2, y),

and

y1, y2 ∈ X, gy1 � gy2 ⇒ F (x, y1) � F (x, y2).

Definition 1.9. ([18]) An element (x, y) ∈ X × X is called a coupled
coincident point of the mapping F : X ×X → X and g : X → X if

gx = F (x, y) and gy = F (y, x).

Definition 1.10. ([10]) Let (X, d) be a metric space. The mappings F and
g, where F : X ×X → X, g : X → X, are said to be compatible if

lim
n→∞

d(gF (xn, yn), F (gxn, gyn)) = 0,

and

lim
n→∞

d(gF (yn, xn), F (gyn, gxn)) = 0,

where {xn} and {yn} are sequences in X such that lim
n→∞

F (xn, yn)

= lim
n→∞

gxn = x and lim
n→∞

F (yn, xn) = lim
n→∞

gyn = y for all x, y ∈ X are

satisfied.

Very recently, Berinde [5], in his interesting paper, extended the coupled
fixed point theorems for mixed monotone mappings obtained by Bhaskar and
Lakshmikantham [6] by significantly weakening the contractive condition in-
volved and gave an application to periodic boundary value problems. His main
result is the following theorem
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Theorem 1.11. ([5]) Let (X,�) be a partial generalized ordered set and
suppose there is a metric d on X such that (X, d) is a complete metric space.
Let F : X × X → X be a mixed monotone mapping for which there exists a
constant k ∈ [0, 1) such that for each x � u, y � v,

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) ≤ k[d(x, u) + d(y, v)].

If there exist x0, y0 ∈ X such that

x0 � F (x0, y0) and y0 � F (y0, x0),

or
x0 � F (x0, y0) and y0 � F (y0, x0),

then there exist x, y ∈ X such that x = F (x, y) and y = F (y, x).

Inspired by the above results, in this paper, we first introduce a concept of
O-compatible mappings in partially ordered generalized metric spaces. This
concept is slightly more general than the concept of compatible mappings.
Then we prove some coupled coincidence point and coupled fixed point theo-
rems for mapping F : X × X → X having the mixed g- monotone property
in partially ordered generalized metric spaces. The results extend and im-
prove the results of Bhaskar and Lakshmikantham [6] and Berinde [5]. We
also give some examples to illustrate our results. Moreover, an application to
integro-differential equations is given.

Definition 1.12. Let (X, d,�) be a partially ordered generalized metric
space. The mappings F : X × X → X and g : X → X are said to be O-
compatible if

lim
n→∞

d(gF (xn, yn), F (gxn, gyn)) = 0,

and
lim

n→∞
d(gF (yn, xn), F (gyn, gxn)) = 0,

where {xn} and {yn} are sequences in X such that {gxn}, {gyn} are monotone
and

lim
n→∞

F (xn, yn) = lim
n→∞

gxn = x,

and
lim

n→∞
F (yn, xn) = lim

n→∞
gyn = y,

for all x, y ∈ X are satisfied.

Remark 1.13. Let (X, d,�) be a partially generalized metric space. If
F : X ×X → X and g : X → X are compatible then they are O-compatible.
However, the converse is not true. The following example shows that there
exist mappings which are O-compatible but not compatible.
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Example 1.14. Let X = {0} ∪ [1/2, 2] with the usual metric d(x, y) =
|x− y|, for all x, y ∈ X. We consider the following order relation on X

x, y ∈ X x � y ⇔ x = y or (x, y) = (0, 1).

Let F : X ×X → X be given by

F (x, y) =

{
0 if x, y ∈ {0} ∪ [1/2, 1]
1 otherwise

and g : X → X be defined by

gx =


0 if x = 0
1 if 1/2 ≤ x ≤ 1
2− x if 1 < x ≤ 3/2
1/2 if 3/2 < x ≤ 2

Then F and g are O-compatible. Indeed, let {xn}, {yn} in X such that
{gxn}, {gyn} are monotone and

lim
n→∞

F (xn, yn) = lim
n→∞

gxn = x,

and
lim
n→∞

F (yn, xn) = lim
n→∞

gyn = y,

for some x, y ∈ X. Since F (xn, yn) = F (yn, xn) ∈ {0, 1} for all n, x = y ∈
{0, 1}. The case x = y = 1 is impossible. In fact, if x = y = 1, then since
{gxn}, {gyn} are monotone, gxn = gyn = 1 for all n ≥ n1, for some n1. That
is xn, yn ∈ [1/2, 1] for all n ≥ n1. This implies F (xn, yn) = F (yn, xn) = 0,
for all n ≥ n1, which is a contradiction. Thus x = y = 0. That implies
gxn = gyn = 0 for all n ≥ n2, for some n2. That is xn = yn = 0 for all n ≥ n2.
Thus, for all n ≥ n2,

d (gF (xn, yn), F (gxn, gyn)) = d (gF (yn, xn), F (gyn, gxn)) = 0.

Hence
lim

n→∞
d(gF (xn, yn), F (gxn, gyn)) = 0,

and
lim

n→∞
d(gF (yn, xn), F (gyn, gxn)) = 0,

hold. Therefore F and g are O-compatible.
However, F and g are not compatible. Indeed, let {xn}, {yn} in X be defined
by

xn = yn = 1 +
1

n+ 1
, n = 1, 2, 3, ..
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We have

F (xn, yn) = F (yn, xn) = F

(
1 +

1

n+ 1
, 1 +

1

n+ 1

)
= 1,

and

gxn = gyn = g

(
1 +

1

n+ 1

)
= 1− 1

n+ 1
→ 1 as n→∞,

but

d(gF (xn, yn), F (gxn, gyn)) = d

(
F

(
1− 1

n+ 1
, 1− 1

n+ 1

)
, g1

)
= d(0, 1) = 1 9 0 as n→∞.

Thus, F and g are not compatible.

We are now going to prove our main results.

2 Coupled point theorems

Theorem 2.1. Let (X, d,�) be a partially ordered complete generalized
metric space. Suppose F : X × X → X and g : X → X are mappings
such that F has the mixed g- monotone property. Assume that there exist
A,B ∈MN (R+) with ρ( 1

2 (A+B)) < 1 such that

d (F (x, y) , F (u, v)) + d (F (y, x) , F (v, u)) ≤ Ad (gx, gu) +Bd (gy, gv) , (1)

for all x, y, u, v ∈ X with gx � gu and gy � gv. Suppose F (X ×X) ⊆ g(X),
g is continuous and g is O-compatible with F . Suppose either

(a) F is continuous or

(b) X has the following property

(i) if a non-decreasing sequence {xn} → x, then gxn � gx for all n,

(ii) if a non-increasing sequence {yn} → y, then gy � gyn for all n.

If there exist two elements x0, y0 ∈ X with

gx0 � F (x0, y0) and gy0 � F (y0, x0),

then F and g have a coupled coincidence point in X.
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Proof. Let x0, y0 ∈ X be such that gx0 � F (x0, y0) and gy0 � F (y0, x0).
Since F (X ×X) ⊆ g(X), we construct two sequences {xn} and {yn} in X as
follows

gxn+1 = F (xn, yn) and gyn+1 = F (yn, xn), for all n ≥ 0. (2)

By the mixed g- monotone property of F , using the mathematical induction,
one can easily show that

gxn � gxn+1, (3)

and

gyn � gyn+1, (4)

for all n ≥ 0.

Since gxn � gxn−1 and gyn � gyn−1, from (1) and (2), we have

d(gxn+1, gxn) + d(gyn+1, gyn) = d(F (xn, yn), F (xn−1, yn−1))

+d(F (yn, xn), F (yn−1, xn−1))

≤ Ad(gxn, gxn−1) +Bd(gyn, gyn−1)).(5)

Similarly, since gyn−1 � gyn and gxn−1 � gxn,

d(gyn, gyn+1) + d(gxn, gxn+1) = d(F (yn−1, xn−1), F (yn, xn))

+d(F (xn−1, yn−1), F (xn, yn))

≤ Ad(gyn−1, yn) +Bd(gxn−1, gxn). (6)

From (5) and (6), we have

d(gxn+1, gxn) + d(gyn+1, gyn) ≤ 1

2
(A+B)[d(gxn, gxn−1) + d(gyn, gyn−1))].

(7)
Set dn = d(gxn+1, gxn) + d(gyn+1, gyn), M = 1

2 (A + B), then M ∈ MN (R+)
and ρ(M) < 1. From (7), we have

dn ≤Mdn−1 ≤M2dn−2 ≤ ... ≤Mnd0. (8)

Since ρ(M) < 1, Mn → Θ as n→∞. Taking the limits as n→∞ in (8), we
get

lim
n→∞

dn = lim
n→∞

[d(gxn+1, gxn) + d(gyn+1, gyn)] = 0.

For m > n, we have
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d(gxm, gxn) + d(gym, gyn)

≤ d(gxm, gxm−1) + d(gxm−1, gxm−2) + ...+ d(gxn+1, gxn)

+d(gym, gym−1) + d(gym−1, gym−2) + ...+ d(gyn+1, gyn)

≤ [d(gxn+1, gxn) + d(gyn+1, gyn)] + ...+ [d(gxm−1, gxm−2)

+d(gym−1, gym−2)] + [d(gxm, gxm−1) + d(gym, gym−1)] + ...

= dn + ...+ dm−2 + dm−1 + ...

≤ (Mn + ...+Mm−2 +Mm−1 + ...)d0

= Mn(I +M + ...+Mn + ...)d0 = Mn(I −M)−1d0.

(notice that I −M is non-singular due to ρ(M) < 1). That implies

d(gxm, gxn) ≤Mn(I −M)−1d0 and d(gym, gyn) ≤Mn(I −M)−1d0,

for all m > n.
Since ρ(M) < 1, Mn(I −M)−1d0 → θ as n → ∞. Therefore, {gxn} and

{gyn} are Cauchy sequences. Since X is a complete generalized metric space,
there exist x, y ∈ X such that

lim
n→∞

gxn = x and lim
n→∞

gyn = y. (9)

Thus

lim
n→∞

F (xn, yn) = lim
n→∞

gxn = x and lim
n→∞

F (yn, xn) = lim
n→∞

gyn = y. (10)

Since {gxn} and {gyn} are monotone, by the O-compatibility of F and g, we
have

lim
n→∞

d(gF (xn, yn), F (gxn, gyn)) = 0, (11)

and

lim
n→∞

d(gF (yn, xn), F (gyn, gxn)) = 0. (12)

Suppose (a) holds. Taking the limits as n→∞ in the following inequality

d (gx, F (gxn, gyn)) ≤ d (gx, gF (xn, yn)) + d (gF (xn, yn) , F (gxn, gyn))

and using (9), (11) and the continuity of F, g, we get d(gx, F (x, y)) ≤ θ. This
implies gx = F (x, y).
Similarly, one has gy = F (y, x).
Finally, suppose (b) holds. Since {gxn} is non-decreasing sequence and gxn →
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x and {gyn} is non-increasing sequence and gyn → y , by the assumption, we
have ggxn � gx and ggyn � gy for all n. From (10), (11) and (12), we have

lim
n→∞

F (gxn, gyn) = lim
n→∞

gF (xn, yn) = lim
n→∞

ggxn = gx, (13)

and
lim

n→∞
F (gyn, gxn) = lim

n→∞
gF (yn, xn) = lim

n→∞
ggyn = gy. (14)

Since ggyn � gy and ggxn � gx , we have

d(F (x, y), gx) + d(F (y, x), gy) ≤ d(F (x, y), F (gxn, gyn)) + d(F (gxn, gyn), gx)

d(F (y, x), F (gyn, gxn)) + d(F (gyn, gxn), gy)

≤ d(F (gxn, gyn), gx) + d(F (gyn, gxn), gy)

+Ad(gx, ggxn) +Bd(gy, ggyn).

Taking n→∞ in the previous inequality and using (13),(14), we get

d(F (x, y), gx) + d(F (y, x), gy) ≤ θ.

It implies F (x, y) = gx and F (y, x) = gy. This completes the proof.

In Theorem 2.1, taking gx = x, for all x ∈ X, we obtain the following
Corollary

Corollary 2.2. Let (X, d,�) be a partially ordered complete generalized
metric space. Let F : X ×X → X be a mapping having the mixed monotone
property on X such that there exist two elements x0, y0 ∈ X with

x0 � F (x0, y0) and y0 � F (y0, x0).

Assume that there exist A,B ∈MN (R+) with ρ( 1
2 (A+B)) < 1 such that

d (F (x, y) , F (u, v)) + d (F (y, x) , F (v, u)) ≤ Ad (x, u) +Bd (y, v) , (15)

for all x, y, u, v ∈ X with x � u and y � v. Suppose either

(a) F is continuous or

(b) X has the following property

(i) if a non-decreasing sequence {xn} → x, then gxn � gx for all n,

(ii) if a non-increasing sequence {yn} → y, then gy � gyn for all n.

then F has a coupled fixed point in X.
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In Theorem 2.1, taking n = 1, we get the following Corollary

Corollary 2.3. Let (X, d,�) be a partially ordered complete metric space.
Suppose F : X ×X → X and g : X → X are mappings such that F has the
mixed g- monotone property. Assume that there exist a, b ∈ R+ with a+ b < 2
such that

d (F (x, y) , F (u, v)) + d (F (y, x) , F (v, u)) ≤ ad (gx, gu) + bd (gy, gv) , (16)

for all x, y, u, v ∈ X with gx � gu and gy � gv. Suppose F (X ×X) ⊆ g(X),
g is continuous and g is O-compatible with F . Suppose either

(a) F is continuous or

(b) X has the following property

(i) if a non-decreasing sequence {xn} → x, then gxn � gx for all n,

(ii) if a non-increasing sequence {yn} → y, then gy � gyn for all n.

If there exists two elements x0, y0 ∈ X with

gx0 � F (x0, y0) and gy0 � F (y0, x0),

then F and g have a coupled coincidence point in X.

Also, taking n = 1 in Corollary 2.2, we get

Corollary 2.4. Let (X, d,�) be a partially ordered complete metric space.
Let F : X ×X → X be a mapping having the mixed monotone property on X
such that there exist two elements x0, y0 ∈ X with

x0 � F (x0, y0) and y0 � F (y0, x0).

Assume that there exist a, b ∈ R+ with a+ b < 2 such that

d (F (x, y) , F (u, v)) + d (F (y, x) , F (v, u)) ≤ ad (x, u) + bd (y, v) , (17)

for all x, y, u, v ∈ X with x � u and y � v. Suppose either

(a) F is continuous or

(b) X has the following property

(i) if a non-decreasing sequence {xn} → x, then gxn � gx for all n,

(ii) if a non-increasing sequence {yn} → y, then gy � gyn for all n.
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then F has a coupled fixed point in X.

Remark 2.5. In Corollary 2.4, letting a = b, we get the result of Berinde
(Theorem 1.11)

Now we shall prove the uniqueness of the coupled fixed point. Note that if
(X,�) is a partially ordered set, then we endow the product X ×X with the
following partial order relation:

for (x, y), (u, v) ∈ X ×X, (x, y) . (u, v)⇐⇒ x � u, y � v.

Theorem 2.6. In addition to the hypotheses of Corollary 2.2, suppose that
for every (x, y), (z, t) ∈ X×X, there exists a (u, v) ∈ X×X that is comparable
to (x, y) and (z, t), then F has a unique coupled fixed point.

Proof. From Corollary 2.2 the set of coupled fixed points of F is non-empty.
Suppose (x, y) and (z, t) are coupled points of F , that is x = F (x, y), y =
F (y, x), z = F (z, t) and t = F (t, z), we shall show that x = z and y = t.

By the assumption, there exists (u, v) ∈ X×X that is comparable to (x, y)
and (z, t).

We define two following sequences {un} and {vn} as follows

u0 = u, v0 = v, un+1 = F (un, vn) and vn+1 = F (vn, un), for all n

Since (u, v) is comparable with (x, y), we may assume that (x, y) & (u, v) =
(u0, v0). By using the mathematical induction and the mixed monotone prop-
erty of F , it is easy to show that

(x, y) & (un, vn), for all n. (18)

Since x � un and y � vn for all n, from (15), we have

d(x, un) + d(y, vn) = d(F (x, y), F (un−1, vn−1)) + d(F (y, x), F (vn−1, un−1))

≤ Ad (x, un−1) +Bd (y, vn−1) .

Similarly,

d(vn, y) + d(un, x) = d(F (vn−1, un−1), F (y, x)) + d(F (un−1, vn−1), F (x, y))

≤ Ad (vn−1, y) +Bd (un−1, x) .

Therefore,

d(x, un) + d(y, vn) ≤ 1

2
(A+B) (d(x, un−1) + d(y, vn−1))

= M(d(x, un−1) + d(y, vn−1))

≤ M2(d(x, un−2) + d(y, vn−2))

...

≤ Mn(d(x, u0) + d(y, v0)). (19)
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Since Mn → Θ as n→∞, taking the limits in (19), we get

lim
n→∞

[d(x, un) + d(y, vn)] = θ.

That is
lim

n→∞
d(x, un) = lim

n→∞
d(y, vn) = θ. (20)

Similarly,
lim
n→∞

d(z, un) = lim
n→∞

d(t, vn) = θ. (21)

From (20) and (21), we have x = z and y = t. The proof is complete

Theorem 2.7. In addition to the hypotheses of Corollary 2.2, suppose
x0, y0 are comparable then F has a fixed point, that is there exists x ∈ X
such that F (x, x) = x.

Proof. By Corollary 2.2, F has a coupled fixed point (x, y). We will show that
x = y. Let us assume that y0 � x0. By the mathematical induction and the
mixed monotone property of F , one can show that

yn � xn, for all n. (22)

where xn = F (xn−1, yn−1), yn = F (yn−1, xn−1), n = 1, 2, 3, .....
Since xn � yn,

d (F (xn, yn) , F (yn, xn))+d (F (yn, xn) , F (xn, yn)) ≤ Ad (xn, yn)+Bd (yn, xn))

or

d(F (xn, yn), F (yn, xn)) ≤ 1

2
(A+B)d(xn, yn) = Md(xn, yn).

By the triangle inequality,

d (x, y) ≤ d (x, xn+1) + d (xn+1, yn+1) + d (yn+1, y)

= d (x, xn+1) + d (yn+1, y) + d (F (xn, yn) , F (yn, xn))

≤ d (x, xn+1) + d (yn+1, y) +Md (xn, yn) . (23)

Taking n → ∞ in the above inequality, we get d(x, y) = θ . This implies
x = y. The proof is concluded.

We next give two examples to illustrate our results.

Example 2.8. Let X = R with the generalized metric d : X ×X → R2 be
defined by

d(x, y) =

(
|x− y|
2|x− y|

)
, for all x, y ∈ X,
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and the usual ordering ≤.
Let F : X ×X → X be defined by

F (x, y) =
1

2
x− y, for all x, y ∈ X,

and g : X → X be defined by

gx = 3x, for all x ∈ X.

Let A,B ∈M2(R+) with

A =

(
1
3

1
3

0 1
3

)
, B =

(
1
6

1
6

1 1
6

)
.

Then X is complete, F, g are continuous and O-compatible. F (X ×X) ⊆
g(X) and F has the mixed g- monotone property. M = (A+B)/2 converges
to zero and there exist x0 = y0 = 0 such that gx0 ≤ F (x0, y0) and gy0 ≥
F (y0, x0). Moreover, for x, y, u, v ∈ X with gx ≥ gu, gy ≤ gv,i.e., x ≥ u, y ≤ v,
we have

d (F (x, y) , F (u, v)) =

( ∣∣ 1
2x− y −

1
2u+ v

∣∣
|x− 2y − u+ 2v|

)
≤
(

1
2 |x− u|+ |y − v|
|x− u|+ 2|y − v|

)

d (F (y, x) , F (v, u)) =

( ∣∣ 1
2y − x−

1
2v + u

∣∣
|y − 2x− v + 2u|

)
≤
(

1
2 |y − v|+ |x− u|
|y − v|+ 2|x− u|

)
Thus,

d (F (x, y) , F (u, v)) + d (F (y, x) , F (v, u)) ≤ 3

2

(
|x− u|+ |y − v|
2|x− u|+ 2|y − v|

)
Also,

Ad(gx, gu) +Bd(gy, gv) =

(
1
3

1
3

0 1
3

)(
3|x− u|
6|x− u|

)
+

(
1
6

1
6

1 1
6

)(
3|y − v|
6|y − v|

)
=

(
3|x− u|+ 3

2 |y − v|
2|x− u|+ 4|y − v|

)
≥ d (F (x, y) , F (u, v)) + d (F (y, x) , F (v, u)) .

Therefore, all the conditions of Theorem 2.1 are satisfied. Applying Theorem
2.1, we obtain that F and g have a coupled coincidence point. In fact, (0, 0)
is the unique coupled coincidence point of F and g.



170 Nguyen Van Luong and Nguyen Xuan Thuan

Example 2.9. Let (X, d,�), F and g be defined as in Example 1.14.

Then:
(i) X is complete and X has the property

• if a non-decreasing sequence {xn} → x, then gxn � gx for all n,

• if a non-increasing sequence {yn} → y, then gy � gyn for all n.

(ii) F (X ×X) = {0, 1} ⊂ {0} ∪ [1/2, 1] = g(X).
(iii) g is continuous and g and F are O-compatible.
(iv) There exist x0 = 0, y0 = 1 such that gx0 � F (x0, y0) and gy0 � F (y0, x0).
(v) F has the mixed g-monotone property. Indeed, for every y ∈ X, let
x1, x2 ∈ X such that gx1 � gx2

• if gx1 = gx2 then x1, x2 = 0 or x1, x2 ∈ [1/2, 1] or x1, x2 ∈ (1, 3/2] or
x1, x2 ∈ (3/2, 2]. Thus, F (x1, y) = 0 = F (x2, y) if y ∈ {0}∪ [1/2, 1], and
x1, x2 = 0 or x1, x2 ∈ [1/2, 1], otherwise F (x1, y) = 1 = F (x2, y).

• if gx1 ≺ gx2, then gx1 = 0 and gx2 = 1, i.e., x1 = 0 and x2 ∈ [1/2, 1].
Thus F (x1, y) = 0 = F (x2, y) if y ∈ {0} ∪ [1/2, 1], and F (x1, y) = 1 =
F (x2, y) if y ∈ (1, 2].

Therefore, F is the g- non-decreasing in its first argument. Similarly, F is the
g- non-increasing in its second argument. (vi) For x, y, u, v ∈ X, if gx � gu
and gy � gv then d(F (x, y), F (u, v)) = 0. Indeed,

• if gx � gu and gy ≺ gv then y = u = 0 and x, v ∈ [1/2, 1]. Thus
d(F (x, y), F (u, v)) = d(0, 0) = 0.

• if gx = gu and gy ≺ gv then y = 0 and v ∈ [1/2, 1]. Thus if x =
u = 0 or x, u ∈ [1/2, 1] then d(F (x, y), F (u, v)) = d(0, 0) = 0, otherwise
d(F (x, y), F (u, v) = d(1, 1) = 0. Similarly, if gx � gu and gy = gv then
d(F (x, y), F (u, v)) = 0.

• if gx = gu and gy = gv then both x, u are in one of the sets {0},
[1/2, 1], (1, 3/2] or (3/2, 2] and both y, v are also in one of the sets {0},
[1/2, 1], (1, 3/2] or (3/2, 2]. Thus d(F (x, y), F (u, v)) = d(0, 0) = 0 if
x = u = 0 or x, u ∈ [1/2, 1] and y = v = 0 or y, v ∈ [1/2, 1], otherwise,
d(F (x, y), F (u, v)) = d(1, 1) = 0.

Therefore, all the conditions of Corollary 2.3 are satisfied with a, b ≥ 0 and
a+ b < 2. Applying Corollary 2.3, we conclude that F and g have a coupled
coincidence point.
Note that, we cannot apply the result of Choudhury and Kundu [10] as well
as the result of Lakshmikantham and Ćıŕıc [18] to this example.
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3 Application to integro-differential equations

In this section, we use the results that are established in Section 2 to derive
some results on the existence and uniqueness of solutions of integro-differential
equations.
Consider the integro-differential equation

x (t) =

t∫
0

(f (s, x (s) , x′ (s)) + g (s, x (s) , x′ (s))) ds for all t ∈ [0, T ], (24)

for some T > 0.
We consider the following conditions

(H1) f, g ∈ C ([0, T ]× R× R,R).

(H2) There exist α, β, λ, µ > 0 such that

0 ≤ f (t, x, y)− f (t, u, v) ≤ α (x− u) + β (y − v) ,

and

−λ (x− u)− µ (y − v) ≤ g (t, x, y)− g (t, u, v) ≤ 0,

for all t ∈ [0, T ], x, y, u, v ∈ R with x ≥ u, y ≥ v.

Definition 3.1. An element (ω, ϑ) ∈ C ([0, T ],R) × C ([0, T ],R) is called
a coupled lower and upper solution of the integro-differential equation (24) if
ω(0) = ϑ(0) = 0 and

ω′(t) ≤ f (t, ω(t), ω′(t)) + g (t, ϑ(t), ϑ′(t))

≤ f (t, ϑ(t), ϑ′(t)) + g (t, ω(t), ω′(t)) ≤ ϑ′(t),

for all t ∈ [0, T ].

Theorem 3.2. With the assumptions (H1) -(H2). If the integro-differential
equation (24) has a coupled lower and upper solution and T (α+λ)+β+µ < 1
then it has a unique solution in C ([0, T ],R).

Proof. Set y(t) = x′(t), from equation (24), we have the following system
equations  x(t) =

t∫
0

(f (s, x (s) , y (s)) + g (s, x (s) , y (s))) ds

y(t) = f (t, x (t) , y (t)) + g (t, x (t) , y (t))

, (25)



172 Nguyen Van Luong and Nguyen Xuan Thuan

for all t ∈ [0, T ].
Set X = C ([0, T ] , R)× C ([0, T ] , R). Then X is a partially ordered set if we
define the following order relation on X:

(x, y), (u, v) ∈ X, (x, y) � (u, v) ⇔ x(t) ≤ u(t), y(t) ≤ v(t), for all t ∈ [0, T ].

Also, (X, d) is a complete generalized metric space with metric

d ((x, y), (u, v)) = (||x− u||, ||y − v||) .

for all (x, y), (u, v) ∈ X, where ||x|| = max{|x(t)| : t ∈ [0, T ]} for all x in
C ([0, T ],R).
Obviously, if {(xn, yn)} is a monotone non-decreasing sequence in X which
converges to (x, y) in X and {(un, vn)} is a monotone non-increasing sequence
inX which converges to (u, v) inX, then (xn, yn) � (x, y) and (u, v) � (un, vn)
for all n. Also, X×X is a partially ordered set if we define the following order
relation on X ×X: for ((x1, y1), (u1, v1)) , ((x2, y2), (u2, v2)) ∈ X ×X,

((x1, y1), (u1, v1)) . ((x2, y2), (u2, v2))⇔ (x1, y1) � (x2, y2), (u2, v2) � (u1, v1)

For any (x, y), (u, v) ∈ X, then (max{x, u},max{y, v}) and
(min{x, u},min{y, v}) are in X and are a upper and a lower bound of
(x, y), (u, v), respectively. Therefore, for every ((x1, y1), (u1, v1)),
((x2, y2), (u2, v2)) ∈ X ×X, there exists a

((max{x1, x2},max{y1, y2}) , (min{u1, u2},min{v1, v2})) ∈ X ×X,

which is comparable to ((x1, y1), (u1, v1)) and ((x2, y2), (u2, v2)).
We define a mapping F : X ×X → X as follows

F ((x, y), (u, v)) = (F1 ((x, y), (u, v)) , F2 ((x, y), (u, v)))

where F1, F2 : X ×X → C([0, T ],R) are defined by

F1 ((x, y), (u, v)) (t) =

t∫
0

(f(s, x(s), y(s)) + g(s, u(s), v(s))) ds,

and
F2 ((x, y), (u, v)) (t) = f(t, x(t), y(t)) + g(t, u(t), v(t)),

for all x, y, u, v ∈ C([0, T ],R), and for all t ∈ [0, T ].
We claim that F has the mixed monotone property. In fact, for any (x, y) and
(u, v) in X, if (x1, y1) � (x2, y2), we have
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F1 ((x1, y1), (u, v)) (t)− F1 ((x2, y2), (u, v)) (t)

=

t∫
0

(f(s, x1(s), y1(s)) + g(s, u(s), v(s))) ds

−
t∫

0

(f(s, x2(s), y2(s)) + g(s, u(s), v(s))) ds

(by the assumption (H2))

=

t∫
0

(f(s, x1(s), y1(s))− f(s, x2(s), y2(s))) ds ≤ 0,

and

F2 ((x1, y1), (u, v)) (t)− F2 ((x2, y2), (u, v)) (t)

= f(t, x1(t), y1(t)) + g(t, u(t), v(t))− (f(t, x2(t), y2(t)) + g(t, u(t), v(t)))

(by the assumption (H2))

= f(t, x1(t), y1(t))− f(t, x2(t), y2(t)) ≤ 0.

Therefore, F ((x1, y1), (u, v)) � F ((x2, y2), (u, v)) that is, F is non-deacreasing
in the first argument.
Similarly, if (u1, v1) � (u2, v2) then we have

F1 ((x, y), (u1, v1)) (t)− F1 ((x, y), (u2, v2)) (t)

=

t∫
0

(f(s, x(s), y(s)) + g(s, u1(s), v1(s))) ds

−
t∫

0

(f(s, x(s), y(s)) + g(s, u2(s), v2(s))) ds

(by the assumption (H2))

=

t∫
0

(g(s, u1(s), v1(s))− g(s, u2(s), v2(s))) ds ≥ 0,

and
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F2 ((x, y), (u1, v1)) (t)− F2 ((x, y), (u2, v2)) (t)

= f(s, x(s), y(s)) + g(s, u1(s), v1(s))− (f(s, x(s), y(s)) + g(s, u2(s), v2(s)))

(by the assumption (H2))

= g(s, u1(s), v1(s))− f(s, u2(s), v2(s)) ≥ 0.

Therefore, F ((x, y), (u1, v1)) � F ((x, y), (u2, v2)), that is, F is non-increasing
in the second argument.
The claim is proved.
Now for any (x1, y1), (x2, y2), (u1, v1), (u2, v2) ∈ X with (x1, y1) � (x2, y2) and
(u1, v1) � (u2, v2), we have,

|F1 ((x1, y1), (u1, v1)) (t)− F1 ((x2, y2), (u2, v2)) (t)|

=

∣∣∣∣∣∣
t∫

0

(f(s, x1(s), y1(s)) + g(s, u1(s), v1(s))) ds

−
t∫

0

(f(s, x2(s), y2(s)) + g(s, u2(s), v2(s))) ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
t∫

0

(f(s, x1(s), y1(s))− f(s, x2(s), y2(s))) ds

−
t∫

0

(g(s, u1(s), v1(s))− g(s, u2(s), v2(s))) ds

∣∣∣∣∣∣
≤

t∫
0

(α(x1(s)− x2(s)) + β(y1(s)− y2(s))) ds

+

t∫
0

(λ(u2(s)− u1(s)) + µ(v2(s)− v1(s))) ds

≤ αT‖x1 − x2‖+ βT‖y1 − y2‖+ λT‖u2 − u1‖+ µT‖v2 − v1‖
Therefore,

d (F1 ((x1, y1), (u1, v1)) , F1 ((x2, y2), (u2, v2))) ≤ αT‖x1 − x2‖+ βT‖y1 − y2‖
+λT‖u1 − u2‖+ µT‖v1 − v2‖.

Similarly, we have

d (F1 ((u2, v2), (x2, y2)) , F1 ((u1, v1), (x1, y1))) ≤ αT‖u2 − u1‖+ βT‖v2 − v1‖
+λT‖x1 − x2‖+ µT‖y1 − y2‖.
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On the other hand, for (x1, y1), (x2, y2), (u1, v1), (u2, v2) ∈ X with (x1, y1) �
(x2, y2), (u1, v1) � (u2, v2), we also have

|F2 ((x1, y1), (u1, v1)) (t)− F2 ((x2, y2), (u2, v2)) (t)|

= |f(t, x1(t), y1(t)) + g(t, u1(t), v1(t))− (f(t, x2(t), y2(t)) + g(t, u2(t), v2(t))) |
= | (f(t, x1(t), y1(t))− f(t, x2(t), y2(t))) + (g(t, u1(t), v1(t))− g(t, u2(t), v2(t))) |
≤ α(x1(t)− x2(t)) + β(y1(t)− y2(t)) + λ(u2(t)− u1(t)) + µ(v2(t)− v1(t)).

Thus,

d (F2 ((x1, y1), (u1, v1)) , F2 ((x2, y2), (u2, v2))) ≤ α‖x1 − x2‖+ β‖y1 − y2‖
+λ‖u2 − u1‖+ µ‖v2 − v1‖.

Similarly,

d (F2 ((u2, v2), (x2, y2)) , F2 ((u1, v1), (x1, y1))) ≤ α‖u2 − u1‖+ β‖v2 − v1‖
+λ‖x1 − x2‖+ µ‖y1 − y2‖.

Therefore, for any (x1, y1), (x2, y2), (u1, v1), (u2, v2) ∈ X with (x1, y1) �
(x2, y2), (u1, v1) � (u2, v2), we have

d (F ((x1, y1), (u1, v1)) , F ((x2, y2), (u2, v2)))

+d (F ((u1, v1), (x1, y1)) , F ((u2, v2), (x2, y2)))

= d (F ((x1, y1), (u1, v1)) , F ((x2, y2), (u2, v2)))

+d (F ((u2, v2), (x2, y2)) , F ((u1, v1), (x1, y1)))

=

(
d (F1 ((x1, y1) , (u1, v1)) , F1 ((x2, y2) , (u2, v2)))
d (F2 ((x1, y1) , (u1, v1)) , F2 ((x2, y2) , (u2, v2)))

)
+

(
d (F1 ((u2, v2) , (x2, y2)) , F1 ((u1, v1) , (x1, y1)))
d (F2 ((u2, v2) , (x2, y2)) , F2 ((u1, v1) , (x1, y1)))

)
≤

(
(Tα+ Tλ) (‖x1 − x2‖+ ‖u1 − u2‖)

(α+ λ) (‖x1 − x2‖+ ‖u1 − u2‖)

)
+

(
(Tβ + Tµ) (‖y1 − y2‖+ ‖v1 − v2‖)

(β + µ) (‖y1 − y2‖+ ‖v1 − v2‖)

)
=

(
Tα+ Tλ Tβ + Tµ
α+ λ β + µ

)(
‖x1 − x2‖+ ‖u1 − u2‖
‖y1 − y2‖+ ‖v1 − v2‖

)
= A [d ((x1, y1), (x2, y2)) + d ((u1, v1), (u2, v2))] ,

where

A =

(
Tα+ Tλ Tβ + Tµ
α+ λ β + µ

)
.



176 Nguyen Van Luong and Nguyen Xuan Thuan

It is easy to see that the matrix A has two eigenvalues δ1 = 0 and δ2 =
T (α+ λ) + β + µ < 1. Hence A converges to zero.
Thus F verifies the contraction condition (15) in Corollary (2.2) with A = B.
Now let (ω1, ϑ1) be a coupled lower and upper solution of the equation (24),
then we have

ω1
′(t) ≤ f (t, ω1(t), ω1

′(t)) + g
(
t, ϑ1(t), ϑ1

′(t)
)

≤ f
(
t, ϑ1(t), ϑ1

′(t)
)

+ g (t, ω1(t), ω1
′(t)) ≤ ϑ1′(t), (26)

for all t ∈ [0, T ] and ω1(0) = ϑ1(0) = 0.
Set ω2(t) = ω′1(t) and ϑ2(t) = ϑ1(t)

′
for all t ∈ [0, T ]. From (26), for all

t ∈ [0, T ], we have

ω2(t) ≤ f (t, ω1(t), ω2(t)) + g (t, ϑ1(t), ϑ2(t))

≤ f (t, ϑ1(t), ϑ2(t)) + g (t, ω1(t), ω2(t)) ≤ ϑ2(t),

that is, for all t ∈ [0, T ],

ω2(t) ≤ F2 ((ω1, ω2), (ϑ1, ϑ2)) (t) ≤ F2 ((ϑ1, ϑ2), (ω1, ω2)) (t) ≤ ϑ2(t). (27)

Also, by (26), for all t ∈ [0, T ], we have

t∫
0

ω1
′(s)ds ≤

t∫
0

(
f(s, ω1(s), ω1

′(s)) + g(t, ϑ1(s), ϑ1
′(t))

)
ds

≤
t∫

0

(
f(s, ϑ1(s), ϑ1

′(s)) + g(s, ω1(s), ω1
′(s))

)
ds ≤

t∫
0

ϑ1
′(s)ds

or

ω1(t)− ω1(0) ≤
t∫

0

(f(s, ω1(s), ω2(s)) + g(t, ϑ1(s), ϑ2(s))) ds (28)

≤
t∫

0

(f(s, ϑ1(s), ϑ2(s)) + g(s, ω1(s), ω2(s))) ds ≤ ϑ1(t)− ϑ1(0).

From (28) and the fact that ω1(0) = ϑ(0) = 0, we get

ω1(t) ≤ F1 ((ω1, ω2), (ϑ1, ϑ2)) (t) ≤ F1 ((ϑ1, ϑ2), (ω1, ω2)) (t) ≤ ϑ1(t). (29)

From (27) and (29), we have

(ω1, ω2) ≤ (F1 ((ω1, ω2), (ϑ1, ϑ2)) , F2 ((ω1, ω2), (ϑ1, ϑ2)))

≤ (F1 ((ϑ1, ϑ2), (ω1, ω2)) , F2 ((ϑ1, ϑ2), (ω1, ω2))) ≤ (ϑ1, ϑ2)
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This means that there exist (ω1, ω2), (ϑ1, ϑ2) ∈ X such that

(ω1, ω2) � F ((ω1, ω2), (ϑ1, ϑ2)) and (ϑ1, ϑ2) � F ((ϑ1, ϑ2), (ω1, ω2)) .

Thus all the conditions of Theorem 2.6 are satisfied. Applying this theorem, F
has a unique coupled fixed point (x∗, y∗), (u∗, v∗) in X ×X. Since (ω1, ω2) �
(ϑ1, ϑ2), applying Theorem 2.7, we conclude that (x∗, y∗) = (u∗, v∗) is the
unique fixed point of F . It means the system of equations (25) has the unique
solution (x∗(t), y∗(t)). That means x∗(t) =

t∫
0

(f (s, x∗(s), y∗(s)) + g (s, x∗(s), y∗(s))) ds

y∗(t) = f (t, x∗(t), y∗(t)) + g (t, x∗(t), y∗(t))

, for all t ∈ [0, T ].

(30)
The first equality shows that x∗ ∈ C([0, T ],R) and after taking the derivative
that equation, we have

(x∗)′(t) = f (t, x∗(t), y∗(t)) + g (t, x∗(t), y∗(t)) = y∗(t). (31)

Therefore x∗ ∈ C([0, T ],R) is the unique solution of the equation (24). The
proof is complete.
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[18] V. Lakshmikantham, L. Ćıŕıc, Coupled fixed point theorems for nonlinear
contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009)
4341- 4349.

[19] N. V. Luong, N. X. Thuan, Coupled fixed points in partially ordered
metric spaces and application, Nonlinear Anal. 74 (2011) 983-992.

[20] N. V. Luong, N. X. Thuan. Coupled fixed point theorems for mixed mono-
tone mappings and application to nonlinear integral equations. Comput.
Math. Appl. 62 (2011) 4238 - 4248
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