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EXTENSIONS HAVING REDUCED
SUBEXTENSIONS

Aurelian Claudiu Volf

Abstract

The concepts of reduced subextension and primitive subextension of
a field extension, recently introduced in connection with fuzzy Galois
theory, are investigated. We prove that every extension having a proper
reduced subextension is algebraic (it was known that its transcendence
degree is at most 1). The notion of reduced subgroup of a group is intro-
duced as a natural group theoretic counterpart of the concept of reduced
subextension. We determine all finite groups posessing a reduced sub-
group. Consequently, the finite Galois and G-Cogalois extensions having
a reduced intermediate field are determined. We also investigate some
properties of the primitive extensions.

1 Reduced subextensions

Let F/K be a field extension and let Z(F/K) = {L | L subfield of F, K C
L} be the lattice of its intermediate fields (also called its subextensions). If
F/K is a field extension and ¢ € F is algebraic over K, then we denote by
Irr(c, K) € K[X] the minimal polynomial of ¢ over K. We write A C B for
AC Band A #B.

1.1. Definition. [2] Let L € Z(F/K). Then L is said to be reduced in F over
K if L # F and Ve,d € F\ L, L(c) = L(d) implies K (c) = K(d).

1.2 Theorem. ([2], Th. 1.2) Let L € Z(F/K). Then L is reduced in F over
Kif and only if F # L andVc € F\ L, L C K(c).

Proof. Suppose that L is reduced in F over K. Let c € F\ L and let b € L.
Then L(c) = L(b+c) and so K(c) = K(b+c). Hence b € K(c). Thus L C K(c).
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Conversely, suppose that L # FandVe € F L, L C K(c). Let ¢,d € F\ L.
Then K(c) = L(c) and K(d) = L(d). Hence L(c) = L(d) implies that K(c) =
K(d). Thus L is reduced in F over K. O

Here is a simpler characterization of the reduced subextensions of F/K, in
terms of the lattice Z(F/K).

1.3 Theorem. Let L € Z(F/K), L # F. Then L is reduced in F over K if
and only if, VM € Z(F/K), M C L or L C M.

Proof. "=" Let M € Z(F/K) with M ¢ L. Then 3¢ € M \ L. By the
proposition above, L C K(c); since K(c) C M, L C M.
"<” Let c€ F\ L. Then K(c) € L, so L C K(c). O

So, if L is reduced in F over K, Z(F/K) = I(F/L)UI(L/K). This is quite
a strong condition on the lattice Z(F/K). The following two consequences are
immediate from this characterization:

1.4 Corollary. The extension F/K has the property that every L € IT(F/K)
with L # F is reduced in F over K if and only if Z(F/K) is a chain (i.e.,
totally ordered with respect to inclusion). O

1.5 Corollary. Let K C EC L C J C F be a chain of field extensions. If L
s reduced in F over K, then L is reduced in J over E. O

Let F/K be an extension possessing a reduced intermediate field L # K.
Theorem 1.5 in [2] states that trdeg(F/K) < 1, where trdeg denotes the
transcendence degree. Also, Theorem 1.9 in [2] affirms that F'/K is algebraic,
provided char K = p > 0 and either L/K is algebraic or L = K (FP") for some
positive integer e. It turns out that F'/K is always algebraic:

1.6 Theorem. Let F/K be an extension possessing a reduced intermediate
field L # K. Then F/K s algebraic.

Proof. First, we prove that F/L is algebraic. Let y € F'\ L. If y is transcen-
dental over K, then K C L C K(y) since L is reduced in F/K. By Liiroth’s
theorem, y is algebraic over L and L = K () for some x € L, transcendental
over K. If y is algebraic over K, it is also algebraic over L. So, anyway, y is
algebraic over L. It is now enough to prove that L/K is algebraic. Suppose
that L/K is not algebraic. If y € F'\ L, y is transcendental over K. Indeed, we
have K C L C K(y); y algebraic over K would imply L/K algebraic, contra-
diction. So every y € F'\ L is transcendental over K and the argument above
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shows that L = K(z) for some x € F, transcendental over K, and F/L is al-
gebraic. Pick y € F'\ L. We have therefore the situation: K C K(z) C K(y),
x transcendental over K, K(z) reduced in K(y) and y algebraic over K(x).
Considering K (zy), we have either K(zy) C K(x) (but then y € K(x), con-
tradiction), or K(x) C K(zy), so z € K(zy) = y € K(zy) = K(y) = K(ay).
Thus, K C K(z) C K(y) = K(zy).

We use the following elementary result: If K C K(t) is a simple transcen-
dental extension and z = f(t)/g(t) € K(t), where f,g € K[T), ged(f,g) = 1,
f@)g(t) #0, then Irr(t, K(2)) = f(T) — 29(T) € K(2)[T] and [K(t) : K(z)] =
deg(f(T) — z9(T)) = max(deg f, deg g). [See for instance [5], Ex.1.17.]

Since x € K(y), there exist univariate nonzero polynomials ac, 3 € K|[T]
(where T is an indeterminate) such that:

s =a(y)/B(y),ged(e, f) =1, af # 0. (%)
Then Irr(y, K (z)) = 8(T) —2a(T) € K(z)[T]. Also, K(z) C K(y) implies:
degTre(y, K (2)) = [K(y) : K(2)] = max(deg a, deg §) > 2.
We have y € K(zy), so there exist nonzero u,v € K[T] such that:
y = u(xy)/v(xy), ged(u,v) = 1,uv # 0.
Since K (zy) = K(y) and Irr(xy, K (y)) = u(T) —yv(T) has degree max(degu,
degv), equal to [K(xy) : K(y)] = 1, we have max(degu, degv) = 1. Using (),

we obtain:
y-v(ya(y)/By)) = ulya(y)/B(y))

Since y is transcendental over K, we have the equality in K(T) :
T -v(Ta(T)/B(T)) = w(Te(T)/B(T)) ()

Setting T = 0 in (x*), we get u(0) = 0, so u = T - v/, with v’ € K[T].
But degu < 1, so we may suppose u = T. Simplifying in (xx), and putting
v(T) = T + d, with ¢,d € K, we have

cTa(T)+dp(T) = a(T) (s % %)

We get d(T) = a(T)(1—cT), so a divides df in K[T]. But ged(e, 8) = 1, 50
divides d, which means deg &« = 0. We may as well suppose o = 1, so df(T) =
1 — T, which implies deg 8 = 1. This contradicts max(deg a, deg 3) > 2 and
shows that F'//K must be algebraic. |

Let F/K be a finite Galois extension with Galois group G. Since there
exists an order reversing bijection between Z(F/K) and the lattice of the
subgroups of G, the following definition appears natural:
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1.7 Definition. Let (G,-) be a group and 1 its neutral element. Let S(G) =
{H | H < G} be the lattice of subgroups of G. We call a subgroup R < G
reduced in Gif R#1, R+# G and if VH, H < G implies H < Ror R < H.
If S C G, let < S > denote the subgroup generated by S. For any set A, |A]
denotes the cardinal of A.

So, a finite Galois extension F/K has a reduced intermediate field L # K
if and only if Gal(F/K) has a reduced subgroup. We determine now all finite
groups having reduced subgroups.

1.8 Theorem. Let G be a finite group. There exists a reduced subgroup R in
G if and only if G is of one of the following types:

i) G is cyclic of order p™ (where p is a prime number and n € N* ). In this
case S(G) is a chain (hence every proper subgroup of G is reduced).

i) G is isomorphic to a generalized quaternion group of order 2™ (n > 3) :
G =<ab>, witha?  =1,02=a2""", ba = a~'b. In this case R is
the unique minimal proper subgroup of G and |R| = 2.

Before proceeding to the proof we collect some useful results.

1.9 Proposition. Let G be a group and R< G, R# G, R# 1. Then R is a
reduced subgroup of G if and only if for everyx € G\ R, RC< 1z > .

Proof. If R is reduced and x € G\ R, then < z > cannot be included in R,
soRC<z>.

Conversely, suppose R has the property that R C< x > for every € G\ R.
Let H € S(G). If H C R, we are done; else there exists x € H \ R and so
Rc<z>CH. O

1.10 Proposition. Let G be a finite group. Then:

a) If R is a reduced subgroup of G, then R is a characteristic subgroup of
G (hence R is normal in G).

b) If R is a reduced subgroup of G and H is a reduced subgroup of R, then
H is a reduced subgroup of G.

¢) S(G) is a chain if and only if G is a cyclic p-group for some prime p.

d) If G is abelian and has a reduced subgroup then G is a cyclic p-group (so
S(G) is a chain).
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Proof. a) If ¢ is an automorphism of G, then |¢(R)| = |R|. Since R C ¢(R)
or o(R) C R, we have R = ¢(R).

b) Let J < G. If J includes R, then J includes H and we are done. If R
does not include R, then J < R since R is reduced. So J < H or H < .J since
H is reduced in R. We remark that the statement is true for any group G.

c¢) If G is cyclic of order p", with p prime, then S(G) is clearly a chain.
Suppose now that S(G) is a chain and let p be a prime divisor of |G|. If |G|
has another prime divisor g, then by Cauchy’s Theorem there exist =,y € G
with ordz = p and ordy = ¢. Then < z >¢Z> y > and < y >¢< x >,
contradiction. So |G| = p™ for some n € N. We prove that G is cyclic. This
is obvious for n = 1. Suppose now that n > 1. Then G has a subgroup H of
order p"~1 ([4], Satz 7.2e)). If z € G\ H, then < x > is not included in H, so
HcC<zxz>andso <z >=G.

d) Because G is finite abelian, G is cyclic or a direct product of at least
two cyclic subgroups. If G is the direct product of its proper subgroups G
and Gs, then G cannot have a reduced subgroup R. Indeed, if R C (G; and
RQ GQ thenRQ GlmGQ = ].7 lfGl - RandRQ GQ then Gl - GQ;
if Gi € R and G2 C R then G = G1G2 C R. None of these conclusions is
consistent with the hypotheses. So G is cyclic and, by the argument above, it
cannot be written as a direct product of proper subgroups. This means that
G is cyclic of order a power of a prime. O

Proof of the Theorem 1.8. Assume that R is a reduced subgroup of G.
We show first that R is a cyclic p-group (hence S(R) is a chain). Since R # G
and G is finite, there exists H < G with R < H and H is minimal including
R (there are no subgroups between R and H). Then R is reduced in H (so
H < R) and H/R has no proper subgroups. So H/R is cyclic of prime order
p. f x € H\ R, then < z > must include R, so < z >= H. Thus, H is
cyclic and has a reduced subgroup. By d), H is a cyclic p-group and S(H) is
a chain. So R is also a cyclic p-group and S(R) is a chain.

If ¢ is a prime divisor of |G|, then there exists z € G, ordz = ¢. If ¢ # p,
then < x >C R implies ord x is a power of p, contradiction; R C< z > implies
|R| = g, contradiction. So |G| has only one prime divisor, namely p.

We have shown that G is a p-group. G has only one subgroup with p
elements (the unique subgroup of R with p elements). Indeed, if J < R has p
elements, then J C R (for R C J would imply R = 1, absurd) and S(R) is a
chain, so it contains at most one subgroup of order p.

The claim of the theorem follows now from:

Theorem ([3], THEOREM 12.5.2, p. 189). A p-group which contains only
one subgroup of order p is cyclic or a generalized quaternion group.
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The case of a cyclic p-group is clear.

Suppose that G is a generalized quaternion group of order 2" (n > 3). It
is easy to see that R =< a2"" >=< b? > has 2 elements and is included in
every proper subgroup of G. Also, R is the only reduced subgroup of G. [

Theorem 1.8 and the Galois correspondence yield the following classifica-
tion of the extensions having a non-trivial reduced subextension:

1.11 Theorem. Let F/K be a finite Galois extension with Galois group G.
Then there exists L € T(F/K), K # L # F, such that L is reduced in F over
K, if and only if G is of one of the following types:

a) G is cyclic of order p™ (where p is a prime number and n € N*). In this
case Z(F/K) is a chain (hence every proper intermediate extension is
reduced in F over K).

b) G is isomorphic to a generalized quaternion group of order 2™ (n > 3).
In this case L is the unique maximal proper intermediate field of F/K
and [F : L] = 2. O

1.12 Remarks. a) Any extension F'/K of finite fields is Galois and the Galois
group is cyclic. So F/K has a proper intermediate field reduced in F' over K
< the degree [F : K] is a power of a prime < Z(F/K) is a chain < every
intermediate field of F//K is reduced.

b) A famous result of Safarevic [8] implies that for every finite solvable
group G there exists a finite Galois extension of Q with Galois group iso-
morphic to G. This ensures that for every type of extension described in
Theorem 1.11 there exists an extension of QQ of that type. In particular, there
exists a Galois extension F'/Q of degree 8, with Galois group the quaternion
group. This extension admits a reduced intermediate field, but Z(F/Q) is not
a chain. This is a "minimal” example of extension having a proper reduced
intermediate field, but whose intermediate fields are not chained.

¢) Let F/K be a separable finite extension and let N be the normal closure
of F/K. Let G = Gal(N/K) and H = Gal(N/F). The lattice Z(F/K) is
antiisomorphic to the lattice of the subgroups of G that include H. Thus,
the problem of determining the separable finite extensions having a proper
reduced intermediate field is translated via Galois theory into the following
group theoretical problem:

Determine all pairs (G, H), where G is a finite group and H < G, such that
there exists a subgroup R, H < R < G with the property: for any subgroup J,
H < J <G impliesJ <R orR<J.
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There is another type of extensions F//K for which a bijective correspon-
dence between Z(F/K) and the subgroups of a certain group is available,
namely the G-Cogalois extensions. Consequently, we obtain a description of
the G-Cogalois extensions possessing a reduced subextension. We briefly state
the definitions and the results we need from [1], where a detailed account of
the theory is given.

If F' is a field, then F* denotes the multiplicative group of the nonzero
elements of F. We suppose all algebraic extensions of F' are subfields of 2, an
algebraic closure of F'. For any field extension F'/K, define the subgroup of
F*:

T(F/K)={x € F*|3n>1with 2" € K*}.

1.13 Definition. Let F//K be a field extension. Let G be a group, K* < G <
T(F/K). The extension F/K is called:

— G-radical if F = K(G).
— G-Kneser if it is finite, G-radical and |G/K*| < [F : K].

[[1], Prop. 2.4] says: If F/K is finite and G-radical, then: F/K is G-
Kneser & |G/K*| = [F : K] (there exists a set of representatives for G/K*
which is linearly independent over K < any set of representatives for G/K*
18 a vector space basis of F' over K.

For any subset S of a field F' and n > 1, let p,(S) = {z € S| 2™ = 1}.
Then p, () is a cyclic subgroup of Q*; let ¢, denote a generator of i, (£2)
(a primitive n-th root of unity in ). The separable G-Kneser extensions are
characterized as follows:

1.14 Theorem (Kneser’s criterion) [[1], Theorem 2.6]. Let K C F be a finite
separable G-radical extension with G/K* finite. Then K C F is G-Kneser
if and only if for any odd prime p, p,(G) = pp(K) and 1 + (4 € G implies
C4 c K.

In what follows, we fix an extension F//K and K* < G < F* and note:
G={H|K*<H<G}

The behavior of G-Kneser extensions with respect to subextensions and sub-
groups is described by [[1], 3.1 and 3.2], summarized in the following:

1.15 Proposition. Let K C F be a separable G-Kneser extension.

a) For any H C G, the extension K C K(H) is H-Kneser and K(H)NG =
H.
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b) For any E € Z(F/K), the following are equivalent:

(1) K C FE is H-Kneser for some H € G.
(2) K C F is E* N G-Kneser
(3) E CF is E*G-Kneser.

A finite G-radical extension is said to be strongly G-Kneser if, for any E €
I(F/K), E C F is E*G-Kneser. If F/K is an extension and K* < G < F*,
define the following natural and inclusion preserving maps:

a:I(F/K)— G, o(E) = ENG, VE € I(F/K)
3:G— I(F/K), B(H) = K(H), VH € G.

A characterization of G-Kneser extensions for which these maps are inverse
to each other is given by [[1], Th. 3.7], in terms of n-purity: If n € N* the
extension F/K is called n-pure if for any p dividing n, p odd prime or p = 4,
one has yu, C K.

1.16 Theorem. The following assertions are equivalent for a finite separable

G-radical extension K C F with G/K* finite:
(1) K C F is strongly G-Kneser (cf. 1.15).

(2) K C F is G-Kneser and « and (3 are isomorphisms of lattices, inverse
to each other.

(3) K C F is n-pure, where n = exp(G/K™).

(For a finite group I" with neutral element e, the exponent of ' is exp(I") =
min{n >1|z" =e, V(z €T}).

1.17 Definition. [[1], Def. 3.8] A field extension is called G-Cogalois if it is
a separable strongly G-Kneser extension.

The lattice S(G/K*) of subgroups of G/K* is isomorphic to the lattice
G ={H | K* < H < G}. From the previous theorem one obtains:

If F/K is a G-Cogalois extension, then Z(F/K) and S(G/K*) are lattice
isomorphic.

Let T be a group. We say, following [1], that F'//K is an extension with I'-
Cogalois correspondence if there is a lattice isomorphism between Z(F/K) and
S(T). So, a G-Cogalois extension F/K is an extension with G/K*-Cogalois
correspondence.

From the theorem 1.8 we deduce:
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1.18 Theorem. Let F'/K be an extension with T'-Cogalois correspondence for
some abelian group ' (for instance, a strongly G-Kneser separable extension,
where K* < G < T(F/K)). The following conditions are equivalent:

a) There exists L € Z(F/K), K # L # F, such that L is reduced in F over
K.

b) There exists a prime number p such that T is a cyclic p-group.
c) I(F/K) is a chain.
d) Ewvery proper intermediate extension is reduced in F over K.

Proof. There exists an intermediate field L reduced in F over K, K # L # F,
if and only if I' has a reduced subgroup. Since I is an abelian group, 1.8 shows
that it must be a cyclic p-group. O

1.19 Remark. This theorem is applicable to a wide class of finite extensions
K C F, not necessarily Galois, including the following (see [1]):

a) Kummer extensions with few roots of unity: there exists A C F and
n € N* such that a” € K, Va € A, K(A) = F and p,,(F) C {-1,1}.

b) Generalized neat presentations: there exist r € N*| ny,...,n, € N*
ai,...ar € K* such that F = K(/ay,... x/a,), e(K),n) = 1 and
1p(Q) C K, for any p dividing n (p odd prime or p = 4), where n is the
least common multiple of ny, ...,n,. Here e(K) is the characteristic ex-
ponent of K: e(K) = char(K) if char(K) > 0; e(K) =1 if char(K) = 0.

Next, we investigate some properties of inseparable extensions having re-
duced subextensions. If F'/K is an algebraic extension, let S denote the sep-
arable closure of K in F and I the purely inseparable closure of F' in K. It
is known that: S and I are linearly disjoint, SNI = K and F/S is purely
inseparable. The extension F/K is said to split if ST = F. Also, F/K splits
if and only if F/I is separable [[7], Th. 14.16]. If F/K is normal, then F/K
splits: ST = F [[5], Th. 4.23].

1.20 Proposition. Let F/K be algebraic and split (F = SI). If there exists
L # K reduced in F over K, then either F/K is separable or F/K is purely
inseparable.

Proof. There are the following four possibilities:
i))LCSand LCI. Then LC SNI=K,soL=K and this is excluded.
i) LCSand I C L. Then I C S and so I = K. Since F/K splits, F is
separable over I = K.
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iii) SC Land L CI. Then S C I, s0o S = K, which means F'/K is purely
inseparable.
iv) SCLand I CS. Then SI C L, so L = K, contradiction. O

1.21 Corollary. If F/K is a normal algebraic extension and there exists an
intermediate field L # K reduced in F over K, then F/K is either separable
or purely inseparable. (]

So, if F//K is finite, normal and has a proper reduced intermediate field,
then F/K is finite and Galois (and Th. 1.11 applies) or is purely inseparable.

2 Primitive extensions

In [2] the following definition is given:

2.1. Definition. [[2], Definition 2.1] Let L € Z(F/K). Then L is said to be:

— semi-primitive in F over K if Ve,d € L, Irr(¢, K) = Irr(d, K) implies
K(c) = K(d).

— primitive in F over K if L is semi-primitive in F' over K and Vc¢,d € F\L,
Irr(c, K) = Irr(d, K) implies K (c) = K(d).

We remark that the condition ” L is semi-primitive in F' over K” depends
only on L (and not on F') and is equivalent to ” L is primitive in L over K”. If
this is the case, we say shortly ” L/K is primitive”. We call ¢ and d conjugate
over K if ¢ and d have the same minimal polynomial over K.

2.2. Example. a) Every purely inseparable extension F'/K is primitive,
because every ¢ € F is its only conjugate over K.

b) Every algebraic extension of a finite field is primitive: if ¢ is algebraic
over the finite field K, then K(c) is the splitting field of Irr(¢, K) and hence
is equal to K (d), for every conjugate d of ¢ over K.

¢) Every extension F/K that has Z(F/K) a chain is primitive: if ¢,d € F
have the same minimal polynomial g over K, then [K(c) : K] = [K(d) : K] =
deg g and this implies K(c¢) = K(d) since there is at most one extension of
a given degree over K in the chain I(F/K). In particular, the extensions of
prime degree are primitive.

2.3. Proposition. Let F/K be an extension of fields. Then:

a) F/K is primitive & E € (F/K), E/K is primitive < VE € I(F/K),
FE is primitive in F over K.
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b) If F/K is primitive and E € Z(F/K), then F/E is primitive.

Proof. a) Suppose F'/K is primitive and let E € Z(F/K), ¢,d elements in
E (or in F'\ E). If ¢ and d are conjugate over K, then K(c) = K(d), so E is
primitive in F' over K. The converse is evident.

b) Let ¢,d € F with the same minimal polynomial g over E. We have to
show that F(c) = E(d). Let v = Irr(¢, K) € K[X] and 6 = Irr(d, K) € K[X].
Obviously, g divides v and § (in E[X]), so ged(y,d) is not a unit in E[X].
But the gcd of v and § is obtained by Euclid’s algorithm and is the same
in F[X] and K[X], so the irreducible monic polynomials v and ¢ are equal
since they have a nontrivial common factor. Since F/K is primitive, we have
K(c) = K(d). So E(c) = E(K(c)) = E(K(d)) = E(d). O

2.4. Remark. If in the chained extensions K C E C F, E/K is primitive
and F/F is primitive, then F'/K is not necessarily primitive. Take for instance
K =Q, E = Q\?2), F = Q(¥2,w), where w is a primitive third root of
unity: Irr(w,Q) = X2 + X + 1. Then /2 and w+/2 are conjugate over Q,
but generate different extensions, so F/K is not primitive. But E/K and
F/E are primitive, having prime degrees. This example also shows that a
finite extension having a square free degree is not automatically primitive, as
claimed in [[2], Proposition 2.3].
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