

An. Şt. Univ. Ovidius Constanța

$Vol. \ 10(1), \ 2002, \ \ 149{-}160$

EXTENSIONS HAVING REDUCED SUBEXTENSIONS

Aurelian Claudiu Volf

Abstract

The concepts of reduced subextension and primitive subextension of a field extension, recently introduced in connection with fuzzy Galois theory, are investigated. We prove that every extension having a proper reduced subextension is algebraic (it was known that its transcendence degree is at most 1). The notion of reduced subgroup of a group is introduced as a natural group theoretic counterpart of the concept of reduced subextension. We determine all finite groups possesing a reduced subgroup. Consequently, the finite Galois and G-Cogalois extensions having a reduced intermediate field are determined. We also investigate some properties of the primitive extensions.

1 Reduced subextensions

Let F/K be a field extension and let $\mathcal{I}(F/K) = \{L \mid L \text{ subfield of } F, K \subseteq L\}$ be the lattice of its intermediate fields (also called its subextensions). If F/K is a field extension and $c \in F$ is algebraic over K, then we denote by $\operatorname{Irr}(c, K) \in K[X]$ the minimal polynomial of c over K. We write $A \subset B$ for $A \subseteq B$ and $A \neq B$.

1.1. Definition. [2] Let $L \in \mathcal{I}(F/K)$. Then L is said to be reduced in F over K if $L \neq F$ and $\forall c, d \in F \setminus L$, L(c) = L(d) implies K(c) = K(d).

1.2 Theorem. ([2], Th. 1.2) Let $L \in \mathcal{I}(F/K)$. Then L is reduced in F over K if and only if $F \neq L$ and $\forall c \in F \setminus L$, $L \subseteq K(c)$.

Proof. Suppose that L is reduced in F over K. Let $c \in F \setminus L$ and let $b \in L$. Then L(c) = L(b+c) and so K(c) = K(b+c). Hence $b \in K(c)$. Thus $L \subseteq K(c)$.

Key Words: Field extension, algebraic, Galois, Cogalois, lattice of subgroups. Mathematical Reviews subject classification: 12F05, 12F20, 20D30.

Conversely, suppose that $L \neq F$ and $\forall c \in F \ L, L \subseteq K(c)$. Let $c, d \in F \setminus L$. Then K(c) = L(c) and K(d) = L(d). Hence L(c) = L(d) implies that K(c) = K(d). Thus L is reduced in F over K.

Here is a simpler characterization of the reduced subextensions of F/K, in terms of the lattice $\mathcal{I}(F/K)$.

1.3 Theorem. Let $L \in \mathcal{I}(F/K)$, $L \neq F$. Then L is reduced in F over K if and only if, $\forall M \in \mathcal{I}(F/K)$, $M \subseteq L$ or $L \subseteq M$.

Proof. " \Rightarrow " Let $M \in \mathcal{I}(F/K)$ with $M \not\subseteq L$. Then $\exists c \in M \setminus L$. By the proposition above, $L \subseteq K(c)$; since $K(c) \subseteq M$, $L \subseteq M$. " \Leftarrow " Let $c \in F \setminus L$. Then $K(c) \not\subseteq L$, so $L \subseteq K(c)$.

So, if L is reduced in F over K, $\mathcal{I}(F/K) = I(F/L) \cup I(L/K)$. This is quite a strong condition on the lattice $\mathcal{I}(F/K)$. The following two consequences are immediate from this characterization:

1.4 Corollary. The extension F/K has the property that every $L \in \mathcal{I}(F/K)$ with $L \neq F$ is reduced in F over K if and only if $\mathcal{I}(F/K)$ is a chain (i.e., totally ordered with respect to inclusion).

1.5 Corollary. Let $K \subseteq E \subseteq L \subseteq J \subseteq F$ be a chain of field extensions. If L is reduced in F over K, then L is reduced in J over E.

Let F/K be an extension possessing a reduced intermediate field $L \neq K$. Theorem 1.5 in [2] states that $\operatorname{trdeg}(F/K) \leq 1$, where trdeg denotes the transcendence degree. Also, Theorem 1.9 in [2] affirms that F/K is algebraic, provided char K = p > 0 and either L/K is algebraic or $L = K(F^{p^e})$ for some positive integer e. It turns out that F/K is algebraic:

1.6 Theorem. Let F/K be an extension possessing a reduced intermediate field $L \neq K$. Then F/K is algebraic.

Proof. First, we prove that F/L is algebraic. Let $y \in F \setminus L$. If y is transcendental over K, then $K \subset L \subset K(y)$ since L is reduced in F/K. By Lüroth's theorem, y is algebraic over L and L = K(x) for some $x \in L$, transcendental over K. If y is algebraic over K, it is also algebraic over L. So, anyway, y is algebraic over L. It is now enough to prove that L/K is algebraic. Suppose that L/K is not algebraic. If $y \in F \setminus L$, y is transcendental over K. Indeed, we have $K \subset L \subset K(y)$; y algebraic over K would imply L/K algebraic, contradiction. So every $y \in F \setminus L$ is transcendental over K and the argument above

shows that L = K(x) for some $x \in F$, transcendental over K, and F/L is algebraic. Pick $y \in F \setminus L$. We have therefore the situation: $K \subset K(x) \subset K(y)$, x transcendental over K, K(x) reduced in K(y) and y algebraic over K(x). Considering K(xy), we have either $K(xy) \subseteq K(x)$ (but then $y \in K(x)$, contradiction), or $K(x) \subseteq K(xy)$, so $x \in K(xy) \Rightarrow y \in K(xy) \Rightarrow K(y) = K(xy)$. Thus, $K \subset K(x) \subset K(y) = K(xy)$.

We use the following elementary result: If $K \subseteq K(t)$ is a simple transcendental extension and $z = f(t)/g(t) \in K(t)$, where $f, g \in K[T]$, gcd(f, g) = 1, $f(t)g(t) \neq 0$, then $Irr(t, K(z)) = f(T) - zg(T) \in K(z)[T]$ and [K(t) : K(z)] = deg(f(T) - zg(T)) = max(deg f, deg g). [See for instance [5], Ex.1.17.]

Since $x \in K(y)$, there exist univariate nonzero polynomials $a\alpha, \beta \in K[T]$ (where T is an indeterminate) such that:

$$s = \alpha(y)/\beta(y), \gcd(\alpha, \beta) = 1, \ \alpha\beta \neq 0.$$
 (*)

Then $\operatorname{Irr}(y, K(x)) = \beta(T) - x\alpha(T) \in K(x)[T]$. Also, $K(x) \subset K(y)$ implies:

$$\deg \operatorname{Irr}(y, K(x)) = [K(y) : K(x)] = \max(\deg \alpha, \deg \beta) \ge 2.$$

We have $y \in K(xy)$, so there exist nonzero $u, v \in K[T]$ such that:

$$y = u(xy)/v(xy), \gcd(u, v) = 1, uv \neq 0.$$

Since K(xy) = K(y) and Irr(xy, K(y)) = u(T) - yv(T) has degree max(deg u, deg v), equal to [K(xy) : K(y)] = 1, we have max(deg u, deg v) = 1. Using (*), we obtain:

$$y \cdot v(y\alpha(y)/\beta(y)) = u(y\alpha(y)/\beta(y))$$

Since y is transcendental over K, we have the equality in K(T):

$$T \cdot v(T\alpha(T)/\beta(T)) = u(T\alpha(T)/\beta(T)) \tag{**}$$

Setting T = 0 in (**), we get u(0) = 0, so $u = T \cdot u'$, with $u' \in K[T]$. But deg $u \leq 1$, so we may suppose u = T. Simplifying in (**), and putting v(T) = cT + d, with $c, d \in K$, we have

$$cT\alpha(T) + d\beta(T) = \alpha(T) \qquad (***)$$

We get $d\beta(T) = \alpha(T)(1-cT)$, so α divides $d\beta$ in K[T]. But $gcd(\alpha, \beta) = 1$, so α divides d, which means $\deg \alpha = 0$. We may as well suppose $\alpha = 1$, so $d\beta(T) = 1 - cT$, which implies $\deg \beta = 1$. This contradicts max $(\deg \alpha, \deg \beta) \ge 2$ and shows that F/K must be algebraic.

Let F/K be a finite Galois extension with Galois group G. Since there exists an order reversing bijection between $\mathcal{I}(F/K)$ and the lattice of the subgroups of G, the following definition appears natural:

1.7 Definition. Let (G, \cdot) be a group and 1 its neutral element. Let $S(G) = \{H \mid H \leq G\}$ be the lattice of subgroups of G. We call a subgroup $R \leq G$ reduced in G if $R \neq 1$, $R \neq G$ and if $\forall H, H \leq G$ implies $H \leq R$ or $R \leq H$. If $S \subseteq G$, let $\langle S \rangle$ denote the subgroup generated by S. For any set A, |A| denotes the cardinal of A.

So, a finite Galois extension F/K has a reduced intermediate field $L \neq K$ if and only if $\operatorname{Gal}(F/K)$ has a reduced subgroup. We determine now all finite groups having reduced subgroups.

1.8 Theorem. Let G be a finite group. There exists a reduced subgroup R in G if and only if G is of one of the following types:

- i) G is cyclic of order pⁿ (where p is a prime number and n ∈ N*). In this case S(G) is a chain (hence every proper subgroup of G is reduced).
- ii) G is isomorphic to a generalized quaternion group of order 2^n $(n \ge 3)$: G =< a, b >, with $a^{2^{n-1}} = 1$, $b^2 = a^{2^{n-2}}$, $ba = a^{-1}b$. In this case R is the unique minimal proper subgroup of G and |R| = 2.

Before proceeding to the proof we collect some useful results.

1.9 Proposition. Let G be a group and $R \leq G$, $R \neq G$, $R \neq 1$. Then R is a reduced subgroup of G if and only if for every $x \in G \setminus R$, $R \subset \langle x \rangle$.

Proof. If R is reduced and $x \in G \setminus R$, then $\langle x \rangle$ cannot be included in R, so $R \subset \langle x \rangle$.

Conversely, suppose R has the property that $R \subset \langle x \rangle$ for every $x \in G \setminus R$. Let $H \in \mathcal{S}(G)$. If $H \subseteq R$, we are done; else there exists $x \in H \setminus R$ and so $R \subset \langle x \rangle \subseteq H$.

- **1.10 Proposition.** Let G be a finite group. Then:
 - a) If R is a reduced subgroup of G, then R is a characteristic subgroup of G (hence R is normal in G).
 - b) If R is a reduced subgroup of G and H is a reduced subgroup of R, then H is a reduced subgroup of G.
 - c) $\mathcal{S}(G)$ is a chain if and only if G is a cyclic p-group for some prime p.
 - d) If G is abelian and has a reduced subgroup then G is a cyclic p-group (so S(G) is a chain).

Proof. a) If φ is an automorphism of G, then $|\varphi(R)| = |R|$. Since $R \subseteq \varphi(R)$ or $\varphi(R) \subseteq R$, we have $R = \varphi(R)$.

b) Let $J \leq G$. If J includes R, then J includes H and we are done. If R does not include R, then $J \leq R$ since R is reduced. So $J \leq H$ or $H \leq J$ since H is reduced in R. We remark that the statement is true for any group G.

c) If G is cyclic of order p^n , with p prime, then $\mathcal{S}(G)$ is clearly a chain. Suppose now that $\mathcal{S}(G)$ is a chain and let p be a prime divisor of |G|. If |G| has another prime divisor q, then by Cauchy's Theorem there exist $x, y \in G$ with ord x = p and ord y = q. Then $\langle x \rangle \not\subseteq \rangle y \rangle$ and $\langle y \rangle \not\subseteq \langle x \rangle$, contradiction. So $|G| = p^n$ for some $n \in \mathbb{N}$. We prove that G is cyclic. This is obvious for n = 1. Suppose now that n > 1. Then G has a subgroup H of order p^{n-1} ([4], Satz 7.2e)). If $x \in G \setminus H$, then $\langle x \rangle$ is not included in H, so $H \subset \langle x \rangle$ and so $\langle x \rangle = G$.

d) Because G is finite abelian, G is cyclic or a direct product of at least two cyclic subgroups. If G is the direct product of its proper subgroups G_1 and G_2 , then G cannot have a reduced subgroup R. Indeed, if $R \subseteq G_1$ and $R \subseteq G_2$ then $R \subseteq G_1 \cap G_2 = 1$; if $G_1 \subseteq R$ and $R \subseteq G_2$ then $G_1 \subseteq G_2$; if $G_1 \subseteq R$ and $G_2 \subseteq R$ then $G = G_1G_2 \subseteq R$. None of these conclusions is consistent with the hypotheses. So G is cyclic and, by the argument above, it cannot be written as a direct product of proper subgroups. This means that G is cyclic of order a power of a prime.

Proof of the Theorem 1.8. Assume that R is a reduced subgroup of G. We show first that R is a cyclic p-group (hence $\mathcal{S}(R)$ is a chain). Since $R \neq G$ and G is finite, there exists $H \leq G$ with R < H and H is minimal including R (there are no subgroups between R and H). Then R is reduced in H (so $H \lhd R$) and H/R has no proper subgroups. So H/R is cyclic of prime order p. If $x \in H \setminus R$, then < x > must include R, so < x >= H. Thus, H is cyclic and has a reduced subgroup. By d), H is a cyclic p-group and $\mathcal{S}(H)$ is a chain. So R is also a cyclic p-group and $\mathcal{S}(R)$ is a chain.

If q is a prime divisor of |G|, then there exists $x \in G$, ord x = q. If $q \neq p$, then $\langle x \rangle \subseteq R$ implies ord x is a power of p, contradiction; $R \subseteq \langle x \rangle$ implies |R| = q, contradiction. So |G| has only one prime divisor, namely p.

We have shown that G is a p-group. G has only one subgroup with p elements (the unique subgroup of R with p elements). Indeed, if $J \leq R$ has p elements, then $J \subseteq R$ (for $R \subset J$ would imply R = 1, absurd) and S(R) is a chain, so it contains at most one subgroup of order p.

The claim of the theorem follows now from:

Theorem ([3], THEOREM 12.5.2, p. 189). A p-group which contains only one subgroup of order p is cyclic or a generalized quaternion group.

The case of a cyclic p-group is clear.

Suppose that G is a generalized quaternion group of order 2^n $(n \ge 3)$. It is easy to see that $R = \langle a^{2^{n-2}} \rangle = \langle b^2 \rangle$ has 2 elements and is included in every proper subgroup of G. Also, R is the only reduced subgroup of G. \Box

Theorem 1.8 and the Galois correspondence yield the following *classifica*tion of the extensions having a non-trivial reduced subextension:

1.11 Theorem. Let F/K be a finite Galois extension with Galois group G. Then there exists $L \in \mathcal{I}(F/K)$, $K \neq L \neq F$, such that L is reduced in F over K, if and only if G is of one of the following types:

- a) G is cyclic of order p^n (where p is a prime number and $n \in \mathbb{N}^*$). In this case $\mathcal{I}(F/K)$ is a chain (hence every proper intermediate extension is reduced in F over K).
- b) G is isomorphic to a generalized quaternion group of order 2^n $(n \ge 3)$. In this case L is the unique maximal proper intermediate field of F/Kand [F:L] = 2.

1.12 Remarks. a) Any extension F/K of finite fields is Galois and the Galois group is cyclic. So F/K has a proper intermediate field reduced in F over $K \Leftrightarrow$ the degree [F : K] is a power of a prime $\Leftrightarrow \mathcal{I}(F/K)$ is a chain \Leftrightarrow every intermediate field of F/K is reduced.

b) A famous result of Safarevič [8] implies that for every finite solvable group G there exists a finite Galois extension of \mathbb{Q} with Galois group isomorphic to G. This ensures that for every type of extension described in Theorem 1.11 there exists an extension of \mathbb{Q} of that type. In particular, there exists a Galois extension F/\mathbb{Q} of degree 8, with Galois group the quaternion group. This extension admits a reduced intermediate field, but $\mathcal{I}(F/\mathbb{Q})$ is not a chain. This is a "minimal" example of extension having a proper reduced intermediate field, but whose intermediate fields are not chained.

c) Let F/K be a separable finite extension and let N be the normal closure of F/K. Let G = Gal(N/K) and H = Gal(N/F). The lattice $\mathcal{I}(F/K)$ is antiisomorphic to the lattice of the subgroups of G that include H. Thus, the problem of determining the separable finite extensions having a proper reduced intermediate field is translated via Galois theory into the following group theoretical problem:

Determine all pairs (G, H), where G is a finite group and $H \leq G$, such that there exists a subgroup R, H < R < G with the property: for any subgroup J, $H \leq J \leq G$ implies $J \leq R$ or $R \leq J$. There is another type of extensions F/K for which a bijective correspondence between $\mathcal{I}(F/K)$ and the subgroups of a certain group is available, namely the *G*-Cogalois extensions. Consequently, we obtain a description of the *G*-Cogalois extensions possessing a reduced subextension. We briefly state the definitions and the results we need from [1], where a detailed account of the theory is given.

If F is a field, then F^* denotes the multiplicative group of the nonzero elements of F. We suppose all algebraic extensions of F are subfields of Ω , an algebraic closure of F. For any field extension F/K, define the subgroup of F^* :

$$T(F/K) = \{ x \in F^* \mid \exists n \ge 1 \text{ with } x^n \in K^* \}.$$

1.13 Definition. Let F/K be a field extension. Let G be a group, $K^* \leq G \leq T(F/K)$. The extension F/K is called:

- *G*-radical if F = K(G).
- *G*-Kneser if it is finite, *G*-radical and $|G/K^*| \leq [F:K]$.

[[1], Prop. 2.4] says: If F/K is finite and G-radical, then: F/K is G-Kneser $\Leftrightarrow |G/K^*| = [F:K]$ (there exists a set of representatives for G/K^* which is linearly independent over $K \Leftrightarrow$ any set of representatives for G/K^* is a vector space basis of F over K.

For any subset S of a field F and $n \ge 1$, let $\mu_n(S) = \{x \in S \mid x^n = 1\}$. Then $\mu_n(\Omega)$ is a cyclic subgroup of Ω^* ; let ζ_n denote a generator of $\mu_n(\Omega)$ (a primitive *n*-th root of unity in Ω). The separable G-Kneser extensions are characterized as follows:

1.14 Theorem (Kneser's criterion) [[1], Theorem 2.6]. Let $K \subseteq F$ be a finite separable *G*-radical extension with G/K^* finite. Then $K \subseteq F$ is *G*-Kneser if and only if for any odd prime p, $\mu_p(G) = \mu_p(K)$ and $1 + \zeta_4 \in G$ implies $\zeta_4 \in K$.

In what follows, we fix an extension F/K and $K^* \leq G \leq F^*$ and note:

$$\mathcal{G} = \{ H \mid K^* \le H \le G \}.$$

The behavior of G-Kneser extensions with respect to subextensions and subgroups is described by [[1], 3.1 and 3.2], summarized in the following:

1.15 Proposition. Let $K \subseteq F$ be a separable G-Kneser extension.

a) For any $H \subseteq \mathcal{G}$, the extension $K \subseteq K(H)$ is H-Kneser and $K(H) \cap G = H$.

- b) For any $E \in \mathcal{I}(F/K)$, the following are equivalent:
 - (1) $K \subseteq E$ is *H*-Kneser for some $H \in \mathcal{G}$.
 - (2) $K \subseteq E$ is $E^* \cap G$ -Kneser
 - (3) $E \subseteq F$ is E^*G -Kneser.

A finite G-radical extension is said to be strongly G-Kneser if, for any $E \in \mathcal{I}(F/K)$, $E \subseteq F$ is E^*G -Kneser. If F/K is an extension and $K^* \leq G \leq F^*$, define the following natural and inclusion preserving maps:

 $\begin{array}{l} \alpha: \mathcal{I}(F/K) \to \mathcal{G}, \ \alpha(E) = E \cap G, \ \forall E \in \mathcal{I}(F/K) \\ \beta: \mathcal{G} \to \mathcal{I}(F/K), \ \beta(H) = K(H), \ \forall H \in \mathcal{G}. \end{array}$

A characterization of G-Kneser extensions for which these maps are inverse to each other is given by [[1], Th. 3.7], in terms of *n*-purity: If $n \in \mathbb{N}^*$, the extension F/K is called *n*-pure if for any *p* dividing *n*, *p* odd prime or p = 4, one has $\mu_p \subseteq K$.

1.16 Theorem. The following assertions are equivalent for a finite separable G-radical extension $K \subseteq F$ with G/K^* finite:

- (1) $K \subseteq F$ is strongly G-Kneser (cf. 1.15).
- (2) $K \subseteq F$ is G-Kneser and α and β are isomorphisms of lattices, inverse to each other.
- (3) $K \subseteq F$ is n-pure, where $n = \exp(G/K^*)$.

(For a finite group Γ with neutral element e, the *exponent* of Γ is $\exp(\Gamma) = \min\{n \ge 1 \mid x^n = e, \forall (x \in \Gamma\}).$

1.17 Definition. [[1], Def. 3.8] A field extension is called G-Cogalois if it is a separable strongly G-Kneser extension.

The lattice $S(G/K^*)$ of subgroups of G/K^* is isomorphic to the lattice $\mathcal{G} = \{H \mid K^* \leq H \leq G\}$. From the previous theorem one obtains:

If F/K is a G-Cogalois extension, then $\mathcal{I}(F/K)$ and $\mathcal{S}(G/K^*)$ are lattice isomorphic.

Let Γ be a group. We say, following [1], that F/K is an extension with Γ -Cogalois correspondence if there is a lattice isomorphism between $\mathcal{I}(F/K)$ and $\mathcal{S}(\Gamma)$. So, a *G*-Cogalois extension F/K is an extension with G/K^* -Cogalois correspondence.

From the theorem 1.8 we deduce:

1.18 Theorem. Let F/K be an extension with Γ -Cogalois correspondence for some abelian group Γ (for instance, a strongly G-Kneser separable extension, where $K^* \leq G \leq T(F/K)$). The following conditions are equivalent:

- a) There exists $L \in \mathcal{I}(F/K)$, $K \neq L \neq F$, such that L is reduced in F over K.
- b) There exists a prime number p such that Γ is a cyclic p-group.
- c) $\mathcal{I}(F/K)$ is a chain.
- d) Every proper intermediate extension is reduced in F over K.

Proof. There exists an intermediate field L reduced in F over $K, K \neq L \neq F$, if and only if Γ has a reduced subgroup. Since Γ is an abelian group, 1.8 shows that it must be a cyclic p-group.

1.19 Remark. This theorem is applicable to a wide class of finite extensions $K \subseteq F$, not necessarily Galois, including the following (see [1]):

- a) Kummer extensions with few roots of unity: there exists $A \subseteq F$ and $n \in \mathbb{N}^*$ such that $a^n \in K$, $\forall a \in A$, K(A) = F and $\mu_n(F) \subseteq \{-1, 1\}$.
- b) Generalized neat presentations: there exist $r \in \mathbb{N}^*$, $n_1, ..., n_r \in \mathbb{N}^*$, $a_1, ..., a_r \in K^*$ such that $F = K(\sqrt[n_1]{a_1}, ..., \sqrt[n_r]{a_r})$, e(K), n) = 1 and $\mu_p(\Omega) \subseteq K$, for any p dividing n (p odd prime or p = 4), where n is the least common multiple of $n_1, ..., n_r$. Here e(K) is the characteristic exponent of K: e(K) = char(K) if char(K) > 0; e(K) = 1 if char(K) = 0.

Next, we investigate some properties of inseparable extensions having reduced subextensions. If F/K is an algebraic extension, let S denote the separable closure of K in F and I the purely inseparable closure of F in K. It is known that: S and I are linearly disjoint, $S \cap I = K$ and F/S is purely inseparable. The extension F/K is said to split if SI = F. Also, F/K splits if and only if F/I is separable [[7], Th. 14.16]. If F/K is normal, then F/K splits: SI = F [[5], Th. 4.23].

1.20 Proposition. Let F/K be algebraic and split (F = SI). If there exists $L \neq K$ reduced in F over K, then either F/K is separable or F/K is purely inseparable.

Proof. There are the following four possibilities:

i) $L \subseteq S$ and $L \subseteq I$. Then $L \subseteq S \cap I = K$, so L = K and this is excluded. ii) $L \subseteq S$ and $I \subseteq L$. Then $I \subseteq S$ and so I = K. Since F/K splits, F is separable over I = K.

iii) $S \subseteq L$ and $L \subseteq I$. Then $S \subseteq I$, so S = K, which means F/K is purely inseparable.

iv) $S \subseteq L$ and $I \subseteq S$. Then $SI \subseteq L$, so L = K, contradiction.

1.21 Corollary. If F/K is a normal algebraic extension and there exists an intermediate field $L \neq K$ reduced in F over K, then F/K is either separable or purely inseparable.

So, if F/K is finite, normal and has a proper reduced intermediate field, then F/K is finite and Galois (and Th. 1.11 applies) or is purely inseparable.

2 Primitive extensions

In [2] the following definition is given:

- **2.1. Definition.** [[2], Definition 2.1] Let $L \in \mathcal{I}(F/K)$. Then L is said to be:
 - semi-primitive in F over K if $\forall c, d \in L$, Irr(c, K) = Irr(d, K) implies K(c) = K(d).
 - primitive in F over K if L is semi-primitive in F over K and $\forall c, d \in F \setminus L$, $\operatorname{Irr}(c, K) = \operatorname{Irr}(d, K)$ implies K(c) = K(d).

We remark that the condition "L is semi-primitive in F over K" depends only on L (and not on F) and is equivalent to "L is primitive in L over K". If this is the case, we say shortly L/K is primitive". We call c and d conjugate over K if c and d have the same minimal polynomial over K.

2.2. Example. a) Every purely inseparable extension F/K is primitive, because every $c \in F$ is its only conjugate over K.

b) Every algebraic extension of a finite field is primitive: if c is algebraic over the finite field K, then K(c) is the splitting field of Irr(c, K) and hence is equal to K(d), for every conjugate d of c over K.

c) Every extension F/K that has $\mathcal{I}(F/K)$ a chain is primitive: if $c, d \in F$ have the same minimal polynomial g over K, then $[K(c) : K] = [K(d) : K] = \deg g$ and this implies K(c) = K(d) since there is at most one extension of a given degree over K in the chain I(F/K). In particular, the extensions of prime degree are primitive.

2.3. Proposition. Let F/K be an extension of fields. Then:

a) F/K is primitive $\Leftrightarrow E \in (F/K), E/K$ is primitive $\Leftrightarrow \forall E \in \mathcal{I}(F/K), E$ is primitive in F over K.

b) If F/K is primitive and $E \in \mathcal{I}(F/K)$, then F/E is primitive.

Proof. a) Suppose F/K is primitive and let $E \in \mathcal{I}(F/K)$, c, d elements in E (or in $F \setminus E$). If c and d are conjugate over K, then K(c) = K(d), so E is primitive in F over K. The converse is evident.

b) Let $c, d \in F$ with the same minimal polynomial g over E. We have to show that E(c) = E(d). Let $\gamma = \operatorname{Irr}(c, K) \in K[X]$ and $\delta = \operatorname{Irr}(d, K) \in K[X]$. Obviously, g divides γ and δ (in E[X]), so $\operatorname{gcd}(\gamma, \delta)$ is not a unit in E[X]. But the gcd of γ and δ is obtained by Euclid's algorithm and is the same in E[X] and K[X], so the irreducible monic polynomials γ and δ are equal since they have a nontrivial common factor. Since F/K is primitive, we have K(c) = K(d). So E(c) = E(K(c)) = E(K(d)) = E(d).

2.4. Remark. If in the chained extensions $K \subseteq E \subseteq F$, E/K is primitive and F/E is primitive, then F/K is not necessarily primitive. Take for instance $K = \mathbb{Q}, E = \mathbb{Q}(\sqrt[3]{2}), F = \mathbb{Q}(\sqrt[3]{2}, \omega)$, where ω is a primitive third root of unity: $\operatorname{Irr}(\omega, \mathbb{Q}) = X^2 + X + 1$. Then $\sqrt[3]{2}$ and $\omega\sqrt[3]{2}$ are conjugate over \mathbb{Q} , but generate different extensions, so F/K is not primitive. But E/K and F/E are primitive, having prime degrees. This example also shows that a finite extension having a square free degree is not automatically primitive, as claimed in [[2], Proposition 2.3].

References

- Albu, T., Nicolae, F.: Kneser Field Extensions with Cogalois Correspondence, J. Number Theory 52 (1995), 299-318.
- [2] Alkhamees, Y., Mordeson, J.: Reduced fields, primitive and fuzzy Galois theory, J. Fuzzy Math., vol. 8, No. 1 (2000), 157-173.
- [3] Hall, M., Jr.: The Theory of Groups, Macmillan, New York, 1959.
- [4] Huppert, B.: Endliche Gruppen I, Springer Verlag, Berlin 1967.
- [5] Morandi, P.: Field and Galois Theory, Springer Verlag 1996.
- [6] Mordeson, J.N.: Fuzzy Galois theory, J. Fuzzy Math. (1993), 659-671.
- [7] Spindler, K.: Abstract Algebra with Applications, vol. II, Marcel Dekker, 1990.
- [8] Šafarevič, I.R.: Construction of fields of algebraic numbers with given solvable groups, Izv. Akad. Nauk SSSR 18 (1954), 525-578 (Russian), English translation in Amer. Math. Soc. Transl. 4 (1956), 185-237.

[9] Volf, A.C., Tofan, I.: Fuzzy Intermediate Fields and Reduced Extensions, in Advances in Generalized Structures, Approximate Reasoning and Applications, Performantica Press 2001, 91-96.

Faculty of Mathematics, "A.-I. Cuza" University , 6600 Iasi, Romania e-mail: volf@uaic.ro