

Monomial ideals of minimal depth

Muhammad Ishaq

Abstract

Let S be a polynomial algebra over a field. We study classes of monomial ideals (as for example lexsegment ideals) of S having minimal depth. In particular, Stanley's conjecture holds for these ideals. Also we show that if I is a monomial ideal with $\operatorname{Ass}(S/I) = \{P_1, P_2, \ldots, P_s\}$ and $P_i \not\subset \sum_{1=j\neq i}^s P_j$ for all $i \in [s]$, then Stanley's conjecture holds for S/I.

Introduction

Let K be a field and $S = K[x_1, \ldots, x_n]$ be a polynomial ring in n variables over K. Let $I \subset S$ be a monomial ideal and $I = \bigcap_{i=1}^{s} Q_i$ an irredundant primary decomposition of I, where the Q_i are monomial ideals. Let Q_i be P_i -primary. Then each P_i is a monomial prime ideal and $Ass(S/I) = \{P_1, \ldots, P_s\}$.

According to Lyubeznik [9] the size of I, denoted size(I), is the number a + (n - b) - 1, where a is the minimum number t such that there exist $j_1 < \cdots < j_t$ with

$$\sqrt{\sum_{l=1}^{t} Q_{j_l}} = \sqrt{\sum_{j=1}^{s} Q_j},$$

and where $b = \operatorname{ht}(\sum_{j=1}^{s} Q_j)$. It is clear from the definition that $\operatorname{size}(I)$ depends only on the associated prime ideals of S/I. In the above definition if we replace "there exists $j_1 < \cdots < j_t$ " by "for all $j_1 < \cdots < j_t$ ", we obtain the definition of bigsize(I), introduced by Popescu [11]. Clearly bigsize(I) \geq size(I).

Revised: May, 2012.

Accepted: February, 2013.

Key Words: Monomial ideal, Stanley decomposition, Stanley depth, Lexsegment ideal, Minimal depth.

²⁰¹⁰ Mathematics Subject Classification: Primary 13C15, Secondary 13P10, 13F20. Received: April, 2012.

Theorem 0.1. (Lyubeznik [9]) Let $I \subset S$ be a monomial ideal then depth $(I) \ge 1 + \text{size}(I)$.

Herzog, Popescu and Vladoiu say in [5] that a monomial ideal I has minimal depth, if depth(I) = size(I) + 1. Suppose above that $P_i \not\subset \sum_{1=j\neq i}^s P_j$ for all $i \in [s]$. Then I has minimal depth as shows our Corollary 1.3 which extends [11, Theorem 2.3]. It is easy to see that if I has bigsize 1 then it must have minimal depth (see our Corollary 1.5).

Next we consider the lexicographical order on the monomials of S induced by $x_1 > x_2 > \cdots > x_n$. Let $d \ge 2$ be an integer and \mathcal{M}_d the set of monomials of degree d of S. For two monomials $u, v \in \mathcal{M}_d$, with $u \ge_{lex} v$, the set

$$\mathcal{L}(u,v) = \{ w \in \mathcal{M}_d | u \ge_{lex} w \ge_{lex} v \}$$

is called a lexsegment set. A lexsegment ideal in S is a monomial ideal of S which is generated by a lexsegment set. We show that a lexsegment ideal has minimal depth (see our Theorem 1.6).

Now, let M be a finitely generated multigraded S-module, $z \in M$ be a homogeneous element in M and $zK[Z], Z \subseteq \{x_1, \ldots, x_n\}$ the linear Ksubspace of M of all elements $zf, f \in K[Z]$. Such a linear K-subspace zK[Z]is called a Stanley space of dimension |Z| if it is a free K[Z]-module, where |Z|denotes the number of indeterminates in Z. A presentation of M as a finite direct sum of spaces $\mathcal{D}: M = \bigoplus_{i=1}^{r} z_i K[Z_i]$ is called a Stanley decomposition. Stanley depth of a decomposition \mathcal{D} is the number

sdepth
$$\mathcal{D} = \min\{|Z_i| : i = 1, \dots, r\}.$$

The number

 $sdepth(M) := \max\{sdepth(\mathcal{D}) : Stanley decomposition of M\}$

is called Stanley depth of M. In [14] R. P. Stanley conjectured that

 $\operatorname{sdepth}(M) \ge \operatorname{depth}(M).$

Theorem 0.2 ([5]). Let $I \subset S$ be a monomial ideal then $sdepth(I) \geq 1 + size(I)$. In particular, Stanley's conjecture holds for the monomial ideals of minimal depth.

As a consequence, Stanley's depth conjecture holds for all ideals considered above since they have minimal depth. It is still not known a relation between sdepth(I) and sdepth(S/I), but our Theorem 2.3 shows that Stanley's conjecture holds also for S/I if $P_i \not\subset \sum_{1=j\neq i}^{s} P_j$ for all $i \in [s]$. Some of the recent development about the Stanley's conjecture is given in [12].

1 Minimal depth

We start this section extending some results of Popescu in [11]. Lemma 1.1, Proposition 1.2, Lemma 1.4 and Corollary 1.5 were proved by Popescu when I is a squarefree monomial ideal. We show that with some small changes the same proofs work even in the non-squarefree case.

Lemma 1.1. Let $I = \bigcap_{i=1}^{s} Q_i$ be the irredundant presentation of I as an intersection of primary monomial ideals. Let $P_i := \sqrt{Q_i}$. If $P_s \not\subset \sum_{i=1}^{s-1} P_i$, then

 $\operatorname{depth}(S/I) = \min\{\operatorname{depth}(S/\bigcap_{i=1}^{s-1}Q_i), \operatorname{depth}(S/Q_s), 1 + \operatorname{depth}(S/\bigcap_{i=1}^{s-1}(Q_i+Q_s))\}.$

Proof. We have the following exact sequence

$$0 \longrightarrow S/I \longrightarrow S/ \cap_{i=1}^{s-1} Q_i \oplus S/Q_s \longrightarrow S/ \cap_{i=1}^{s-1} (Q_i + Q_s) \longrightarrow 0.$$

Clearly depth(S/I) \leq depth(S/Q_s) by [1, Proposition 1.2.13]. Choosing x_j^a where $x_j \in P_s \not\subset \sum_{i=1}^{s-1} P_i$ and a is minimum such that $x_j^a \in Q_s$ we see that $I : x_j^a = \bigcap_{i=1}^{s-1} Q_i$ and by [13, Corollary 1.3] we have

$$\operatorname{depth}(S/I) \leq \operatorname{depth} S/(I : x_i^a) = \operatorname{depth} S/(\bigcap_{i=1}^{s-1} Q_i).$$

Now by using Depth Lemma (see [15, Lemma 1.3.9]) we have

 $depth(S/I) = \min\{depth(S/\cap_{i=1}^{s-1}Q_i), depth(S/Q_s), 1 + depth(S/\cap_{i=1}^{s-1}(Q_i + Q_s))\},\$ which is enough. \Box

Proposition 1.2. Let $I = \bigcap_{i=1}^{s} Q_i$ be the irredundant presentation of I as an intersection of primary monomial ideals. Let $P_i := \sqrt{Q_i}$. If $P_i \not\subset \sum_{1=i\neq j}^{s-1} P_j$ for all $i \in [s]$. Then depth(S/I) = s - 1.

Proof. It is enough to consider the case when $\sum_{j=1}^{s} P_j = \mathfrak{m}$. We use induction on s. If s = 1 the result is trivial. Suppose that s > 1. By Lemma 1.1 we get

 $\operatorname{depth}(S/I) = \min\{\operatorname{depth}(S/\bigcap_{i=1}^{s-1}Q_i), \operatorname{depth}(S/Q_s), 1 + \operatorname{depth}(S/\bigcap_{i=1}^{s-1}(Q_i+Q_s))\}.$

Then by induction hypothesis we have

$$depth(S/\bigcap_{i=1}^{s-1} Q_i) = s - 2 + \dim(S/(\sum_{i=1}^{s-1} Q_i)) \ge s - 1.$$

We see that $\bigcap_{i=1}^{s-1}(Q_i + Q_s)$ satisfies also our assumption, the induction hypothesis gives depth $(S/\bigcap_{i=1}^{s-1}(Q_i + Q_s)) = s - 2$. Since $Q_i \not\subset Q_s$, i < s by our assumption we get depth $(S/Q_s) >$ depth $(S/(Q_i + Q_s))$ for all i < s. It follows depth $(S/Q_s) \ge 1 +$ depth $(S/\bigcap_{i=1}^{s-1}(Q_i + Q_s))$ which is enough. \Box

Corollary 1.3. Let $I \subset S$ be a monomial ideal such that $Ass(S/I) = \{P_1 \dots, P_s\}$ where $P_i \not\subset \sum_{1=j\neq i}^s P_j$ for all $i \in [s]$. Then I has minimal depth.

Proof. Clearly size(I) = s - 1 and by Proposition 1.2 we have depth(I) = s, thus we have depth(I) = size(I) + 1, i.e. I has minimal depth.

Lemma 1.4. Let $I = \bigcap_{i=1}^{s} Q_i$ be the irredundant primary decomposition of I and $\sqrt{Q_i} \neq \mathfrak{m}$ for all i. Suppose that there exists $1 \leq r < s$ such that $\sqrt{Q_i + Q_j} = \mathfrak{m}$ for each $r < j \leq s$ and $1 \leq i \leq r$. Then depth(I) = 2.

Proof. The proof follows by using Depth Lemma on the following exact sequence.

$$0 \longrightarrow S/I \longrightarrow S/ \cap_{i=1}^{r} Q_i \oplus S/ \cap_{j>r}^{s} Q_j \longrightarrow S/ \cap_{i=1}^{r} \cap_{j>r}^{s} (Q_i + Q_j) \longrightarrow 0.$$

Corollary 1.5. Let $I \subset S$ be a monomial ideal. If bigsize of I is one then I has minimal depth.

Proof. We know that $\operatorname{size}(I) \leq \operatorname{bigsize}(I)$. If $\operatorname{size}(I) = 0$ the depth(I) = 1 and the result follows in this case. Now let us suppose that $\operatorname{size}(I) = 1$. By Lemma 1.4 we have depth(I) = 2. Hence the result follows.

Let $d \geq 2$ be an integer and \mathcal{M}_d the set of monomials of degree d of S. For two monomials $u, v \in \mathcal{M}_d$, with $u \geq_{lex} v$, we consider the lexsegment set

$$\mathcal{L}(u,v) = \{ w \in \mathcal{M}_d | u \ge_{lex} w \ge_{lex} v \}.$$

Theorem 1.6. Let $I = (\mathcal{L}(u, v)) \subset S$ be a lexsegment ideal. Then depth(I) = size(I) + 1, that is I has minimal depth.

Proof. For the trivial cases u = v the result is obvious. Suppose that $u = x_1^{a_1} \cdots x_n^{a_n}$,

 $v = x_1^{b_1} \cdots x_n^{b_n} \in S$. First assume that $b_1 = 0$. If there exist r such that $a_1 = \cdots = a_r = 0$ and $a_{r+1} \neq 0$, then I is a lexsegment ideal in $S' := K[x_{r+1}, \ldots, x_n]$. We get depth(IS) = depth(IS') + r and by definition of size we have size(IS) = size(IS') + r. This means that without loss of generality we can assume that $a_1 > 0$. If $x_n u/x_1 \ge_{lex} v$, then by [3, Proposition 3.2] depth(I) = 1 which implies that $\mathfrak{m} \in Ass(S/I)$, thus size(I) = 0 and the result

follows in this case. Now consider the complementary case $x_n u/x_1 <_{lex} v$, then u is of the form $u = x_1 x_l^{a_l} \cdots x_n^{a_n}$ where $l \ge 2$. Let $I = \bigcap_{i=1}^s Q_i$ be an irredundant primary decomposition of I, where Q'_i s are monomial primary ideals. If $l \ge 4$ and $v = x_2^d$ then by [3, Proposition 3.4] we have depth(I) = l-1. After [6, Proposition 2.5(ii)] we know that

$$\sqrt{\sum_{i=1}^{s} Q_i} = (x_1, x_2, x_l, \dots, x_n) \notin \operatorname{Ass}(S/I),$$

but $(x_1, x_2), (x_2, x_l, \ldots, x_n) \in \operatorname{Ass}(S/I)$. Therefore, $\operatorname{size}(I) = l - 2$ and we have depth $(I) = \operatorname{size}(I) + 1$, so we are done in this case. Now consider the case $v = x_2^{d-1}x_j$ for some $3 \leq j \leq n-2$ and $l \geq j+2$, then again by [3, Proposition 3.4] we have depth(I) = l - j + 1 and by [6, Proposition 2.5(*ii*)] we have

$$\sqrt{\sum_{i=1}^{s} Q_i} = (x_1, \dots, x_j, x_l, \dots, x_n) \notin \operatorname{Ass}(S/I)$$

and $(x_1, \ldots, x_j), (x_2, \ldots, x_j, x_l, \ldots, x_n) \in \operatorname{Ass}(S/I)$. Therefore, size(I) = l - jand again we have depth $(I) = \operatorname{size}(I) + 1$. Now for all the remaining cases by [3, Proposition 3.4] we have depth(I) = 2, and by [6, Proposition 2.5(i)]

$$\sqrt{\sum_{i=1}^{s} Q_i} = (x_1, \dots, x_n) \notin \operatorname{Ass}(S/I),$$

but $(x_1, \ldots, x_j), (x_2, \ldots, x_n) \in \operatorname{Ass}(S/I)$, for some $j \ge 2$. Therefore size(I) = 1. Thus the equality depth $(I) = \operatorname{size}(I) + 1$ follows in all cases when $b_1 = 0$.

Now let us consider that $b_1 > 0$, then $I = x_1^{b_1}I'$ where $I' = (I : x_1^{b_1})$. Clearly I' is a lexsegment ideal generated by the lexsegment set $\mathcal{L}(u', v')$ where $u' = u/x_1^{b_1}$ and $v' = v/x_1^{b_1}$. The ideals I, I' are isomorphic, therefore depth(I') = depth(I). It is enough to show that size(I') = size(I). We have the exact sequence

$$0 \to S/I' \stackrel{x_1^{b_1}}{\to} S/I \to S/(I, x_1^{b_1}) = S/(x_1^{b_1}) \to 0,$$

and therefore

$$\operatorname{Ass}(S/I') \subset \operatorname{Ass}(S/I) \subset \operatorname{Ass}(S/I') \cup \{(x_1)\}.$$

As $\{(x_1)\} \in \operatorname{Ass}(S/I)$ since it is a minimal prime over I, we get $\operatorname{Ass}(S/I) = \operatorname{Ass}(S/I') \cup \{(x_1)\}$. Let s' be the minimum number such that there exist $P_1, \ldots, P_s \in \operatorname{Ass} S/I'$ such that $\sum_{i=1}^s P_i = a := \sum_{P \in \operatorname{Ass}(S/I')} P$. Then

size(I') = $s' + \dim(S/a) - 1$. Let s be the minimum number t such that there exist t prime ideals in Ass(S/I) whose sum is (a, x_1) . By [6, Lemma 2.1] we have that atleast one prime ideal from Ass(S/I') contains necessarily x_1 , we have $x_1 \in a$. It follows $s \leq s'$ because anyway $\sum_{i=1}^{s'} P_i = a = \sum_{P \in Ass(S/I)} P$. If we have $P'_1, \ldots, P'_{s-1} \in Ass(S/I')$ such that $\sum_{i=1}^{s-1} P'_i + (x_1) = a$ then we have also $\sum_{i=1}^{s-1} P'_i + P_1 = a$ for some $P_1 \in Ass(S/I')$ which contains x_1 . Thus s = s' and so size(I) = size(I').

2 Stanley depth of cyclic modules defined by ideals of minimal depth

Using Corollaries 1.3, 1.5 and Theorems 1.6, 0.2 we get the following theorem.

Theorem 2.1. Stanley's conjecture holds for I, if it satisfies one of the following statements:

- 1. $P_i \nsubseteq \sum_{1=i \neq i}^{s} P_j$ for all $i \in [s]$,
- 2. the bigsize of I is one,
- 3. I is a lexsegment ideal.

Remark 2.2. Usually, if Stanley's conjecture holds for an ideal I then we may show that it holds for the module S/I too. There exist no general explanation for this fact. If I is a monomial ideal of bigsize one then Stanley's conjecture holds for S/I. Indeed, case depth(S/I) = 0 is trivial. Suppose depth $(S/I) \neq$ 0, then by Lemma 1.4 depth(S/I) = 1, therefore by [2, Proposition 2.13] sdepth $(S/I) \geq 1$. If I is a lexsegment ideal then Stanley's conjecture holds for S/I [6]. Below we show this fact in the first case of the above theorem.

Theorem 2.3. Let $I = \bigcap_{i=1}^{n} Q_i$ be the irredundant presentation of I as an intersection of primary monomial ideals. Let $P_i := \sqrt{Q_i}$. If $P_i \not\subset \sum_{1=i\neq j}^{s} P_j$ for all $i \in [s]$ then sdepth $(S/I) \ge depth(S/I)$, that is the Stanley's conjecture holds for S/I.

Proof. Using [4, Lemma 3.6] it is enough to consider the case $\sum_{i=1}^{s} P_i = \mathfrak{m}$. By Proposition 1.2 we have depth(S/I) = s - 1. We show that sdepth $(S/I) \ge s - 1$. Apply induction on s, case s = 1 being clear. Fix s > 1 and apply induction on n. If $n \le 5$ then the result follows by [10]. Let $A := \bigcup_{i=1}^{s} (G(P_i) \setminus \sum_{1=j\neq i}^{s} G(P_j))$. If $(A) = \mathfrak{m}$ then note that $G(P_i) \cap G(P_j) = \emptyset$ for all $i \ne j$. By [7, Theorem 2.1] and [8, Theorem 3.1] we have sdepth $(S/I) \ge s - 1$. Now suppose that $(A) \ne \mathfrak{m}$. By renumbering the primes and variables we can assume that $x_n \notin A$. There exists a number $r, 2 \leq r \leq s$ such that $x_n \in G(P_j)$, $1 \leq j \leq r$ and $x_n \notin G(P_j)$, $r+1 \leq j \leq s$. Let $S' := K[x_1, \ldots, x_{n-1}]$. First assume that r < s. Let $Q'_j = Q_j \cap S'$, $P'_j = P_j \cap S'$ and $J = \bigcap_{i=r+1}^s Q'_i \subset S'$, $L = \bigcap_{i=1}^r Q'_i \subset S'$. We have $(I, x_n) = ((J \cap L), x_n)$ because $(Q_j, x_n) = (Q'_j, x_n)$ using the structure of monomial primary ideals given in [15]. In the exact sequence

$$0 \longrightarrow S/(I:x_n) \longrightarrow S/I \longrightarrow S/(I,x_n) \longrightarrow 0,$$

the sdepth of the right end is $\geq s-1$ by induction hypothesis on n for $J \cap L \subset S'$ (note that we have $P'_i \not\subset \sum_{1=i\neq j}^s P'_j$ for all $i \in [s]$ since $x_n \notin A$). Let e_I be the maximum degree in x_n of a monomial from G(I). Apply induction on e_I . If $e_I = 1$ then $(I : x_n) = JS$ and the sdepth of the left end in the above exact sequence is equal with $\operatorname{sdepth}(S/JS) \geq (s-r-1)+r = s-1$ since there are at least r variables which do not divide the minimal monomial generators of ideal $(I : x_n)$ and we may apply induction hypothesis on s for J. By [13, Theorem 3.1] we have $\operatorname{sdepth}(S/I) \geq \min\{\operatorname{sdepth}(S/(I : x_n)), \operatorname{sdepth}(S/(I, x_n))\} \geq s-1$. If $e_I > 1$ then note that $e_{(I:x_n)} < e_I$ and by induction hypothesis on e_I or s we get $\operatorname{sdepth}(S/(I : x_n)) \geq s - 1$. As above we obtain by [13, Theorem 3.1] $\operatorname{sdepth}(S/I) \geq s-1$.

Now let r = s. If $e_I = 1$ then $I = (L, x_n)$ and by induction on n we have $sdepth(S/I) = sdepth(S'/L) \ge s - 1$. If $e_I > 1$ then by induction hypothesis on e_I and s we get $sdepth(S/(I : x_n)) \ge s - 1$. As above we are done using [13, Theorem 3.1].

Acknowledgement

This research is partially supported by National University of Sciences and Technology (NUST), Islamabad, and a grant of Higher Education Commission of Pakistan Ref. No: PM-IPFP/HRD/HEC/2012/2778.

References

- W. Bruns and J. Herzog, *Cohen-Macaulay rings*. Rev. ed. Cambridge Studies in Advanced Mathematics 39, Cambridge University Press 1998.
- [2] W. Bruns, C. Krattenthaler, J. Uliczka, Stanley decompositions and Hilbert depth in the Koszul complex, J. Commut. Algebra 2(2010), 327-357.
- [3] V. Ene, A.Olteanu, L. Sorrenti, Properties of lexsegment ideals, Osaka J. Math., 47, 2010, 1–21.

- [4] J. Herzog, M. Vladoiu, X. Zheng, How to compute the Stanley depth of a monomial ideal, J. Algebra, 322(9)(2009), 3151-3169.
- [5] J. Herzog, D. Popescu, M. Vlădoiu, Stanley depth and size of a monomial ideal, to appear in Proceed. AMS.
- [6] M. Ishaq, Lexsegment ideals are sequentially Cohen-Macaulay, to appear in Algebra Colloquium. arXiv:1010.5615v3.
- [7] M. Ishaq, Values and bounds for the Stanley depth, Carpathian J. Math., 27 (2011), No.2, 217-224.
- [8] M. Ishaq, M.I. Qureshi, Upper and lower bounds for the Stanley depth of certain classes of monomial ideals and their residue class rings, Communications in Algebra, 41(2013), no.3, 1107-1116.
- [9] G. Lyubeznik, On the Arithmetical Rank of Monomial ideals. J. Algebra 112, 8689 (1988).
- [10] D. Popescu, Stanley depth of multigraded modules, J. Algebra 321(2009), 2782-2797.
- [11] D. Popescu, Stanley conjecture on intersection of four monomial prime ideals, to appear in Communications in Algebra, arXiv:1009.5646v1.
- [12] D. Popescu, Bounds of Stanley depth, Analele Univ. Ovidius Constanta, 19(2)(2011), 187-194.
- [13] A. Rauf, Depth and Stanley depth of multigraded modules, Comm. Algebra, 38 (2010), 773-784.
- [14] R.P. Stanley, Linear Diophantine equations and local cohomology, Invent. Math. 68 (1982). 175-193.
- [15] R. H. Villarreal, Monomial Algebras, New York: Marcel Dekker Inc. 2001.

Muhammad ISHAQ, Department of Mathematics, School of Natural Sciences, National University of Sciences and Technology Islamabad, Sector, H-12, 44000 Islamabad, Pakistan. Email: ishaq_maths@yahoo.com