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Estimates on the non-compact expanding
gradient Ricci solitons

Xiang Gao, Qiaofang Xing and Rongrong Cao

Abstract

In this paper, we deal with the complete non-compact expanding
gradient Ricci soliton (Mn, g) with positive Ricci curvature. On the
condition that the Ricci curvature is positive and the scalar curvature
approaches 0 towards infinity, we derive a useful estimate on the growth
of potential functions. Based on this and under the same assumptions, we
prove that

∫ t

0
Rc (γ′ (s) , γ′ (s))ds and

∫ t

0
Rc (γ′ (s) , ν)ds at least have

linear growth, where γ(s) is a minimal normal geodesic emanating from
the point where R obtains its maximum. Furthermore, some other results
on the Ricci curvature are also obtained.

1 Introduction and Main Results

Ricci solitons are fixed points of the Ricci flow as a dynamical system on
the space of Riemannian metrics modulo diffeomorphisms and scalings. From
the equation point of view, they are natural generalizations of the Einstein
metrics. In this paper, in particular we study the expanding gradient Ricci
solitons and the definition is as follows:

Definition 1.1. A complete Riemannian manifold (Mn, g) is called an ex-
panding gradient Ricci soliton if there is a smooth function f : Mn → R, such
that

Rc+∇∇f = λg, (1)
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where Rc is the Ricci curvature tensor and λ is a negative real number.

Recall that gradient Ricci solitons are the most widely studied Ricci soli-
tons, and quite a few results on the classification of gradient Ricci solitons
have appeared. In particular, if (Mn, g) is compact, then by the maximum
principle, it is elementary to check that f in (1) has to be a constant so that
the expanding gradient Ricci soliton Mn is actually an Einstein manifold with
negative Ricci curvature. Hence in this paper, we are only interested in the
non-compact case, on the condition that the Ricci curvature is positive and
the scalar curvature approaches 0 towards infinity, we derive a useful estimate
on the growth of the potential function f as follows:

Theorem 1.2. If (Mn, g) is a complete expanding gradient Ricci soliton with
positive Ricci curvature and the scalar curvature approaches 0 towards in-
finity, then for any sufficient small ε > 0, there exists r0 such that when
r (x) > r0, we have

− 1

2λ

(
λ

1 + ε
(r (x)− r0)−

√
R0 + 2λf (x0)

)2

+
1

2λ
R0

≤− f (x)

≤− 1

2λ

((
λr (x)−

√
R0

)2
−R0

)
,

where r0 = dist (O, x0).

By using Theorem 1.2, we can also derive an estimate on the integral∫ t
0
Rc (γ′ (s) , γ′ (s))ds as follows:

Theorem 1.3. If (Mn, g) is a complete expanding gradient Ricci soliton with
positive Ricci curvature and the scalar curvature approaches 0 towards infin-
ity, then for any sufficient small ε > 0, there is r0 such that when r (x) > r0, we
have ∫ t

0

Rc (γ′ (s) , γ′ (s))ds

≥− 1

2λr (x)

(
λ

1 + ε
(r (x)− r0)−

√
R0 + 2λf (x0)

)2

+
1

2λr (x)
R0

+ λr (x) ,

where γ(s) is a minimal normal geodesic emanating from O, x = γ (t) and
r0 = dist (O, x0).
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Remark 1. Theorem 1.3 states that the integral
∫ t
0
Rc (γ′ (s) , γ′ (s))ds as long

as the geodesic emanates from the origin is independent on the choice of a
particular geodesic and only dependent on the end point x. Moreover we also
have another similar result as follows:

Theorem 1.4. If (Mn, g) is a complete expanding gradient Ricci soliton with
positive Ricci curvature and the scalar curvature approaches 0 towards infin-
ity, then any sufficient small ε > 0, there is r0 such that when r (x) > r0, we
have ∫ t

0

Rc (γ′ (s) , ν (s))ds

≥

√(
λ

1 + ε
(r (x)− r0)−

√
R0 + 2λf (x0)

)2

−
(
λr (x)−

√
R0

)2
+ λr (x) ,

where γ(s) is a minimal normal geodesic emanating from O, ν = − ∇f
|∇f |

and r0 = dist (O, x0).

The paper is organized as follows: In section 2, we derive a technical lemma
and then prove Theorem 1.2. In section 3, we derive another useful lemma and
present the proof of Theorem 1.3 and 1.4.

2 Lemmas and Proof of Theorem 1.2

In this section, we firstly show that if there is any maximum point of scalar
curvature R, then it is unique.

Lemma 2.1. If (Mn, g) is a complete expanding gradient Ricci soliton with
positive Ricci curvature, then there is at most one maximum point of the scalar
curvature R.

Proof. On the expanding gradient Ricci soliton we have (see [4])

∇R = 2Rc (∇f, ·) ,

in particular at a critical point p, where ∇R (p) = 0 we have

0 = 〈∇R (p) ,∇f (p)〉 = 2Rc (∇f (p) ,∇f (p)) .

Then by strict positivity of the Ricci curvature we have ∇f (p) = 0. Further-
more, since

∇∇f = λg −Rc < 0

for the expanding gradient Ricci soliton, we conclude that p is the unique
maximum point of the potential function f.
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By Morse theory, Lemma 2.1 shows that Mn is diffeomorphic to the Eu-
clidean space Rn. Moreover if we assume that the Ricci curvature is positive
and the scalar curvature R approaches 0 towards spatial infinity, then there
must be at least one point where R obtains its maximum. By Lemma 2.1
we see that the point of maximum is unique. We denote O as the point of
maximum of R, called the origin, and assume f (O) = 0 by adding a constant
and R (O) > 1 by multiplying a constant. On the expanding gradient Ricci
soliton, we also have (see [4]):

R+ |∇f |2 − 2λf = C, (3)

thus
R+ |∇f |2 − 2λf = R (O) = R0. (4)

For any x ∈Mn, let r (x) = dist (O, x) and γ(s) denote the shortest geodesic
from O to x, where s is the arclength. Now we give the proof of Theorem 1.2.

Proof of Theorem 1.2. By (4) and positivity of R we have

|∇f |2 = R0 −R+ 2λf < R0 + 2λf,

thus ∣∣∣∇√R0 + 2λf
∣∣∣ =
|∇ (R0 + 2λf)|
2
√
R0 + 2λf

< −λ.

Along any geodesic γ(s) emanating from O we have

∣∣∣∣ dds√R0 + 2λf (γ (s))

∣∣∣∣ =
∣∣∣〈∇√R0 + 2λf, γ′ (s)

〉∣∣∣
≤
∣∣∣∇√R0 + 2λf

∣∣∣
< −λ.

Notice that the maximum of f is 0 so that f < 0, we deduce that∣∣∣√R0 + 2λf (x)−
√
R0

∣∣∣ ≤ −λr (x)

By using λ < 0, we have

−f (x) ≤ − 1

2λ

((
λr (x)−

√
R0

)2
−R0

)
(5)

For the lower bound of f(x), we work on the integral curve of − ∇f
|∇f |2 , which

is denoted by β (σ). Since
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df (β (σ))

dσ
= 〈∇f, β′ (σ)〉 = −

〈
∇f, ∇f
|∇f |2

〉
= −1,

together with f (O) = 0 we have f (β (σ)) = −σ.
Since the scalar curvature R approaches 0 towards spatial infinity, we have

|∇f | →
√
R0 + 2λf

as x→∞. Then given any sufficient small ε such that 0 < ε <
√
R0−1, there

is σ0 such that when σ ≥ σ0, we have

|∇f (β (σ))| >
√
R0 − 2λσ − ε

along the integral curve β (σ).
Let x0 = β (σ0), then the length of β from x0 to x can be estimated as∫ σ

σ0

|β′ (σ)|dσ =

∫ σ

σ0

1

|∇f |
dσ

<

∫ σ

σ0

1√
R0 − 2λσ − ε

dσ

<

∫ σ

σ0

1 + ε√
R0 − 2λσ

dσ,

where we use 0 < ε <
√
R0 − 1. Thus∫ σ

σ0

|β′ (σ)|dσ < −1 + ε

λ

(√
R0 − 2λσ −

√
R0 − 2λσ0

)
= −1 + ε

λ

(√
R0 + 2λf (x)−

√
R0 + 2λf (x0)

)
.

On the other hand,∫ σ

σ0

|β′ (σ)|dσ ≥ dist (x, x0) = r (x)− r0,

where r0 = dist (O, x0), so we have

−1 + ε

λ

(√
R0 + 2λf (x)−

√
R0 + 2λf (x0)

)
≥ r (x)− r0.

Hence

−f (x) ≥ − 1

2λ

(√
R0 + 2λf (x0)− λ

1 + ε
(r (x)− r0)

)2

+
1

2λ
R0 (6)
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Remark 2. Substituting (5) into (4), we can also get that:

Corollary 2.2. Under the same assumptions of Theorem 1.2, we have

R (x) ≤ R0 + 2λf (x) ≤
(
λr (x)−

√
R0

)2
(7)

3 Proof of Theorem 1.3 and 1.4

In this section, we present the proof of Theorem 1.3 and 1.4. Let ν = − ∇f
|∇f | and

θ (x) denote the angle between γ′ (x) and ν, using the notations of last section
we can prove the following result:

Lemma 3.1. θ (x) ≤ π
3 as x→∞.

Proof. Since
∇∇f = λg −Rc < 0,

we see that −f is geodesically convex and furthermore

d

ds
(−f (γ (s))) ≥ −f (x) + f (O)

r (x)
=
−f (x)

r (x)

On the other hand

d

ds
(−f (γ (s))) = 〈−∇f, γ′〉 = |∇f | 〈ν, γ′〉 = |∇f | cos θ (x)

and using (5) it follows that

|∇f | ≤
√
R0 + 2λf <

√
R0 − λr (x) . (8)

Hence we have

cos θ (x) ≥ 1

|∇f |
· −f (x)

r (x)

≥ − 1

2λr (x)
(√
R0 − λr (x)

) (√R0 + 2λf (x0)− λ

1 + ε
(r (x)− r0)

)2

+
R0

2λr (x)
(√
R0 − λr (x)

) .
Let x→∞ we get cos θ (x) ≥ 1

2 , and the result follows.

Then by using Theorem 1.2 and Lemma 3.1, we can now prove Theorem
1.3.
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Proof of Theorem 1.3. Along a minimal geodesic γ (s) we have

d

ds
(|∇f | cos θ) = γ′ 〈−∇f, γ′〉 = 〈−∇γ′∇f, γ′〉 = Rc (γ′, γ′)− λ

As the proof of Lemma 3.1 we have

|∇f | cos θ (x) ≥ −f (x)

r (x)
, (9)

taking integral from 0 to x along γ (s) and using (6) we get∫ t

0

Rc (γ′ (s) , γ′ (s))ds =

∫ t

0

(
d

ds
(|∇f | cos θ) + λ

)
ds

= |∇f | cos θ (x)− |∇f | cos θ (0) + λr (x)

≥ −f (x)

r (x)
+ λr (x)

≥ − 1

2λr (x)

(
λ

1 + ε
(r (x)− r0)−

√
R0 + 2λf (x0)

)2

+
1

2λr (x)
R0 + λr (x) ,

where we use x = γ (t).

Now we turn to prove Theorem 1.4.

Proof of Theorem 1.4. As the proof of Theorem 1.3, instead of |∇f | cos θ we
take derivative of |∇f | along the geodesic γ(s), and get

d

ds
|∇f | = 1

2 |∇f |
γ′ 〈∇f,∇f〉 = 〈−∇γ′∇f, ν〉 = Rc (γ′, ν)− λ cos θ.

Taking integral from 0 to x along γ (s) and using (6) and (7) we get∫ t

0

Rc (γ′ (s) , ν (s))ds =

∫ t

0

(
d

ds
|∇f |+ λ cos θ

)
ds

≥ |∇f | (x)− |∇f | (0) + λ

∫ t

0

ds

=
√
R0 −R+ 2λf + λr (x)

≥

√(
λ

1 + ε
(r (x)− r0)−

√
R0 + 2λf (x0)

)2

−
(
λr (x)−

√
R0

)2
+ λr (x) .
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