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Monomial ideals of minimal depth

Muhammad Ishaq

Abstract

Let S be a polynomial algebra over a field. We study classes of
monomial ideals (as for example lexsegment ideals) of S having minimal
depth. In particular, Stanley’s conjecture holds for these ideals. Also
we show that if I is a monomial ideal with Ass(S/I) = {P1, P2, . . . , Ps}
and Pi 6⊂

∑s
1=j 6=i Pj for all i ∈ [s], then Stanley’s conjecture holds for

S/I.

Introduction

Let K be a field and S = K[x1, . . . , xn] be a polynomial ring in n variables over
K. Let I ⊂ S be a monomial ideal and I = ∩si=1Qi an irredundant primary
decomposition of I, where the Qi are monomial ideals. Let Qi be Pi-primary.
Then each Pi is a monomial prime ideal and Ass(S/I) = {P1, . . . , Ps}.

According to Lyubeznik [9] the size of I, denoted size(I), is the number
a + (n − b) − 1, where a is the minimum number t such that there exist
j1 < · · · < jt with √√√√ t∑

l=1

Qjl =

√√√√ s∑
j=1

Qj ,

and where b = ht(
∑s

j=1 Qj). It is clear from the definition that size(I) depends
only on the associated prime ideals of S/I. In the above definition if we replace
“there exists j1 < · · · < jt” by “for all j1 < · · · < jt”, we obtain the definition
of bigsize(I), introduced by Popescu [11]. Clearly bigsize(I) ≥ size(I).
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Theorem 0.1. (Lyubeznik [9]) Let I ⊂ S ba a monomial ideal then depth(I) ≥
1 + size(I).

Herzog, Popescu and Vladoiu say in [5] that a monomial ideal I has minimal
depth, if depth(I) = size(I) + 1. Suppose above that Pi 6⊂

∑s
1=j 6=i Pj for all

i ∈ [s]. Then I has minimal depth as shows our Corollary 1.3 which extends
[11, Theorem 2.3]. It is easy to see that if I has bigsize 1 then it must have
minimal depth (see our Corollary 1.5).

Next we consider the lexicographical order on the monomials of S induced
by x1 > x2 > · · · > xn. Let d ≥ 2 be an integer and Md the set of monomials
of degree d of S. For two monomials u, v ∈Md, with u ≥lex v, the set

L(u, v) = {w ∈Md|u ≥lex w ≥lex v}

is called a lexsegment set. A lexsegment ideal in S is a monomial ideal of S
which is generated by a lexsegment set. We show that a lexsegment ideal has
minimal depth (see our Theorem 1.6).

Now, let M be a finitely generated multigraded S-module, z ∈ M be
a homogeneous element in M and zK[Z], Z ⊆ {x1, . . . , xn} the linear K-
subspace of M of all elements zf , f ∈ K[Z]. Such a linear K-subspace zK[Z]
is called a Stanley space of dimension |Z| if it is a free K[Z]-module, where |Z|
denotes the number of indeterminates in Z. A presentation of M as a finite
direct sum of spaces D : M =

⊕r
i=1 ziK[Zi] is called a Stanley decomposition.

Stanley depth of a decomposition D is the number

sdepthD = min{|Zi| : i = 1, . . . , r}.

The number

sdepth(M) := max{sdepth(D) : Stanley decomposition of M}

is called Stanley depth of M . In [14] R. P. Stanley conjectured that

sdepth(M) ≥ depth(M).

Theorem 0.2 ([5]). Let I ⊂ S be a monomial ideal then sdepth(I) ≥ 1 +
size(I). In particular, Stanley’s conjecture holds for the monomial ideals of
minimal depth.

As a consequence, Stanley’s depth conjecture holds for all ideals considered
above since they have minimal depth. It is still not known a relation between
sdepth(I) and sdepth(S/I), but our Theorem 2.3 shows that Stanley’s conjec-
ture holds also for S/I if Pi 6⊂

∑s
1=j 6=i Pj for all i ∈ [s]. Some of the recent

development about the Stanley’s conjecture is given in [12].
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1 Minimal depth

We start this section extending some results of Popescu in [11]. Lemma 1.1,
Proposition 1.2, Lemma 1.4 and Corollary 1.5 were proved by Popescu when
I is a squarefree monomial ideal. We show that with some small changes the
same proofs work even in the non-squarefree case.

Lemma 1.1. Let I =
s⋂

i=1

Qi be the irredundant presentation of I as an in-

tersection of primary monomial ideals. Let Pi :=
√
Qi. If Ps 6⊂

∑s−1
i=1 Pi,

then

depth(S/I) = min{depth(S/∩s−1i=1Qi),depth(S/Qs), 1+depth(S/∩s−1i=1 (Qi+Qs))}.

Proof. We have the following exact sequence

0 −→ S/I −→ S/ ∩s−1i=1 Qi ⊕ S/Qs −→ S/ ∩s−1i=1 (Qi + Qs) −→ 0.

Clearly depth(S/I) ≤ depth(S/Qs) by [1, Proposition 1.2.13]. Choosing xa
j

where xj ∈ Ps 6⊂
∑s−1

i=1 Pi and a is minimum such that xa
j ∈ Qs we see that

I : xa
j = ∩s−1i=1Qi and by [13, Corollary 1.3] we have

depth(S/I) ≤ depthS/(I : xa
j ) = depthS/(∩s−1i=1Qi).

Now by using Depth Lemma (see [15, Lemma 1.3.9]) we have

depth(S/I) = min{depth(S/∩s−1i=1Qi),depth(S/Qs), 1+depth(S/∩s−1i=1 (Qi+Qs))},

which is enough.

Proposition 1.2. Let I =
s⋂

i=1

Qi be the irredundant presentation of I as an

intersection of primary monomial ideals. Let Pi :=
√
Qi. If Pi 6⊂

∑s−1
1=i6=j Pj

for all i ∈ [s]. Then depth(S/I) = s− 1.

Proof. It is enough to consider the case when
∑s

j=1 Pj = m. We use induction
on s. If s = 1 the result is trivial. Suppose that s > 1. By Lemma 1.1 we get

depth(S/I) = min{depth(S/∩s−1i=1Qi),depth(S/Qs), 1+depth(S/∩s−1i=1 (Qi+Qs))}.

Then by induction hypothesis we have

depth(S/ ∩s−1i=1 Qi) = s− 2 + dim(S/(

s−1∑
i=1

Qi)) ≥ s− 1.
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We see that ∩s−1i=1 (Qi + Qs) satisfies also our assumption, the induction hy-
pothesis gives depth(S/∩s−1i=1 (Qi +Qs)) = s− 2. Since Qi 6⊂ Qs, i < s by our
assumption we get depth(S/Qs) > depth(S/(Qi +Qs)) for all i < s. It follows
depth(S/Qs) ≥ 1 + depth(S/ ∩s−1i=1 (Qi + Qs)) which is enough.

Corollary 1.3. Let I ⊂ S be a monomial ideal such that Ass(S/I) =
{P1 . . . , Ps} where Pi 6⊂

∑s
1=j 6=i Pj for all i ∈ [s]. Then I has minimal depth.

Proof. Clearly size(I) = s − 1 and by Proposition 1.2 we have depth(I) = s,
thus we have depth(I) = size(I) + 1, i.e. I has minimal depth.

Lemma 1.4. Let I = ∩si=1Qi be the irredundant primary decomposition of
I and

√
Qi 6= m for all i. Suppose that there exists 1 ≤ r < s such that√

Qi + Qj = m for each r < j ≤ s and 1 ≤ i ≤ r. Then depth(I) = 2.

Proof. The proof follows by using Depth Lemma on the following exact se-
quence.

0 −→ S/I −→ S/ ∩ri=1 Qi ⊕ S/ ∩sj>r Qj −→ S/ ∩ri=1 ∩sj>r(Qi + Qj) −→ 0.

Corollary 1.5. Let I ⊂ S be a monomial ideal. If bigsize of I is one then I
has minimal depth.

Proof. We know that size(I) ≤ bigsize(I). If size(I) = 0 the depth(I) = 1
and the result follows in this case. Now let us suppose that size(I) = 1. By
Lemma 1.4 we have depth(I) = 2. Hence the result follows.

Let d ≥ 2 be an integer and Md the set of monomials of degree d of S. For
two monomials u, v ∈Md, with u ≥lex v, we consider the lexsegment set

L(u, v) = {w ∈Md|u ≥lex w ≥lex v}.

Theorem 1.6. Let I = (L(u, v)) ⊂ S be a lexsegment ideal. Then depth(I) =
size(I) + 1, that is I has minimal depth.

Proof. For the trivial cases u = v the result is obvious. Suppose that u =
xa1
1 · · ·xan

n ,
v = xb1

1 · · ·xbn
n ∈ S. First assume that b1 = 0. If there exist r such that

a1 = · · · = ar = 0 and ar+1 6= 0, then I is a lexsegment ideal in S′ :=
K[xr+1, . . . , xn]. We get depth(IS) = depth(IS′) + r and by definition of size
we have size(IS) = size(IS′) + r. This means that without loss of generality
we can assume that a1 > 0. If xnu/x1 ≥lex v, then by [3, Proposition 3.2]
depth(I) = 1 which implies that m ∈ Ass(S/I), thus size(I) = 0 and the result
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follows in this case. Now consider the complementary case xnu/x1 <lex v,
then u is of the form u = x1x

al

l · · ·xan
n where l ≥ 2. Let I = ∩si=1Qi be

an irredundant primary decomposition of I, where Q′is are monomial primary
ideals. If l ≥ 4 and v = xd

2 then by [3, Proposition 3.4] we have depth(I) = l−1.
After [6, Proposition 2.5(ii)] we know that√√√√ s∑

i=1

Qi = (x1, x2, xl, . . . , xn) /∈ Ass(S/I),

but (x1, x2), (x2, xl, . . . , xn) ∈ Ass(S/I). Therefore, size(I) = l − 2 and we
have depth(I) = size(I) + 1, so we are done in this case. Now consider the
case v = xd−1

2 xj for some 3 ≤ j ≤ n − 2 and l ≥ j + 2, then again by [3,
Proposition 3.4] we have depth(I) = l − j + 1 and by [6, Proposition 2.5(ii)]
we have √√√√ s∑

i=1

Qi = (x1, . . . , xj , xl, . . . , xn) /∈ Ass(S/I)

and (x1, . . . , xj), (x2, . . . , xj , xl, . . . , xn) ∈ Ass(S/I). Therefore, size(I) = l− j
and again we have depth(I) = size(I) + 1. Now for all the remaining cases by
[3, Proposition 3.4] we have depth(I) = 2, and by [6, Proposition 2.5(i)]√√√√ s∑

i=1

Qi = (x1, . . . , xn) /∈ Ass(S/I),

but (x1, . . . , xj), (x2, . . . , xn) ∈ Ass(S/I), for some j ≥ 2. Therefore size(I) =
1. Thus the equality depth(I) = size(I) + 1 follows in all cases when b1 = 0.

Now let us consider that b1 > 0, then I = xb1
1 I ′ where I ′ = (I : xb1

1 ).
Clearly I ′ is a lexsegment ideal generated by the lexsegment set L(u′, v′)
where u′ = u/xb1

1 and v′ = v/xb1
1 . The ideals I, I ′ are isomorphic, there-

fore depth(I ′) = depth(I). It is enough to show that size(I ′) = size(I). We
have the exact sequence

0→ S/I ′
x
b1
1→ S/I → S/(I, xb1

1 ) = S/(xb1
1 )→ 0,

and therefore

Ass(S/I ′) ⊂ Ass(S/I) ⊂ Ass(S/I ′) ∪ {(x1)}.

As {(x1)} ∈ Ass(S/I) since it is a minimal prime over I, we get Ass(S/I) =
Ass(S/I ′) ∪ {(x1)}. Let s′ be the minimum number such that there ex-
ist P1, . . . , Ps ∈ AssS/I ′ such that

∑s
i=1 Pi = a :=

∑
P∈Ass(S/I′) P . Then
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size(I ′) = s′ + dim(S/a)− 1. Let s be the minimum number t such that there
exist t prime ideals in Ass(S/I) whose sum is (a, x1). By [6, Lemma 2.1] we
have that atleast one prime ideal from Ass(S/I ′) contains necessarily x1, we

have x1 ∈ a. It follows s ≤ s′ because anyway
∑s′

i=1 Pi = a =
∑

P∈Ass(S/I) P .

If we have P ′1, . . . , P
′
s−1 ∈ Ass(S/I ′) such that

∑s−1
i=1 P ′i + (x1) = a then we

have also
∑s−1

i=1 P ′i +P1 = a for some P1 ∈ Ass(S/I ′) which contains x1. Thus
s = s′ and so size(I) = size(I ′).

2 Stanley depth of cyclic modules defined by ideals of
minimal depth

Using Corollaries 1.3, 1.5 and Theorems 1.6, 0.2 we get the following theorem.

Theorem 2.1. Stanley’s conjecture holds for I, if it satisfies one of the fol-
lowing statements:

1. Pi *
∑s

1=j 6=i Pj for all i ∈ [s],

2. the bigsize of I is one,

3. I is a lexsegment ideal.

Remark 2.2. Usually, if Stanley’s conjecture holds for an ideal I then we may
show that it holds for the module S/I too. There exist no general explanation
for this fact. If I is a monomial ideal of bigsize one then Stanley’s conjecture
holds for S/I. Indeed, case depth(S/I) = 0 is trivial. Suppose depth(S/I) 6=
0, then by Lemma 1.4 depth(S/I) = 1, therefore by [2, Proposition 2.13]
sdepth(S/I) ≥ 1. If I is a lexsegment ideal then Stanley’s conjecture holds for
S/I [6]. Below we show this fact in the first case of the above theorem.

Theorem 2.3. Let I =
s⋂

i=1

Qi be the irredundant presentation of I as an

intersection of primary monomial ideals. Let Pi :=
√
Qi. If Pi 6⊂

∑s
1=i 6=j Pj

for all i ∈ [s] then sdepth(S/I) ≥ depth(S/I), that is the Stanley’s conjecture
holds for S/I.

Proof. Using [4, Lemma 3.6] it is enough to consider the case
∑s

i=1 Pi = m.
By Proposition 1.2 we have depth(S/I) = s − 1. We show that sdepth(S/I)
≥ s − 1. Apply induction on s, case s = 1 being clear. Fix s > 1 and apply
induction on n. If n ≤ 5 then the result follows by [10]. Let A := ∪si=1(G(Pi)\∑s

1=j 6=i G(Pj)). If (A) = m then note that G(Pi) ∩ G(Pj) = ∅ for all i 6= j.
By [7, Theorem 2.1] and [8, Theorem 3.1] we have sdepth(S/I) ≥ s − 1.
Now suppose that (A) 6= m. By renumbering the primes and variables we can
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assume that xn 6∈ A. There exists a number r, 2 ≤ r ≤ s such that xn ∈ G(Pj),
1 ≤ j ≤ r and xn /∈ G(Pj), r + 1 ≤ j ≤ s. Let S′ := K[x1, . . . , xn−1]. First
assume that r < s. Let Q′j = Qj ∩ S′, P ′j = Pj ∩ S′ and J =

⋂s
i=r+1 Q

′
i ⊂ S′,

L =
⋂r

i=1 Q
′
i ⊂ S′. We have (I, xn) = ((J ∩ L), xn) because (Qj , xn) =

(Q′j , xn) using the structure of monomial primary ideals given in [15]. In the
exact sequence

0 −→ S/(I : xn) −→ S/I −→ S/(I, xn) −→ 0,

the sdepth of the right end is≥ s−1 by induction hypothesis on n for J∩L ⊂ S′

(note that we have P ′i 6⊂
∑s

1=i 6=j P
′
j for all i ∈ [s] since xn 6∈ A). Let eI be

the maximum degree in xn of a monomial from G(I). Apply induction on eI .
If eI = 1 then (I : xn) = JS and the sdepth of the left end in the above exact
sequence is equal with sdepth(S/JS) ≥ (s−r−1)+r = s−1 since there are at
least r variables which do not divide the minimal monomial generators of ideal
(I : xn) and we may apply induction hypothesis on s for J . By [13, Theorem
3.1] we have sdepth(S/I) ≥ min{sdepth(S/(I : xn)), sdepth(S/(I, xn))} ≥
s− 1. If eI > 1 then note that e(I:xn) < eI and by induction hypothesis on eI
or s we get sdepth(S/(I : xn)) ≥ s− 1. As above we obtain by [13, Theorem
3.1] sdepth(S/I) ≥ s− 1.

Now let r = s. If eI = 1 then I = (L, xn) and by induction on n we have
sdepth(S/I) = sdepth(S′/L) ≥ s− 1. If eI > 1 then by induction hypothesis
on eI and s we get sdepth(S/(I : xn)) ≥ s − 1. As above we are done using
[13, Theorem 3.1].
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