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A new characterization of A7 and A8

Alireza Khalili Asboei, Seyed Sadegh Salehi Amiri, Ali Iranmanesh
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Abstract

Let G be a finite group and πe(G) be the set of element orders of G.
Let k ∈ πe(G) and mk be the number of elements of order k in G. Set
nse(G):={mk|k ∈ πe(G)}. It is proved that An are uniquely determined
by nse(An), where n ∈ {4, 5, 6}. In this paper, we prove that if G is a
group such that nse(G)=nse(An) where n ∈ {7, 8}, then G ∼= An.

1 Introduction

If n is an integer, then we denote by π(n) the set of all prime divisors of n.
Let G be a finite group. Denote by π(G) the set of primes p such that G
contains an element of order p. Also the set of element orders of G is denoted
by πe(G). A finite group G is called a simple Kn−group, if G is a simple group
with |π(G)| = n.
Set mi=mi(G)=|{g ∈ G| the order of g is i}|. In fact, mi is the number
of elements of order i in G, and nse(G):={mi|i ∈ πe(G)}, the set of sizes
of elements with the same order. For the set nse(G), the most important
problem is related to Thompson’s problem. In 1987, J. G. Thompson posed a
very interesting problem related to algebraic number fields as follows. For each
finite group G and each integer d ≥ 1, let G(d) = {x ∈ G| xd = 1}. Defining
G1 and G2 is of the same order type if, and only if, |G1(d)| = |G2(d)|, d = 1,
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2, 3, · · · . Suppose G1 and G2 are of the same order type. If G1 is solvable,
is G2 necessarily solvable?( [10, Problem 12.37])

We know that if groups G1 and G2 are of the same order type, then
|G1| = |G2| and nse(G1) = nse(G2). So it is natural to investigate the Thomp-
son’s Problem by |G| and nse(G).
In [4], [2], [3] and [1], it is proved that all simple K4− groups, symmetric
groups Sr where r is prime, sporadic simple groups and L2(p) where p is
prime, can be uniquely determined by nse(G) and the order of G. In [9] and
[8], it is proved that the groups A4, A5 and A6, L2(q) for q ∈ {7, 8, 11, 13}
are uniquely determined by only nse(G). In [9], the authors gave the following
problem:

Problem: Is a group G isomorphic to An (n ≥ 4) if and only if nse(G)
= nse(An)?

In this paper, we give a positive answer to this problem and show that the
alternating group An is characterizable by only nse(G) for n ∈ {7, 8}. In fact
the main theorem of our paper is as follows:

Main Theorem: Let G be a group such that nse(G)=nse(An), where n ∈ {7,
8}. Then G ∼= An.

We note that there are finite groups which are not characterizable even by
nse(G) and |G|. In 1987, Thompson gave an example as follows: Let G1=
(C2 ×C2 ×C2 ×C2)oA7 and G2 = L3(4)oC2 be the maximal subgroups of
M23. Then nse(G1) = nse(G2) and |G1|=|G2|, but G1 6∼= G2. Throughout this
paper, we denote by φ the Euler totient function. If G is a finite group, then
we denote by Pq a Sylow q− subgroup of G and nq(G) is the number of Sylow
q−subgroup of G, that is, nq(G)=|Sylq(G)|. All other notations are standard
and we refer to [7], for example.

2 Main Results

In this section, for the proof of main theorem, we need the following Lemmas:
Lemma 2.1. [5] Let G be a finite group and m be a positive integer dividing
|G|. If Lm(G) = {g ∈ G|gm = 1}, then m | |Lm(G)|.

Lemma 2.2. [6] Let G be a finite group and p ∈ π(G) be odd. Suppose
that P is a Sylow p−subgroup of G and n = psm, where (p, m) = 1. If P
is not cyclic and s > 1, then the number of elements of order n is always a
multiple of ps.

Lemma 2.3. [9] Let G be a group containing more than two elements.
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Let k ∈ πe(G) and mk be the number of elements of order k in G. If s =
sup{mk|k ∈ πe(G)} is finite, then G is finite and |G| ≤ s(s2 − 1).

Let G be a group such that nse(G)=nse(An), where n ∈ {7, 8}. By Lemma
2.3, we can assume that G is finite. Let mn be the number of elements of
order n. We note that mn = kφ(n), where k is the number of cyclic subgroups
of order n in G. Also we note that if n > 2, then φ(n) is even. If n | |G|, then
by Lemma 2.1 and the above notation we have

φ(n) | mn

(∗)
n |

∑
d|nmd

In the proof of the main theorem, we often apply (∗) and the above comments.

3 Proof of the Main Theorem

Let G be a group such that nse(G)=nse(A7)={1, 105, 210, 350, 504, 630, 720}.
First we prove that π(G) ⊆ {2, 3 , 5, 7}. Since 105 ∈nse(G), it follows that
by (∗), 2 ∈ π(G) and m2 = 105. Let 2 6= p ∈ π(G). By (∗), p | (1 + mp) and
(p−1) | mp, which implies that p ∈ {3, 5, 7, 211, 631}. If 211 ∈ π(G), then by
(∗), m211 = 210. On the other hand, by (∗) we conclude that if 422 ∈ πe(G),
then m422 = 210 or 630 and 422 | (1 +m2 +m211 +m422), and hence 422 | 526
or 422 | 946, which is a contradiction. Thus 422 6∈ πe(G). Since 422 6∈ πe(G),
the group P211 acts fixed point freely on the set of elements of order 2, and
so |P211| | m2, which is a contradiction. Hence 211 6∈ πe(G). Similar to the
above discussion 631 6∈ π(G).

If 3, 5 and 7 ∈ π(G), then m3 = 350, m5 = 504 and m7 = 720, by (∗).
Also we can see easily that G does not contain any elements of order 35, 81,
64, 125 and 343. Similarly, we can see that if 10, 14, 15, 21 ∈ πe(G), then
m10 = 720, m14 ∈ {210, 504}, m15 = 720 and m21 = 504.

If 2a×3b ∈ πe(G), then 2a×3b−1 | m2a×3b . Hence 1 ≤ a ≤ 3 and 1 ≤ b ≤ 3.
If 2c × 5d ∈ πe(G), then 2c+1 × 5d−1 | m2c×5d . Hence 1 ≤ c ≤ 3 and

1 ≤ d ≤ 2.
If 2e × 7f ∈ πe(G), then 2e × 3 × 7f−1 | m2e×7f . Hence 1 ≤ e ≤ 3 and

1 ≤ f ≤ 2.
If 3k × 5h ∈ πe(G), then 23 × 3k−1 × 5h−1 | m3k×5h . Hence 1 ≤ k ≤ 3 and

1 ≤ h ≤ 2.
If 3l × 7m ∈ πe(G), then 22 × 3l × 7m−1 | m3l×7m . Hence 1 ≤ l ≤ 2 and

1 ≤ m ≤ 2.
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In follow, we show that π(G) could not be the sets {2}, {2, 3}, {2, 3, 7}
and {2, 3, 5}, and π(G) must be equal to {2, 3, 5, 7}.

Case a. If π(G) = {2}, then πe(G) ⊆ {1, 2, 22, 23, 24, 25}. Since nse(G)
has seven elements, this case impossible.

Case b. We know that 2 ∈ π(G). We claim that 3 ∈ π(G). Suppose that
3 6∈ π(G). If 5, 7 6∈ π(G), then by Case a, we get a contradiction. Hence 5 or
7 ∈ π(G).

Let 5 ∈ π(G). Since 125 6∈ πe(G), exp(P5) = 5 or 25. If exp(P5) = 5, then
by Lemma 2.1, |P5| | (1 +m5) = 505. Hence |P5| = 5. Then n5 = m5/φ(5) =
504/4 | |G|, a contradiction. If exp(P5) = 25, then |P5| | (1+m5+m25). Hence
|P5| = 25 and n5 = m25/20 | |G|. Since m25 = 720, we get a contradiction.
Thus 5 6∈ π(G).

Let 7 ∈ π(G). Since 73 6∈ πe(G), exp(P7) = 7 or 49. If exp(P7) = 7, then
by Lemma 2.1, |P7| | (1 +m7) = 721. Hence |P7| = 7 and n7 = m7/φ(7) | |G|,
which is a contradiction.

If exp(P7) = 49, then |P7| | (1 + m7 + m49). Hence |P7| = 49. Since
m49 ∈ {210, 504}, n7 = m49/φ(49) = 5 or 12. By Sylow’s theorem n7 = 7k+1
for some k, since n7 = 5 or 12, we get a contradiction. Thus 3 ∈ π(G).

Case c. Let π(G) = {2, 3}. Since 34 6∈ πe(G), exp(P3) = 3, 32 or 33. If
exp(P3) = 3, |P3| | (1 +m3) = 351, by Lemma 2.1. Thus |P3| | 33. If |P3| = 3,
then n3 = m3/2 | |G|, a contradiction. If |P3| > 3, then since exp(P3) = 3,
|πe(G)| ≤ 11. Therefore |G| = 2m × 3n = 2520 + 350k1 + 504k2 + 720k3 +
630k4 + 210k5, where m, n, k1, k2, k3, k4 and k5 are non-negative integers
and 0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 4. It is clear that |G| ≤ 5400. If n = 2,
then m = 9. It easy to check that the above equation has no solution. If
n = 3, then m = 7, arquing as above, the equation has no solution. Therefore
exp(P3) 6= 3.

If exp(P3) = 9, by Lemma 2.1, |P3| | (1 +m3 +m9). Since m9 ∈ {504, 630,
720}, |P3| = 9. Hence n3 = m9/6 | |G|, a contradiction.

If exp(P3) = 27, then since m27 ∈ {504, 630, 720}, |P3| | 35. If |P3| = 27,
then n9 = m27/18 | |G|, a contradiction. If |P3| = 81 or 243, then by Lemma
2.2, 33 | m27, a contradiction.

Case d. Let π(G) = {2, 3, 7}. Since 73 6∈ πe(G), exp(P7) = 7 or 72. If
exp(P7) = 7 , then |P7| | (1 + m7) = 721. Hence |P7| = 7 and n7 = m7/6 =
120 | |G|, a contradiction.

If exp(P7) = 49, then |P7| | (1 + m7 + m49). Thus |P7| = 49 and
n7 = m49/42 = 5 or 12. By Sylow’s theorem, we get a contradiction.
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Case e. Let π(G) = {2, 3, 5}. Since 125 6∈ πe(G), exp(G) = 5 or 25. If
exp(G) = 5, then |P5| | (1 + m5) = 505. Hence |P5| = 5 and n5 = m5/4 =
126 | |G|, which is a contradiction.

If exp(P5) = 25, then |P5| | (1 + m5 + m25) = 1225. Hence |P5| = 25 and
then the group P5 is cyclic. Thus n5 = m25/20 = 36. Since a cyclic group of
order 25 has 4 elements of order 5, m5 ≤ 4×n5 = 144, which is a contradiction.

Case f. Let π(G) = {2, 3, 5, 7}. Since 35 6∈ πe(G), the group P7 acts fixed
point freely on the set of elements of order 5, and so |P7| | m5 = 504, which
implies that |P7| = 7. Similarly, |P5| = 5.

We know that if P and Q are Sylow 7−subgroups of G, then P and Q are
conjugate, which implies that CG(P ) and CG(Q) are conjugate inG. Therefore
m21 = φ(21) · n7 · k, where k is the number of cyclic subgroups of order 3 in
CG(P7). Since n7 = m7/φ(7) = 120, 2 × 720 | m21, which is a contradiction.
Hence 21 6∈ πe(G). Similarly, 10 6∈ πe(G).

Since 21 6∈ πe(G), the group P3 acts fixed point freely on the set of elements
of order 7, and |P3| | m7. Thus |P3| | 9. Also since 10 6∈ πe(G), |P2| | m5 = 504,
and so |P2| | 23.

If |P3| = 3, then |G| = 2m×105 and m ≤ 3. On the other hand, 2520 ≤ |G|,
a contradiction. Therefore |P3| = 9 and |G| = 2m × 315 where m ≤ 3. Since
2520 ≤ |G|, m = 3 and then |G| = 2520 = |A7|. By [4], since A7 is a simple
K4−group, G ∼= A7.

Now suppose that G be a group such that nse(G)=nse(A8)= { 1, 315,
1232, 1344, 2688, 3780, 5040, 5760 }. First we prove that π(G) ⊆ {2, 3, 5,
7}. Since 315 ∈nse(G), it follows that by (∗), 2 ∈ π(G) and m2 = 315. Let
2 6= p ∈ π(G), by (∗), p | (1 +mp) and (p− 1) | mp, which implies that p ∈ {3,
5, 7, 19, 2689, 5041}.

If 19 ∈ π(G), then m19 = 3780. On the other hand, by (∗) we conclude that
if 38 ∈ πe(G), then m38 ∈ {5760, 3780, 5040} and 38 | (1 +m2 +m19 +m38),
a contradiction. Therefore 38 6∈ πe(G). Thus the group P19 acts fixed point
freely on the set of elements of order 2, and |P19| | m2, which is a contradiction.
Hence 19 6∈ π(G). Similar to the above discussion 2689, 5041 6∈ π(G), and so
π(G) ⊆ {2, 3, 5, 7}.

If 3, 5 and 7 ∈ π(G), then m3 = 1232, m5 = 1344 and m7 = 5760, by (∗).
Also we can see easily that G does not contain any elements of order 35 , 512,
81, 125, 343 and 768.

If 15, 25, 49 ∈ πe(G), then m15 = 2688, m25 = 3780 and m49 = 1344.

If 2a × 3b ∈ πe(G), then 1 ≤ a ≤ 6 and 1 ≤ b ≤ 4.
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If 2c × 5d ∈ πe(G), then 1 ≤ c ≤ 6 and 1 ≤ d ≤ 2.

If 2e× 7f ∈ πe(G), then 1 ≤ e ≤ 7 and 1 ≤ f ≤ 2. If 3k× 5h ∈ πe(G), then
1 ≤ k ≤ 3 and 1 ≤ h ≤ 2.

If 3l × 7m ∈ πe(G), then 1 ≤ l ≤ 3 and 1 ≤ m ≤ 2.

We show that π(G) could not be the sets {2}, {2, 3} and {2, 3, 5} and {2,
3, 7}, and π(G) must be equal to {2, 3, 5, 7}.

Case a. If π(G) = {2}, then πe(G) ⊆ {1, 2, 22, 23, 24, 25, 26, 27, 28} and
|G| = 2m = 20160 + 1232k1 + 1344k2 + 2688k3 + 3780k4 + 5040k5 + 5760k6,
where m, k1, k2, k3, k4, k5 and k6 are non-negative integers and 0 ≤ k1 +k2 +
k3 + k4 + k5 + k6 ≤ 1. It easy to check that this equation has no solution.

Case b. We claim that 3 ∈ π(G). Suppose contrary, i.e, 3 6∈ π(G). If 5,
7 6∈ π(G), then by Case a, we get a contradiction. Hence 5 or 7 ∈ π(G).

Let 5 ∈ π(G). Since 125 6∈ πe(G), exp(P5) = 5 or 25.

If exp(P5) = 5, then |P5| | (1 + m5) = 1345. Hence |P5| = 5, and so
n5 = 1344/4 | |G|. Because 3 6∈ π(G), we get a contradiction.

If exp(P5) = 25, then |P5| | 125. Suppose that |P5| = 25, then n5 =
3780/20 | |G|, a contradiction. If |P5| = 125, then by Lemma 2.2, 25 | m25, a
contradiction. Thus 5 6∈ π(G).

Let 7 ∈ π(G). Since 73 6∈ πe(G), exp(P7) = 7 or 49.

If exp(P7) = 7, then |P7| = 7 and n7 = m7/6 = 5760/6 | |G|, a contradic-
tion.

If exp(P7) = 49, then |P7| = 49. Hence n7 = m49/42 = 32 and by Sylow’s
theorem, we get a contradiction.

Case c. Let π(G) = {2, 3}. Since 34 6∈ πe(G), exp(P3) = 3, 32 or 33. If
exp(P3) = 3, then |P3| | (1 + m3) = 1233. Hence |P3| | 9. Thus |P3| = 3
or 9. First suppose that |P3| = 3. Then n3 = m3/2 = 1232/2 | |G|, a con-
tradiction. Suppose that |P3| = 9. Thus |G| = 2m × 9 = 20160 + 1232k1 +
1344k2 + 2688k3 + 3780k4 + 5040k5 + 5760k6, where m, k1, k2, k3, k4, k5 and
k6 are non-negative integers and 0 ≤ k1 + k2 + k3 + k4 + k5 + k6 ≤ 9. It
is clear that |G| ≤ 72000. Since 20160 ≤ |G| ≤ 72000, m = 12. Therefore
16704 = 1232k1 + 1344k2 + 2688k3 + 3780k4 + 5040k5 + 5760k6. By using an
easy computer calculation, we can see that this equation has no solution.

Let exp(P3) = 9. Since m9 ∈ {3780, 5760} and |P3| | (1 + m3 + m9),
|P3| = 9. Hence n3 = m9/6 | |G|, which is a contradiction.

Let exp(P3) = 27. Since m27 ∈ {3780, 5760} and |P3| | (1+m3+m9+m27),
|P3| | 81. If |P3| = 81, then by Lemma 2.2, 27 | m27, which is a contradiction.
If |P3| = 27, then n3 = m27/18 | |G|, a contradiction.
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Case d. Let π(G) = {2, 3, 5}. Since 53 /∈ πe(G), exp(P5) = 5 or 25. If
exp(P5) = 5, then |P5| | (1 +m5) = 1345. Hence |P5| = 5, and n5 = 1344/4 |
|G|, a contradiction. If exp(P5) = 25, then |P5| | (1 + m5 + m25). Thus
|P5| | 125 and |P5| = 25 or 125. If |P5| = 25, then n5 = 3780/20 | |G|, a
contradiction. If |P5| = 125, then 25 | m25, a contradiction.

Case e. Let π(G) = {2, 3, 7}. Since 73 6∈ πe(G), exp(P7) = 7 or 49. If
exp(P7) = 7, then |P7| | (1 +m7). Thus |P7| = 7 and n7 = 960. Since n7 | |G|
and 5 /∈ π(G), we get a contradiction.

If exp(P7) = 49, then |P7| | (1 +m7 +m49). Thus |P7| = 49 and n7 = 32.
By Sylow’s theorem, we get a contradiction.

Case f. Let π(G) = {2, 3, 5, 7}. Since 35 6∈ πe(G), the group P7 acts fixed
point freely on the set of elements of order 5, and so |P7| | m5 = 1344, which
implies that |P7| = 7. Similarly, we can conclude that |P5| = 5. We have
m21 = φ(21) · n7 · k, where k is the number of cyclic subgroups of order 3 in
CG(P7). Since n7 = m7/φ(7) = 960, 2 × 5760 | m21, a contradiction. Hence
21 6∈ πe(G). Similarly, 10 6∈ πe(G).

Since 21 6∈ πe(G), the group P3 acts fixed point freely on the set of elements
of order 7. Then |P3| | m7 = 5760. Thus |P3| | 9. Also since 10 6∈ πe(G),
|P2| | m5 = 1344, and so |P2| | 26. If |P3| = 3, then |G| = 2m × 105. On the
other hand, since |P2| | 26, m ≤ 6. Since |G| ≤ 20160, 2m × 105 ≤ 20160, a
contradiction. Therefore |P3| = 9 and then |G| = |A8|. By [4], since A8 is a
simple K4−group, G ∼= A8, and the proof is complete.
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