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Stanley depth of squarefree Veronese ideals

Mircea Cimpoeasg

Abstract

We compute the Stanley depth for the quotient ring of a square free
Veronese ideal and we give some bounds for the Stanley depth of a
square free Veronese ideal. In particular, it follows that both satisfy the
Stanley’s conjecture.

Introduction

Let K be a field and S = K[xy,...,z,] the polynomial ring over K. Let
M be a Z™-graded S-module. A Stanley decomposition of M is a direct sum
D: M =@.;_, m;K|Z;] as K-vector space, where m; € M, Z; C {x1,...,z,}
such that m;K[Z;] is a free K[Z;]-module. We define sdepth(D) = min!_,|Z;|
and sdepth(M) = maz{sdepth(M)| D is a Stanley decomposition of M }. The
number sdepth(M) is called the Stanley depth of M. Stanley conjecture [1]
says that sdepth(M) > depth(M).

Herzog, Vladoiu and Zheng show in [5] that sdepth(M) can be computed
in a finite number of steps if M = I/J, where J C I C S are monomial
ideals. There are two important particular cases, I and S/I. The Stanley
conjecture for S/I and I was proved for n < 5 and in other special cases, but
it remains open in the general case. See for example, [6]. Also, the explicit
computation of the Stanley depth turns out to be a difficult problem, even
for simpler monomial ideals, or quotient of monomial ideals. See for instance

Key Words: Stanley depth, Stanley conjecture, Monomial ideal.

2010 Mathematics Subject Classification: Primary: 13H10; Secondary: 13P10.
Received: April, 2012.

Revised: October, 2012.

Accepted: February, 2013.

67



68 MIRCEA CIMPOEAS

[2], where the authors compute the Stanley depth for the monomial maximal
ideal (z1,...,2,) C S.

For any d € [n], we denote I, 4 := (u € S square free monomial : deg(u) =
d). It is well known that dim(S/I, q) = depth(S/I, 4) = d— 1. Let m =
(x1,...,2n) C S = K[x1,...,2,] be the maximal monomial ideal of S. We
showed in [4] that sdepth(m*) < [kiﬂ—‘, for any positive integer k. In this
paper, we use similar techniques to give an upper bound for sdepth(Z, q4). More

precisely, we show that sdepth(S/I,, 4) =d—1 and d > sdepth(]n,d)gf_f +d,

see Theorem 1.1. As a consequence, it follows that I, q and S/I, 4 satisfy
the Stanley conjecture, see Corollary 1.2. Also, we prove that sdepth(I,, 4) =
d+1,if 2d+1 < n < 3d, see Corollary 1.5. In order to do so, we use
some combinatorics results, see Theorem 1.3 and Corollary 1.4. Finally, we

conjecture that sdepth(l, q) = MT_?J +d.

1 DMain results

Theorem 1.1. (1) sdepth(S/I, 4) =d—1.
(2) d < sdepth(l, q4) < ZT_E{ +d.

Proof. (1) Firstly, note that sdepth(S/l,q4) < d—1 = dim(S/I, ). We use
induction on n and d. If n = 1, there is nothing to prove. If d = 1, it follows
that I,,1 = (z1,...,%,) and thus sdepth(S/I,1) = 0, as required. If d = n,
it follows that I, = (z1---x,) and therefore sdepth(S/I,,) = n —1, as
required. Now, assume n > 1 and 1 < d < n. Note that

S/hha= P v K= > K[Z].

|supp(u)|<d ZC{x1,...,xn}, | Z]|=d—1

We denote S' = Klz1,...,Tp-1] By previous equality, we get
S/Iq= > K[Z) @ x,( > K[Z)[#a] =
ZC{z1,...,xn—-1}, | Z]|=d—1 ZC{x1,.. s @n_1}, | Z|=d—1

- S//In—l,d ©® xn(S//In—l,d—l)[xn}-

By induction hypothesis, it follows that sdepth(S/I, q) = d — 1.
(2) We consider the following simplicial complex, associated to I, 4,

A, g = {supp(u) : u € I, 4 monomial}.

*The support from grant ID-PCE-2011-1023 of Romanian Ministry of Education, Re-
search and Innovation is gratefully acknowledged.
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Note that, by [5, Theorem 2.4], there exists a partition of A, 4 = J._, [F}, Gil,
such that min}_, |G;| = sdepth(I,, 4) := s. Note that A, 4 = {F C [n]: |F| >
d}. It follows that sdepth(l, 4) > d.

We consider an interval [F;, G;] with |F;| = d. Since |G;| > s, it follows that
there exists at least (s — d) distinct sets in [F;, G;] of cardinality d + 1. Since
Anq = U;_[F;, Gi] is a partition, it follows that (dil) = ZT_f (%) = (s—=a)(%).

Thus,s§d+ZT"11. O

Corollary 1.2. I, 4 and S/I, q satisfy the Stanley’s conjecture. Also,
sdepth(1,, q4) > sdepth(S/I, 4) + 1.

Let k < n be two positive integers. We denote A, , = {F C [n]| |F| = k}.
We present the following well known result from combinatorics. In order of
completeness, we give also a sketch of the proof.

Theorem 1.3. For any positive integers d < n such that d < n/2, there
exists a bijective map @y, q @ Ay g — Ap.a, such that @, 4(F)NF =0 for any
F e An,d-

Proof. We use induction on n and d. If n < 2 the statement is obvious.
If d = 1, for any i € [n], we define @, 1({i}) = {j}, where j = max([n] \
{®,1{1}),..., P, 1({i —1})}). ®,,1 is well defined and satisfy the required
conditions. Now, assume n > 3 and d > 2. If n = 2d we define ®,, 4(F) =
[n] \ F'. Obviously, ®, q satisfy the required conditions. Thus, we may also
assume d < n/2.

On A,, 4, we consider the lexicographic order, recursively defined by F' < G
if and only if maz{F} < maz{G} or maz{F} = max{G} =k and F \ {k} <
G\ {k} on A, q—1. For any F € A, 4, we define G := @, 4(F) to be the
maximum set, with respect to ”<”, such that GNF = ) and G # ¥, 4(H)
for all H < F. In order to complete the proof, it is enough to show that each
collection of sets

n={GcC[n]:|Gl=d GNF=0, G#®,qH) (V) H<F}

is nonempty, for all F C [n]. Assume there exists some F' C [n — 1] such
that M7% = (. It obviously follows that Mﬁ_l = () and thus ®,_4 4 is not
well defined, a contradiction. Also, if Mp = () for some F C [n] with n € F,
it follows similarly that ®,_; 4—1 is not well defined, again a contradiction.
Therefore, the required conclusion follows. O

Corollary 1.4. For any positive integers d and n such that d < n/2, there
exists an injective map Wy, 4 : An.g — And+1, such that F C U, 4(F) for any
F e An,d-
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Proof. We use induction on n. If n < 2 there is nothing to prove. If d = 1, we
define ¥, 1 : A1 — Apoby ¥, 1({1}) ={1,2},..., ¥, 1({n—-1}) = {n—1,n}
and U, 1({n}) = {1,n}. Now, assume n > 3 and d > 2. If n = 2d + 1, we
consider the bijective map @, 4 : A, ¢ — Ap g such that ¢(F)NF = for all
F € A, 4 and we define ¥,, 4(F) := [n] \ ®,, q(F). The map ¥, 4 satisfies the
required condition.

Ifn < 2d+1, we define W, 4(F) := ¥,,_1 ¢(F)if F C [n—1] and U, 4(F) :=
U,_1,4-1(F\ {n})U{n} if n € F. Note that both ¥,,_q 4 and ¥,_q 4_1 are
well defined and injective by induction hypothesis, since n — 1 < 2d + 1. It
follows that U, 4 is well defined and injective, as required. ]

Corollary 1.5. Let n,d be two positive integers such that 2d +1 < n < 3d.
Then sdepth(1, q4) = d + 1.

Proof. As in the proof of 1.1, we denote
Ay g = {supp(u) : uw € I, 4 monomial} = {F C [n]: |F| > d}.

We consider the following partition of A, 4:

Apa= |J FUaB)]u |J [FF),

|F|=d |F|>d+1

where U, 4 is given by the previous corollary. It follows that sdepth(Z, q4)
d+1. On the other hand, by 1.1, sdepth(Z, 4) < d+1 and thus sdepth(I,, 4)
d+ 1, as required.

O v

We conclude this paper with the following conjecture.

Conjecture 1.6. For any positive integers d < n such that d < n/2, we have

sdepth(I, q4) = {ZI_?J +d.
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