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EXTENSIONS HAVING REDUCED
SUBEXTENSIONS

Aurelian Claudiu Volf

Abstract

The concepts of reduced subextension and primitive subextension of
a field extension, recently introduced in connection with fuzzy Galois
theory, are investigated. We prove that every extension having a proper
reduced subextension is algebraic (it was known that its transcendence
degree is at most 1). The notion of reduced subgroup of a group is intro-
duced as a natural group theoretic counterpart of the concept of reduced
subextension. We determine all finite groups posessing a reduced sub-
group. Consequently, the finite Galois and G-Cogalois extensions having
a reduced intermediate field are determined. We also investigate some
properties of the primitive extensions.

1 Reduced subextensions

Let F/K be a field extension and let I(F/K) = {L | L subfield of F, K ⊆
L} be the lattice of its intermediate fields (also called its subextensions). If
F/K is a field extension and c ∈ F is algebraic over K, then we denote by
Irr(c,K) ∈ K[X] the minimal polynomial of c over K. We write A ⊂ B for
A ⊆ B and A 6= B.

1.1. Definition. [2] Let L ∈ I(F/K). Then L is said to be reduced in F over
K if L 6= F and ∀c, d ∈ F \ L, L(c) = L(d) implies K(c) = K(d).

1.2 Theorem. ([2], Th. 1.2) Let L ∈ I(F/K). Then L is reduced in F over
K if and only if F 6= L and ∀c ∈ F \ L, L ⊆ K(c).

Proof. Suppose that L is reduced in F over K. Let c ∈ F \ L and let b ∈ L.
Then L(c) = L(b+c) and so K(c) = K(b+c). Hence b ∈ K(c). Thus L ⊆ K(c).
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Conversely, suppose that L 6= F and ∀c ∈ F L, L ⊆ K(c). Let c, d ∈ F \L.
Then K(c) = L(c) and K(d) = L(d). Hence L(c) = L(d) implies that K(c) =
K(d). Thus L is reduced in F over K. ¤

Here is a simpler characterization of the reduced subextensions of F/K, in
terms of the lattice I(F/K).

1.3 Theorem. Let L ∈ I(F/K), L 6= F. Then L is reduced in F over K if
and only if, ∀M ∈ I(F/K), M ⊆ L or L ⊆ M.

Proof. ”⇒” Let M ∈ I(F/K) with M 6⊆ L. Then ∃c ∈ M \ L. By the
proposition above, L ⊆ K(c); since K(c) ⊆ M, L ⊆ M.

”⇐” Let c ∈ F \ L. Then K(c) 6⊆ L, so L ⊆ K(c). ¤

So, if L is reduced in F over K, I(F/K) = I(F/L)∪ I(L/K). This is quite
a strong condition on the lattice I(F/K). The following two consequences are
immediate from this characterization:

1.4 Corollary. The extension F/K has the property that every L ∈ I(F/K)
with L 6= F is reduced in F over K if and only if I(F/K) is a chain (i.e.,
totally ordered with respect to inclusion). ¤

1.5 Corollary. Let K ⊆ E ⊆ L ⊆ J ⊆ F be a chain of field extensions. If L
is reduced in F over K, then L is reduced in J over E. ¤

Let F/K be an extension possessing a reduced intermediate field L 6= K.
Theorem 1.5 in [2] states that trdeg(F/K) ≤ 1, where trdeg denotes the
transcendence degree. Also, Theorem 1.9 in [2] affirms that F/K is algebraic,
provided charK = p > 0 and either L/K is algebraic or L = K(F pe

) for some
positive integer e. It turns out that F/K is always algebraic:

1.6 Theorem. Let F/K be an extension possessing a reduced intermediate
field L 6= K. Then F/K is algebraic.

Proof. First, we prove that F/L is algebraic. Let y ∈ F \L. If y is transcen-
dental over K, then K ⊂ L ⊂ K(y) since L is reduced in F/K. By Lüroth’s
theorem, y is algebraic over L and L = K(x) for some x ∈ L, transcendental
over K. If y is algebraic over K, it is also algebraic over L. So, anyway, y is
algebraic over L. It is now enough to prove that L/K is algebraic. Suppose
that L/K is not algebraic. If y ∈ F \L, y is transcendental over K. Indeed, we
have K ⊂ L ⊂ K(y); y algebraic over K would imply L/K algebraic, contra-
diction. So every y ∈ F \L is transcendental over K and the argument above
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shows that L = K(x) for some x ∈ F, transcendental over K, and F/L is al-
gebraic. Pick y ∈ F \ L. We have therefore the situation: K ⊂ K(x) ⊂ K(y),
x transcendental over K, K(x) reduced in K(y) and y algebraic over K(x).
Considering K(xy), we have either K(xy) ⊆ K(x) (but then y ∈ K(x), con-
tradiction), or K(x) ⊆ K(xy), so x ∈ K(xy) ⇒ y ∈ K(xy) ⇒ K(y) = K(xy).
Thus, K ⊂ K(x) ⊂ K(y) = K(xy).

We use the following elementary result: If K ⊆ K(t) is a simple transcen-
dental extension and z = f(t)/g(t) ∈ K(t), where f, g ∈ K[T ], gcd(f, g) = 1,
f(t)g(t) 6= 0, then Irr(t,K(z)) = f(T )− zg(T ) ∈ K(z)[T ] and [K(t) : K(z)] =
deg(f(T )− zg(T )) = max(deg f, deg g). [See for instance [5], Ex.1.17.]

Since x ∈ K(y), there exist univariate nonzero polynomials aα, β ∈ K[T ]
(where T is an indeterminate) such that:

s = α(y)/β(y), gcd(α, β) = 1, αβ 6= 0. (∗)
Then Irr(y, K(x)) = β(T )−xα(T ) ∈ K(x)[T ]. Also, K(x) ⊂ K(y) implies:

deg Irr(y,K(x)) = [K(y) : K(x)] = max(deg α, deg β) ≥ 2.

We have y ∈ K(xy), so there exist nonzero u, v ∈ K[T ] such that:

y = u(xy)/v(xy), gcd(u, v) = 1, uv 6= 0.

Since K(xy) = K(y) and Irr(xy, K(y)) = u(T )−yv(T ) has degree max(deg u,
deg v), equal to [K(xy) : K(y)] = 1, we have max(deg u, deg v) = 1. Using (∗),
we obtain:

y · v(yα(y)/β(y)) = u(yα(y)/β(y))

Since y is transcendental over K, we have the equality in K(T ) :

T · v(Tα(T )/β(T )) = u(Tα(T )/β(T )) (∗∗)
Setting T = 0 in (∗∗), we get u(0) = 0, so u = T · u′, with u′ ∈ K[T ].

But deg u ≤ 1, so we may suppose u = T. Simplifying in (∗∗), and putting
v(T ) = cT + d, with c, d ∈ K, we have

cTα(T ) + dβ(T ) = α(T ) (∗ ∗ ∗)
We get dβ(T ) = α(T )(1−cT ), so α divides dβ in K[T ]. But gcd(α, β) = 1, so α
divides d, which means deg α = 0. We may as well suppose α = 1, so dβ(T ) =
1 − cT, which implies deg β = 1. This contradicts max(deg α, deg β) ≥ 2 and
shows that F/K must be algebraic. ¤

Let F/K be a finite Galois extension with Galois group G. Since there
exists an order reversing bijection between I(F/K) and the lattice of the
subgroups of G, the following definition appears natural:
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1.7 Definition. Let (G, ·) be a group and 1 its neutral element. Let S(G) =
{H | H ≤ G} be the lattice of subgroups of G. We call a subgroup R ≤ G
reduced in G if R 6= 1, R 6= G and if ∀H, H ≤ G implies H ≤ R or R ≤ H.
If S ⊆ G, let < S > denote the subgroup generated by S. For any set A, |A|
denotes the cardinal of A.

So, a finite Galois extension F/K has a reduced intermediate field L 6= K
if and only if Gal(F/K) has a reduced subgroup. We determine now all finite
groups having reduced subgroups.

1.8 Theorem. Let G be a finite group. There exists a reduced subgroup R in
G if and only if G is of one of the following types:

i) G is cyclic of order pn (where p is a prime number and n ∈ N∗). In this
case S(G) is a chain (hence every proper subgroup of G is reduced).

ii) G is isomorphic to a generalized quaternion group of order 2n (n ≥ 3) :
G =< a, b >, with a2n−1

= 1, b2 = a2n−2
, ba = a−1b. In this case R is

the unique minimal proper subgroup of G and |R| = 2.

Before proceeding to the proof we collect some useful results.

1.9 Proposition. Let G be a group and R ≤ G, R 6= G, R 6= 1. Then R is a
reduced subgroup of G if and only if for every x ∈ G \R, R ⊂< x > .

Proof. If R is reduced and x ∈ G \ R, then < x > cannot be included in R,
so R ⊂< x > .

Conversely, suppose R has the property that R ⊂< x > for every x ∈ G\R.
Let H ∈ S(G). If H ⊆ R, we are done; else there exists x ∈ H \ R and so
R ⊂< x >⊆ H. ¤

1.10 Proposition. Let G be a finite group. Then:

a) If R is a reduced subgroup of G, then R is a characteristic subgroup of
G (hence R is normal in G).

b) If R is a reduced subgroup of G and H is a reduced subgroup of R, then
H is a reduced subgroup of G.

c) S(G) is a chain if and only if G is a cyclic p-group for some prime p.

d) If G is abelian and has a reduced subgroup then G is a cyclic p-group (so
S(G) is a chain).
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Proof. a) If ϕ is an automorphism of G, then |ϕ(R)| = |R|. Since R ⊆ ϕ(R)
or ϕ(R) ⊆ R, we have R = ϕ(R).

b) Let J ≤ G. If J includes R, then J includes H and we are done. If R
does not include R, then J ≤ R since R is reduced. So J ≤ H or H ≤ J since
H is reduced in R. We remark that the statement is true for any group G.

c) If G is cyclic of order pn, with p prime, then S(G) is clearly a chain.
Suppose now that S(G) is a chain and let p be a prime divisor of |G|. If |G|
has another prime divisor q, then by Cauchy’s Theorem there exist x, y ∈ G
with ord x = p and ord y = q. Then < x > 6⊆> y > and < y > 6⊆< x >,
contradiction. So |G| = pn for some n ∈ N. We prove that G is cyclic. This
is obvious for n = 1. Suppose now that n > 1. Then G has a subgroup H of
order pn−1 ([4], Satz 7.2e)). If x ∈ G \H, then < x > is not included in H, so
H ⊂< x > and so < x >= G.

d) Because G is finite abelian, G is cyclic or a direct product of at least
two cyclic subgroups. If G is the direct product of its proper subgroups G1

and G2, then G cannot have a reduced subgroup R. Indeed, if R ⊆ G1 and
R ⊆ G2 then R ⊆ G1 ∩ G2 = 1; if G1 ⊆ R and R ⊆ G2 then G1 ⊆ G2;
if G1 ⊆ R and G2 ⊆ R then G = G1G2 ⊆ R. None of these conclusions is
consistent with the hypotheses. So G is cyclic and, by the argument above, it
cannot be written as a direct product of proper subgroups. This means that
G is cyclic of order a power of a prime. ¤

Proof of the Theorem 1.8. Assume that R is a reduced subgroup of G.
We show first that R is a cyclic p-group (hence S(R) is a chain). Since R 6= G
and G is finite, there exists H ≤ G with R < H and H is minimal including
R (there are no subgroups between R and H). Then R is reduced in H (so
H C R) and H/R has no proper subgroups. So H/R is cyclic of prime order
p. If x ∈ H \ R, then < x > must include R, so < x >= H. Thus, H is
cyclic and has a reduced subgroup. By d), H is a cyclic p-group and S(H) is
a chain. So R is also a cyclic p-group and S(R) is a chain.

If q is a prime divisor of |G|, then there exists x ∈ G, ordx = q. If q 6= p,
then < x >⊆ R implies ord x is a power of p, contradiction; R ⊆< x > implies
|R| = q, contradiction. So |G| has only one prime divisor, namely p.

We have shown that G is a p-group. G has only one subgroup with p
elements (the unique subgroup of R with p elements). Indeed, if J ≤ R has p
elements, then J ⊆ R (for R ⊂ J would imply R = 1, absurd) and S(R) is a
chain, so it contains at most one subgroup of order p.

The claim of the theorem follows now from:

Theorem ([3], THEOREM 12.5.2, p. 189). A p-group which contains only
one subgroup of order p is cyclic or a generalized quaternion group.
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The case of a cyclic p-group is clear.
Suppose that G is a generalized quaternion group of order 2n (n ≥ 3). It

is easy to see that R =< a2n−2
>=< b2 > has 2 elements and is included in

every proper subgroup of G. Also, R is the only reduced subgroup of G. ¤

Theorem 1.8 and the Galois correspondence yield the following classifica-
tion of the extensions having a non-trivial reduced subextension:

1.11 Theorem. Let F/K be a finite Galois extension with Galois group G.
Then there exists L ∈ I(F/K), K 6= L 6= F, such that L is reduced in F over
K, if and only if G is of one of the following types:

a) G is cyclic of order pn (where p is a prime number and n ∈ N∗). In this
case I(F/K) is a chain (hence every proper intermediate extension is
reduced in F over K).

b) G is isomorphic to a generalized quaternion group of order 2n (n ≥ 3).
In this case L is the unique maximal proper intermediate field of F/K
and [F : L] = 2. ¤

1.12 Remarks. a) Any extension F/K of finite fields is Galois and the Galois
group is cyclic. So F/K has a proper intermediate field reduced in F over K
⇔ the degree [F : K] is a power of a prime ⇔ I(F/K) is a chain ⇔ every
intermediate field of F/K is reduced.

b) A famous result of Šafarevič [8] implies that for every finite solvable
group G there exists a finite Galois extension of Q with Galois group iso-
morphic to G. This ensures that for every type of extension described in
Theorem 1.11 there exists an extension of Q of that type. In particular, there
exists a Galois extension F/Q of degree 8, with Galois group the quaternion
group. This extension admits a reduced intermediate field, but I(F/Q) is not
a chain. This is a ”minimal” example of extension having a proper reduced
intermediate field, but whose intermediate fields are not chained.

c) Let F/K be a separable finite extension and let N be the normal closure
of F/K. Let G = Gal(N/K) and H = Gal(N/F ). The lattice I(F/K) is
antiisomorphic to the lattice of the subgroups of G that include H. Thus,
the problem of determining the separable finite extensions having a proper
reduced intermediate field is translated via Galois theory into the following
group theoretical problem:

Determine all pairs (G,H), where G is a finite group and H ≤ G, such that
there exists a subgroup R, H < R < G with the property: for any subgroup J ,
H ≤ J ≤ G implies J ≤ R or R ≤ J.
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There is another type of extensions F/K for which a bijective correspon-
dence between I(F/K) and the subgroups of a certain group is available,
namely the G-Cogalois extensions. Consequently, we obtain a description of
the G-Cogalois extensions possessing a reduced subextension. We briefly state
the definitions and the results we need from [1], where a detailed account of
the theory is given.

If F is a field, then F ∗ denotes the multiplicative group of the nonzero
elements of F . We suppose all algebraic extensions of F are subfields of Ω, an
algebraic closure of F . For any field extension F/K, define the subgroup of
F ∗:

T (F/K) = {x ∈ F ∗ | ∃n ≥ 1 with xn ∈ K∗}.
1.13 Definition. Let F/K be a field extension. Let G be a group, K∗ ≤ G ≤
T (F/K). The extension F/K is called:

– G-radical if F = K(G).

– G-Kneser if it is finite, G-radical and |G/K∗| ≤ [F : K].

[[1], Prop. 2.4] says: If F/K is finite and G-radical, then: F/K is G-
Kneser ⇔ |G/K∗| = [F : K] (there exists a set of representatives for G/K∗

which is linearly independent over K ⇔ any set of representatives for G/K∗

is a vector space basis of F over K.
For any subset S of a field F and n ≥ 1, let µn(S) = {x ∈ S | xn = 1}.

Then µn(Ω) is a cyclic subgroup of Ω∗; let ζn denote a generator of µn(Ω)
(a primitive n-th root of unity in Ω). The separable G-Kneser extensions are
characterized as follows:

1.14 Theorem (Kneser’s criterion) [[1], Theorem 2.6]. Let K ⊆ F be a finite
separable G-radical extension with G/K∗ finite. Then K ⊆ F is G-Kneser
if and only if for any odd prime p, µp(G) = µp(K) and 1 + ζ4 ∈ G implies
ζ4 ∈ K.

In what follows, we fix an extension F/K and K∗ ≤ G ≤ F ∗ and note:

G = {H | K∗ ≤ H ≤ G}.

The behavior of G-Kneser extensions with respect to subextensions and sub-
groups is described by [[1], 3.1 and 3.2], summarized in the following:

1.15 Proposition. Let K ⊆ F be a separable G-Kneser extension.

a) For any H ⊆ G, the extension K ⊆ K(H) is H-Kneser and K(H)∩G =
H.
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b) For any E ∈ I(F/K), the following are equivalent:

(1) K ⊆ E is H-Kneser for some H ∈ G.

(2) K ⊆ E is E∗ ∩G-Kneser

(3) E ⊆ F is E∗G-Kneser.

A finite G-radical extension is said to be strongly G-Kneser if, for any E ∈
I(F/K), E ⊆ F is E∗G-Kneser. If F/K is an extension and K∗ ≤ G ≤ F ∗,
define the following natural and inclusion preserving maps:

α : I(F/K) → G, α(E) = E ∩G, ∀E ∈ I(F/K)
β : G → I(F/K), β(H) = K(H), ∀H ∈ G.

A characterization of G-Kneser extensions for which these maps are inverse
to each other is given by [[1], Th. 3.7], in terms of n-purity: If n ∈ N∗, the
extension F/K is called n-pure if for any p dividing n, p odd prime or p = 4,
one has µp ⊆ K.

1.16 Theorem. The following assertions are equivalent for a finite separable
G-radical extension K ⊆ F with G/K∗ finite:

(1) K ⊆ F is strongly G-Kneser (cf. 1.15).

(2) K ⊆ F is G-Kneser and α and β are isomorphisms of lattices, inverse
to each other.

(3) K ⊆ F is n-pure, where n = exp(G/K∗).

(For a finite group Γ with neutral element e, the exponent of Γ is exp(Γ) =
min{n ≥ 1 | xn = e, ∀(x ∈ Γ}).

1.17 Definition. [[1], Def. 3.8] A field extension is called G-Cogalois if it is
a separable strongly G-Kneser extension.

The lattice S(G/K∗) of subgroups of G/K∗ is isomorphic to the lattice
G = {H | K∗ ≤ H ≤ G}. From the previous theorem one obtains:

If F/K is a G-Cogalois extension, then I(F/K) and S(G/K∗) are lattice
isomorphic.

Let Γ be a group. We say, following [1], that F/K is an extension with Γ-
Cogalois correspondence if there is a lattice isomorphism between I(F/K) and
S(Γ). So, a G-Cogalois extension F/K is an extension with G/K∗-Cogalois
correspondence.

From the theorem 1.8 we deduce:
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1.18 Theorem. Let F/K be an extension with Γ-Cogalois correspondence for
some abelian group Γ (for instance, a strongly G-Kneser separable extension,
where K∗ ≤ G ≤ T (F/K)). The following conditions are equivalent:

a) There exists L ∈ I(F/K), K 6= L 6= F, such that L is reduced in F over
K.

b) There exists a prime number p such that Γ is a cyclic p-group.

c) I(F/K) is a chain.

d) Every proper intermediate extension is reduced in F over K.

Proof. There exists an intermediate field L reduced in F over K, K 6= L 6= F ,
if and only if Γ has a reduced subgroup. Since Γ is an abelian group, 1.8 shows
that it must be a cyclic p-group. ¤

1.19 Remark. This theorem is applicable to a wide class of finite extensions
K ⊆ F , not necessarily Galois, including the following (see [1]):

a) Kummer extensions with few roots of unity: there exists A ⊆ F and
n ∈ N∗ such that an ∈ K, ∀a ∈ A, K(A) = F and µn(F ) ⊆ {−1, 1}.

b) Generalized neat presentations: there exist r ∈ N∗, n1, ..., nr ∈ N∗,
a1, ..., ar ∈ K∗ such that F = K( n1

√
a1, ... nr

√
ar), e(K), n) = 1 and

µp(Ω) ⊆ K, for any p dividing n (p odd prime or p = 4), where n is the
least common multiple of n1, ..., nr. Here e(K) is the characteristic ex-
ponent of K: e(K) = char(K) if char(K) > 0; e(K) = 1 if char(K) = 0.

Next, we investigate some properties of inseparable extensions having re-
duced subextensions. If F/K is an algebraic extension, let S denote the sep-
arable closure of K in F and I the purely inseparable closure of F in K. It
is known that: S and I are linearly disjoint, S ∩ I = K and F/S is purely
inseparable. The extension F/K is said to split if SI = F . Also, F/K splits
if and only if F/I is separable [[7], Th. 14.16]. If F/K is normal, then F/K
splits: SI = F [[5], Th. 4.23].

1.20 Proposition. Let F/K be algebraic and split (F = SI). If there exists
L 6= K reduced in F over K, then either F/K is separable or F/K is purely
inseparable.

Proof. There are the following four possibilities:
i) L ⊆ S and L ⊆ I. Then L ⊆ S ∩ I = K, so L = K and this is excluded.
ii) L ⊆ S and I ⊆ L. Then I ⊆ S and so I = K. Since F/K splits, F is

separable over I = K.
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iii) S ⊆ L and L ⊆ I. Then S ⊆ I, so S = K, which means F/K is purely
inseparable.

iv) S ⊆ L and I ⊆ S. Then SI ⊆ L, so L = K, contradiction. ¤

1.21 Corollary. If F/K is a normal algebraic extension and there exists an
intermediate field L 6= K reduced in F over K, then F/K is either separable
or purely inseparable. ¤

So, if F/K is finite, normal and has a proper reduced intermediate field,
then F/K is finite and Galois (and Th. 1.11 applies) or is purely inseparable.

2 Primitive extensions

In [2] the following definition is given:

2.1. Definition. [[2], Definition 2.1] Let L ∈ I(F/K). Then L is said to be:

– semi-primitive in F over K if ∀c, d ∈ L, Irr(c,K) = Irr(d,K) implies
K(c) = K(d).

– primitive in F over K if L is semi-primitive in F over K and ∀c, d ∈ F \L,
Irr(c, K) = Irr(d,K) implies K(c) = K(d).

We remark that the condition ”L is semi-primitive in F over K” depends
only on L (and not on F ) and is equivalent to ”L is primitive in L over K”. If
this is the case, we say shortly ”L/K is primitive”. We call c and d conjugate
over K if c and d have the same minimal polynomial over K.

2.2. Example. a) Every purely inseparable extension F/K is primitive,
because every c ∈ F is its only conjugate over K.

b) Every algebraic extension of a finite field is primitive: if c is algebraic
over the finite field K, then K(c) is the splitting field of Irr(c,K) and hence
is equal to K(d), for every conjugate d of c over K.

c) Every extension F/K that has I(F/K) a chain is primitive: if c, d ∈ F
have the same minimal polynomial g over K, then [K(c) : K] = [K(d) : K] =
deg g and this implies K(c) = K(d) since there is at most one extension of
a given degree over K in the chain I(F/K). In particular, the extensions of
prime degree are primitive.

2.3. Proposition. Let F/K be an extension of fields. Then:

a) F/K is primitive ⇔ E ∈ (F/K), E/K is primitive ⇔ ∀E ∈ I(F/K),
E is primitive in F over K.
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b) If F/K is primitive and E ∈ I(F/K), then F/E is primitive.

Proof. a) Suppose F/K is primitive and let E ∈ I(F/K), c, d elements in
E (or in F \ E). If c and d are conjugate over K, then K(c) = K(d), so E is
primitive in F over K. The converse is evident.

b) Let c, d ∈ F with the same minimal polynomial g over E. We have to
show that E(c) = E(d). Let γ = Irr(c,K) ∈ K[X] and δ = Irr(d,K) ∈ K[X].
Obviously, g divides γ and δ (in E[X]), so gcd(γ, δ) is not a unit in E[X].
But the gcd of γ and δ is obtained by Euclid’s algorithm and is the same
in E[X] and K[X], so the irreducible monic polynomials γ and δ are equal
since they have a nontrivial common factor. Since F/K is primitive, we have
K(c) = K(d). So E(c) = E(K(c)) = E(K(d)) = E(d). ¤

2.4. Remark. If in the chained extensions K ⊆ E ⊆ F, E/K is primitive
and F/E is primitive, then F/K is not necessarily primitive. Take for instance
K = Q, E = Q( 3

√
2), F = Q( 3

√
2, ω), where ω is a primitive third root of

unity: Irr(ω,Q) = X2 + X + 1. Then 3
√

2 and ω 3
√

2 are conjugate over Q,
but generate different extensions, so F/K is not primitive. But E/K and
F/E are primitive, having prime degrees. This example also shows that a
finite extension having a square free degree is not automatically primitive, as
claimed in [[2], Proposition 2.3].
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