An. St. Univ. Ovidius Constanta

## ACTIONS OF GROUPS ON LATTICES


#### Abstract

The aim of this paper is to study the actions of the groups on lattices and to give some connections between the structure of a group and the structure of its subgroup lattice. Moreover, we shall introduce the concept of direct $\vee$-sum of $G$-sublattices and we shall present a generalization of a result about finite nilpotent groups.


## 1 Preliminaries

Let $(G, \cdot, e)$ be a monoid and $L$ be a $G$-set (relative to an action $\rho$ of $G$ on $L$; for $(g, \ell) \in G \times L$, we denote by $g \circ \ell$ the element $\rho(g)(\ell) \in L)$. If $L$ is a poset (reltive to a partial ordering relation " $\leq "$ ) and, for $\ell, \ell^{\prime} \in L, \ell \leq \ell^{\prime}$ implies $g \circ \ell \leq g \circ \ell^{\prime}$, for any $g \in G$, then $L$ is called a $G$-poset. Moreover, if $(L, \leq)$ is a lattice and, for $\ell, \ell^{\prime} \in L$, we have:

$$
\begin{aligned}
& g \circ\left(\ell \wedge \ell^{\prime}\right)=(g \circ \ell) \wedge\left(g \circ \ell^{\prime}\right), \\
& g \circ\left(\ell \vee \ell^{\prime}\right)=(g \circ \ell) \vee\left(g \circ \ell^{\prime}\right)
\end{aligned}
$$

for any $g \in G$, then $L$ is called a $G$-lattice.
A $G$-sublattice of a $G$-lattice $L$ is a sublattice $L^{\prime}$ of $L$ satisfying the property:

$$
G \circ L^{\prime}=\left\{g \circ \ell^{\prime} \mid g \in G, \ell^{\prime} \in L^{\prime}\right\} \subseteq L^{\prime}
$$

Let $L_{1}$ and $L_{2}$ be two $G$-posets (respectively two $G$-lattices). A monotone map (respectively a lattice homomorphism) $f: L_{1} \longrightarrow L_{2}$ is called a $G$-poset homomorphism (respectively a G-lattice homomorphism) if $f\left(g \circ \ell_{1}\right)=g \circ f\left(\ell_{1}\right)$, for any $\left(g, \ell_{1}\right) \in G \times L_{1}$. Moreover, if $f$ is one-to-one and onto, then it is called a $G$-poset isomorphism (respectively a $G$-lattice isomorphism).

A $G$-congruence on a $G$-lattice $L$ is a congruence relation " $\sim$ " on $L$ which has the property that $\ell \sim \ell^{\prime}\left(\ell, \ell^{\prime} \in L\right)$ implies $g \circ \ell \sim g \circ \ell^{\prime}$, for any $g \in G$.

Let $L$ be a $G$-lattice and " $\sim$ " be a $G$-congruence on $L$. Then the quotient lattice $L / \sim=\{[\ell] \mid \ell \in L\}$ of $L$ modulo " $\sim$ " is a $G$-lattice, where $g \circ[\ell]=[g \circ \ell]$, for any $(g, \ell) \in G \times L$.

If $f: L_{1} \longrightarrow L_{2}$ is a $G$-lattice homomorphism, then the sublattice $\operatorname{Im} f=$ $\left\{f\left(\ell_{1}\right) \mid \ell_{1} \in L_{1}\right\}$ of $L_{2}$ is a $G$-lattice and there exists a $G$-congruence " $\sim$ " on $L_{1}$ such that the $G$-lattices $L_{1} / \sim$ and $\operatorname{Im} f$ are isomorphic.

Let $L$ be a lattice having the initial element 0 . On $L$ is well defined the height function: for $\ell \in L$, let $h_{L}(\ell)$ denote the length of a longest maximal chain in $[0, \ell]$ if there is a finite longest maximal chain; otherwise put $h_{L}(\ell)=$ $\infty$. If $L$ is of finite length, then the following conditions are equivalent:
i) $L$ is modular.
ii) The height function $h_{L}$ on $L$ satisfies the property: $h_{L}(\ell)+h_{L}\left(\ell^{\prime}\right)=h_{L}\left(\ell \wedge \ell^{\prime}\right)+h_{L}\left(\ell \vee \ell^{\prime}\right)$, for any $\ell, \ell^{\prime} \in L$.

## 2 Main results

### 2.1 Finite $G$-lattice

Let $(G, \cdot, e)$ be a monoid.

Proposition 1. Let $(L, \leq)$ be a complete lattice such that $L$ is a $G$-poset. Then we have:

$$
G=\bigcup_{\ell \in L} \operatorname{Stab}_{G}(\ell)
$$

Proof. Let $g \in G$ and $L_{g}=\{\ell \in L \mid g \circ \ell \geq \ell\}$. We have $L_{g} \neq \emptyset\left(L_{g}\right.$ contains the initial element of $L$ ). Since $L$ is complete, there exists $\bar{\ell}=\vee L_{g}$. We have $\ell \leq g \circ \ell \leq g \circ \bar{\ell}$, for any $\ell \in L_{g}$, therefore:

$$
\begin{equation*}
\bar{\ell} \leq g \circ \bar{\ell} \tag{1}
\end{equation*}
$$

Using the relation (1), we obtain that $g \circ \bar{\ell} \leq g \circ(g \circ \bar{\ell})$, thus $g \circ \bar{\ell} \in L_{g}$. Since $\bar{\ell}=\vee L_{g}$, it results:

$$
\begin{equation*}
g \circ \bar{\ell} \leq \bar{\ell} \tag{2}
\end{equation*}
$$

The relations (1) and (2) give us $g \circ \bar{\ell}=\bar{\ell}$, so that $g \in \operatorname{Stab}_{G}(\bar{\ell})$. Thus $G=\bigcup_{\ell \in L} \operatorname{Stab}_{G}(\ell)$.

## Corollary. (The Fixed-Point Theorem of complete lattice)

Any monotone map of a complete lattice $L$ into itself has a fixed point.
Proof. The set $G^{\prime}$ of all monotone maps of $L$ into itself is a monoid. Moreover, $L$ is a $G^{\prime}$-poset, where $f \circ \ell=f(\ell)$, for any $(f, \ell) \in G^{\prime} \times L$. From

Proposition 1, we obtain $G^{\prime}=\bigcup_{\ell \in L} \operatorname{Stab}_{G^{\prime}}(\ell)$, therefore, for any $f \in G^{\prime}$, there exists $\ell \in L$ such that $f \in \operatorname{Stab}_{G^{\prime}}(\ell)$, i.e. $f(\ell)=f \circ \ell=\ell$.

In the followings we suppose that $(G, \cdot, e)$ is a group and we denote by $L(G)$ (respectively by $L_{0}(G)$ ) the lattice of subgroups of $G$ (respectively the lattice of normal subgroups of $G$ ).

Proposition 2. Let $L$ be a complete $G$-lattice such that $\operatorname{Stab}_{G}(\ell)=\{e\}$, for any $\ell \in L$. Then the group $G$ is abelian.
Proof. Let $g_{1}, g_{2}$ be two elements of $G$ and $f_{g_{1}, g_{2}}: L \longrightarrow L$ be the map defined by $f_{g_{1}, g_{2}}=\left[g_{1}, g_{2}\right] \circ \ell$, for any $\ell \in L$ (where $\left[g_{1}, g_{2}\right]$ is the commutator of $g_{1}$ and $\left.g_{2}\right)$. We have $f_{g_{1}, g_{2}}\left(\ell \wedge \ell^{\prime}\right)=\left[g_{1}, g_{2}\right] \circ\left(\ell \wedge \ell^{\prime}\right)=\left(\left[g_{1}, g_{2}\right] \circ \ell\right) \wedge\left(\left[g_{1}, g_{2}\right] \circ \ell^{\prime}\right)=$ $f_{g_{1}, g_{2}}(\ell) \wedge f_{g_{1}, g_{2}}\left(\ell^{\prime}\right)$, for any $\ell, \ell^{\prime} \in L$, thus $f_{g_{1}, g_{2}}$ is a monotone map. From the above corollary, we obtain that there exists $\ell_{0} \in L$ such that $f_{g_{1}, g_{2}}\left(\ell_{0}\right)=\ell_{0}$. It results $\left[g_{1}, g_{2}\right] \in \operatorname{Stab}_{G}\left(\ell_{0}\right)$, i.e. $\left[g_{1}, g_{2}\right]=e$.

Since any ordered latticeal group $G$ is a $G$-lattice, from Proposition 2 we obtain the following result:

Corollary. Any ordered latticeal group complete as lattice is abelian.
Let $L$ be a finite $G$-lattice, 0 be the initial element of $L$ and 1 be the final element of $L$.

Remark. If $L=\left\{\ell_{1}=0, \ell_{2}, \ldots, \ell_{m}=1\right\}$ and $H_{i}=\operatorname{Stab}_{G}\left(\ell_{i}\right), i=\overline{1, m}$, then from Proposition 1, we have $G=\bigcup_{i=1}^{m} H_{i}$. Let $I$ be a maximal subset of $\{1,2, \ldots, m\}$ with the property:

$$
\left\{\begin{array}{l}
G=\bigcup_{i \in I} H_{i} \\
H_{j} \npreceq \bigcup_{i \in I \backslash\{j\}} H_{i}, \text { for any } j \in I
\end{array}\right.
$$

Then, for any $g \in G$, there exists $n_{g} \in \mathbb{N}^{*}$ such that $g^{n_{g}} \in \bigcap_{i \in I} H_{i}$. Since, for any $\ell, \ell^{\prime} \in L, \operatorname{Stab}_{G}(\ell) \cap \operatorname{Stab}_{G}\left(\ell^{\prime}\right) \subseteq \operatorname{Stab}_{G}\left(\ell \wedge \ell^{\prime}\right)$, we obtain that there exists $\ell_{0} \in L$ such that every element of $G$ has a natural power in $\operatorname{Stab}_{G}\left(\ell_{0}\right)$.

We suppose that $G$ is a finite group, $\operatorname{Stab}_{G}(0)=\operatorname{Stab}_{G}(1)=G$ and let $f_{L}: L \longrightarrow L$ be the map defined by $f_{L}(\ell)=\bigwedge_{g \in G} g \circ \ell$, for any $\ell \in L$.

Proposition 3. The map $f_{L}$ is a G-poset homomorphism which has the following properties:
a) $f_{L}(\ell) \leq \ell$, for any $\ell \in L$.
b) $\operatorname{Im} f_{L}=\operatorname{Fix}_{G}(L)$, where $\operatorname{Fix}_{G}(L)=\{\ell \in L \mid g \circ \ell=\ell$, for any $g \in G\}$.
c) $f_{L}^{2}=f_{L}$.

Proof. a) Since $e \circ \ell=\ell$, we obtain $f_{L}(\ell)=\ell \wedge\left(\bigwedge_{g \in G \backslash\{e\}} g \circ \ell\right) \leq \ell$, for any $\ell \in L$.
b) Let $\ell^{\prime} \in \operatorname{Im} f_{L}$. Then there exists $\ell \in L$ such that $\ell^{\prime}=f_{L}(\ell)$. For any $g^{\prime} \in G^{\prime}$, we have:
$g^{\prime} \circ \ell^{\prime}=g^{\prime} \circ f_{L}(\ell)=g^{\prime} \circ\left(\bigwedge_{g \in G} g \circ \ell\right)=\bigwedge_{g \in G} g^{\prime} \circ(g \circ \ell)=\bigwedge_{g \in G}\left(g^{\prime} g\right) \circ \ell=f_{L}(\ell)=\ell^{\prime}$, therefore $\ell^{\prime} \in \operatorname{Fix}_{G}(L)$.

Conversely, let $\ell^{\prime} \in \operatorname{Fix}_{G}(L)$. Then $g \circ \ell^{\prime}=\ell^{\prime}$, for any $g \in G$. It results $f_{L}\left(\ell^{\prime}\right)=\bigwedge_{g \in G} g \circ \ell^{\prime}=\bigwedge_{g \in G} \ell^{\prime}=\ell^{\prime}$, thus $\ell \in \operatorname{Im} f_{L}$.
c) We have $f_{L}^{2}(\ell)=f_{L}\left(f_{L}(\ell)\right)=\bigwedge_{g \in G} g \circ f_{L}(\ell)=\bigwedge_{g \in G} f_{L}(\ell)=f_{L}(\ell)$, for any $\ell \in L$. Thus $f_{L}^{2}=f_{L}$.

Now, the fact that $f_{L}$ is a $G$-poset homomorphism is obvious.
Remark. If $L$ is a fully ordered $G$-lattice, then $f_{L}$ is a $G$-lattice homomorphism. Moreover, the binary relation" $\sim$ " on $L$ defined by $\ell \sim \ell^{\prime}$ if and only if $f_{L}(\ell)=f_{L}\left(\ell^{\prime}\right)$ is a $G$-congruence. Therefore, we obtain the $G$-latice isomorphism:

$$
L / \sim \cong \operatorname{Fix}_{G}(L)
$$

Let $n=\left|\operatorname{Fix}_{G}(L)\right|$ and $C_{1}, C_{2}, \ldots, C_{n}$ be the equivalence classes modulo $" \sim "$. If $\left(\ell_{i}^{\prime}\right)_{i=\overline{1, n}}$ is a set of representatives for the equivalence classes $\left(C_{i}\right)_{i=\overline{1, n}}$ then $C_{i}=\left\{\ell \in L \mid f_{L}(\ell)=f_{L}\left(\ell_{i}^{\prime}\right)\right\} \neq \emptyset, i=\overline{1, n}, C_{i} \cap C_{j}=\emptyset$, for $i \neq j$ and $L=\bigcup_{i=1}^{n} C_{i}$. Moreover, for any $i \in\{1,2, \ldots, n\}$, we have:

$$
G \circ \ell_{i}^{\prime}=\left\{g \circ \ell_{i}^{\prime} \mid g \in G\right\} \subseteq C_{i}
$$

It results that:

$$
\left|G \circ \ell_{i}^{\prime}\right|=\frac{|G|}{\left|\operatorname{Stab}_{G}\left(\ell_{i}^{\prime}\right)\right|} \leq\left|C_{i}\right|, i=\overline{1, n}
$$

This implies the following inequality:

$$
\begin{equation*}
|G| \sum_{i=1}^{n} \frac{1}{\left|\operatorname{Stab}_{G}\left(\ell_{i}^{\prime}\right)\right|} \leq \sum_{i=1}^{n}\left|C_{i}\right|=|L| \tag{*}
\end{equation*}
$$

Let $C_{i_{1}}, C_{i_{2}}, \ldots, C_{i_{r}}$ be the classes having an unique element (i.e. $c_{i_{j}}=$ $\left\{\ell_{i_{j}}^{\prime}\right\}, j=\overline{1, r}$, where $r \leq n, i_{r}=n$ and $\left.\ell_{n}^{\prime}=1\right)$. Then, for each $s \in$ $\{1,2, \ldots, n\} \backslash\left\{i_{1}, i_{2}, \ldots, i_{r}\right\}$, we can suppose that $\ell_{s}^{\prime} \notin \operatorname{Fix}_{G}(L)$. We obtain $\left|G \circ \ell_{s}^{\prime}\right| \neq 1$, therefore

$$
\frac{|G|}{\left|\operatorname{Stab}_{G}\left(\ell_{s}^{\prime}\right)\right|} \geq p
$$

where $p$ is the smallest prime divisor of $|G|$. Using the inequality $(*)$, it results that:

$$
|L| \geq p n-(p-1) r
$$

Taking the particular case $L=L(G)$, it obtains the following results:
Corollary 1. If $G$ is a finite group and $r$ is the number of equivalence classes modulo "~" having a unique element, then:

$$
|L(G)| \geq p\left|L_{0}(G)\right|-(p-1) r
$$

where $p$ is the smallest prime divisor of $|G|$.
Corollary 2. If $G$ is a nonabelian simple finite group, then:

$$
|L(G)| \geq p+1
$$

where $p$ is the smallest prime divisor of $|G|$.
Remark. Let $\operatorname{Min}(L)$ be the set of all minimal elements of $L$ and $\operatorname{Ker} f_{L}=$ $\left\{\ell \in L \mid f_{L}(\ell)=0\right\}$. Then the following relations hold:

$$
\begin{equation*}
\operatorname{Min}(L) \subseteq \operatorname{Ker} f_{L} \cup \operatorname{Fix}_{G}(L) \tag{**}
\end{equation*}
$$

Indeed, if $\ell \in \operatorname{Min}(L)$ and $f_{L}(\ell) \neq 0$, then, from the inequalities $0 \leq f_{L}(\ell) \leq \ell$, we obtain $f_{L}(\ell)=\ell$, i.e. $\ell \in \operatorname{Fix}_{G}(L)$.

Let $k$ be the length of the finite $G$-lattice $L$.
Definition 1. We say that $L$ is regular if it satisfies the following conditions:
(i) All maximal chains of $L$ have the same length.
(ii) For any $\ell \in L \backslash\left(\operatorname{Ker} f_{L} \cup\{1\}\right)$ with $h_{L}(\ell)=p$, the equivalence class modulo " $\sim$ " of $\ell$ has at most $k-p$ elements.

Definition 2. A family $U=\left(u_{i}\right)_{i=\overline{1, k}}$ of elements of $L$ is called a $k$-independent minimal system if it has the properties:
(i) $U \subseteq \operatorname{Min}(L), U \cap \operatorname{Fix}_{G}(L) \neq \emptyset$.
(ii) For any distinct numbers $i_{1}, i_{2}, \ldots, i_{k} \in\{1,2, \ldots, k\}$, we have:

$$
\begin{aligned}
& \left|\left\{u_{i_{1}} \vee u_{j} \mid j \neq i_{1}\right\}\right|=k-1, \\
& \left|\left\{u_{i_{1}} \vee u_{i_{2}} \vee u_{j} \mid j \notin\left\{i_{1}, i_{2}\right\}\right\}\right|=k-2, \\
& \vdots \\
& \left|\left\{u_{i_{1}} \vee u_{i_{2}} \vee \cdots \vee u_{i_{k-2}} \vee u_{j} \mid j \notin\left\{i_{1}, i_{2}, \ldots, i_{k-2}\right\}\right\}\right|=2 .
\end{aligned}
$$

(iii) For any distinct numbers $i_{1}, i_{2}, \ldots, i_{k} \in\{1,2, \ldots, k\}$ (where $p \in \mathbb{N}^{*}, p \leq$ $k$ ), if $\left\{u_{i_{1}}, u_{i_{2}}, \ldots, u_{i_{p}}\right\} \cap \operatorname{Fix}_{G}(L) \neq \emptyset$, then $h_{L}\left(u_{i_{1}} \vee u_{i_{2}} \vee \cdots \vee u_{i_{p}}\right)=p$.

Proposition 4. Let $L$ be a finite $G$-lattice of length $k$. If $L$ is regular and it has a $k$-independent minimal system, then there exists a maximal chain of $L$ :

$$
0=a_{0}<a_{1}<\cdots<a_{k}=1
$$

with $a_{i} \in \operatorname{Fix}_{G}(L)$, for any $i=\overline{0, k}$.
Proof. We prove the statement by induction on $k$. If $k \leq 1$, the statement is trivial. Let us assume the statement to hold for $k-1$ and let $U=\left(u_{i}\right)_{i=\overline{1, k}}$ be a $k$-independent minimal system of $L$. Since $U \cap \operatorname{Fix}_{G}(L) \neq \emptyset$, we can suppose that $u_{k} \in \operatorname{Fix}_{G}(L)$. Let $L^{\prime}=\left[u_{k}, 1\right]=\left\{\ell \in L \mid u_{k} \leq \ell \leq 1\right\}$. $L^{\prime}$ is a finite $G$-lattice of length $k-1$. For any $\ell \in L^{\prime} \backslash\left(\operatorname{Ker} f_{L^{\prime}} \cup\{1\}\right)$ with $h_{L^{\prime}}(\ell)=p$, we have $h_{L}(\ell)=p+1$, therefore the equivalence class modulo " $\sim$ " of $\ell$ has at most $k-1-p$ elements. It results that $L^{\prime}$ is regular.

Now we prove that $V=\left(v_{i}\right)_{i=\overline{1, k-1}}$, where $v_{i}=u_{i} \vee u_{k}$ for any $i=\overline{1, k-1}$, is a $(k-1)$-independent minimal system of $L^{\prime}$.

Since $u_{k} \in \operatorname{Fix}_{G}(L)$, we have $h_{L}\left(v_{i}\right)=2, i=\overline{1, k-1}$, thus $h_{L^{\prime}}\left(v_{i}\right)=1$, $i=\overline{1, k-1}$, i.e. $V \subseteq \operatorname{Min}\left(L^{\prime}\right)$. If we suppose $V \cap \operatorname{Fix}_{G}\left(L^{\prime}\right)=\emptyset$, then, using the remark $(* *)$, we obtain that $V$ is containing in the equivalence class modulo " $\sim$ " of $u_{k}$. It results that the equivalence class modulo " $\sim$ " of $u_{k}$ has at least $k$ elements ( $u_{k}$ and $v_{i}, i=\overline{1, k-1}$ ). This contradicts the assumption that $L$
is regular. The fact that $V$ satisfies the property (ii) of Definition 2 is obvious. For the property (iii), let the distinct numbers $i_{1}, i_{2}, \ldots, i_{p} \in\{1,2, \ldots, k-1\}$ (where $p \in \mathbb{N}^{*}, p \leq k-1$ ). We have $h_{L^{\prime}}\left(v_{i_{1}} \vee v_{i_{2}} \vee \cdots \vee v_{i_{p}}\right)=h_{L^{\prime}}\left(u_{k} \vee u_{i_{1}} \vee\right.$ $\left.u_{i_{2}} \vee \cdots \vee u_{i_{p}}\right)=h_{L}\left(u_{k} \vee u_{i_{1}} \vee u_{i_{2}} \vee \cdots \vee u_{i_{p}}\right)-1=(p+1)-1=p$.

From inductive hypothesis, it results that there exists a maximal chain of $L^{\prime}$ :

$$
u_{k}=a_{1}<a_{2}<\cdots<a_{k}=1
$$

with $a_{i} \in \operatorname{Fix}_{G}\left(L^{\prime}\right), i=\overline{1, k}$. Thus

$$
0=a_{0}<a_{1}<\cdots<a_{k}=1
$$

is a maximal chain of $L$, with $a_{i} \in \operatorname{Fix}_{G}(L), i=\overline{0, k}$.
Corollary. The symmetric group of degree $3 \Sigma_{3}$ and the dihedral group of order $8 D_{8}$ have principal series of subgroups.
Proof. We have $\Sigma_{3}=\left\{e, \sigma_{1}, \sigma_{2}, \sigma_{3}, \tau, \tau^{2}\right\}$ (where $\sigma_{1}=\left(\begin{array}{ll}2 & 3\end{array}\right), \sigma_{2}=\left(\begin{array}{ll}1 & 3\end{array}\right)$, $\sigma_{3}=\left(\begin{array}{ll}1 & 2\end{array}\right)$ and $\tau=\left(\begin{array}{ll}2 & 3\end{array}\right)$ ) and $D_{8}=\left\{1, \rho, \rho^{2}, \rho^{3}, \varepsilon, \rho \varepsilon, \rho^{2} \varepsilon, \rho^{3} \varepsilon\right\} \quad\left(\right.$ where $\rho^{4}=$ $\varepsilon^{2}=1$ and $\varepsilon \rho=\rho^{3} \varepsilon$. We obtain $L\left(\Sigma_{3}\right)=\left\{H_{0}=\{e\}, H_{1}=\left\{e, \sigma_{1}\right\}, H_{2}=\right.$ $\left.\left\{e, \sigma_{2}\right\}, H_{3}=\left\{e, \sigma_{3}\right\}, H_{4}=\left\{e, \tau, \tau^{2}\right\}, H_{5}=\Sigma_{3}\right\}$ and $L\left(D_{8}\right)=\left\{H_{0}^{\prime}=\{1\}\right.$, $H_{1}^{\prime}=\{1, \varepsilon\}, H_{2}^{\prime}=\left\{1, \rho^{2} \varepsilon\right\}, H_{3}^{\prime}=\left\{1, \rho^{2}\right\}, H_{4}^{\prime}=\{1, \rho \varepsilon\}, H_{5}^{\prime}=\left\{1, \rho^{3} \varepsilon\right\}, H_{6}^{\prime}=$ $\left.\left\{1, \rho^{3}, \rho \varepsilon, \rho^{3} \varepsilon\right\}, H_{7}^{\prime}=\left\{1, \rho, \rho^{2}, \rho^{3}\right\}, H_{8}^{\prime}=\left\{1, \rho^{2}, \rho \varepsilon, \rho^{3} \varepsilon\right\}, H_{9}^{\prime}=D_{8}\right\}$. It is a simple exercise to verify that the $\Sigma_{3}$-lattice $L\left(\Sigma_{3}\right)$ (respectively the $D_{8}$-lattice $L\left(D_{8}\right)$ ) is regular and that $U=\left\{H_{3}, H_{4}\right\}$ (respectively $U^{\prime}=\left\{H_{2}^{\prime}, H_{3}^{\prime}, H_{4}^{\prime}\right\}$ ) is a 2-independent minimal system of $L\left(\Sigma_{3}\right)$ (respectively a 3-independent minimal system of $L\left(D_{8}\right)$ ). Now the statement results from Proposition 4.

### 2.2 On a property of finite nilpotent groups

Let $(G, \cdot, e)$ be a group.
Definition 1. Let $L$ be a $G$-lattice having the initial element 0 and $\left(L_{i}\right)_{i \in I}$ be a finite family of $G$-sublattices of $L$. We say that $L$ is the direct $\vee$-sum of the family $\left(L_{i}\right)_{i \in I}$ (and we denote this by $L=\bigoplus_{i \in I}^{\vee} L_{i}$ ) if the following two equalities hold:
i) $L=\bigvee_{i \in I} L_{i}$.
ii) $L_{j} \wedge\left(\bigvee_{\substack{i \in I \\ i \neq j}} L_{i}\right)=\{0\}$, for any $j \in I$.

Examples. 1) Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$, be the decomposition of the natural number $n$ as a product of prime factors. If, for any $m \in \mathbb{N}^{*}$, we denote by $L_{m}$ the lattice of all natural divisors of $m$ and we consider the set $G=\{\sigma \in$ $\left.\operatorname{Aut}\left(L_{n}\right) \mid \sigma\left(L_{p_{i}^{\alpha_{i}}}\right)=L_{p_{i}^{\alpha_{i}}}, i=\overline{1, k}\right\}$, then $G$ is a group, $L_{n}$ is a $G$-lattice (where $\sigma \circ d=\sigma(d)$, for any $\left.(\sigma, d) \in G \times L_{n}\right)$ and $L_{p_{i}^{\alpha_{i}}}$ is a $G$-sublattice of $L_{n}$, $i=\overline{1, k}$. It is easy to see that $L_{n}$ is the direct $\vee$-sum of the family $\left(L_{p_{i}^{\alpha_{i}}}\right)_{i=\overline{1, k}}$.
2) Let $m \geq 2, n \geq 2$ be two natural numbers, $f: \mathbb{Z}_{m} \longrightarrow \operatorname{Aut}\left(\mathbb{Z}_{n}\right)$ be a group homomorphism and $\hat{k}_{0}=f(\overline{1})(\hat{1})$. We denote by $S$ the semidirect product of $\mathbb{Z}_{m}$ and $\mathbb{Z}_{n}$ with respect to the homomorphism $f$ and by $G$, respectively $H$ the images of $\mathbb{Z}_{m}$, respectively $\mathbb{Z}_{n}$ through the group homomorphisms:

$$
\sigma_{1}: \mathbb{Z}_{m} \longrightarrow S, \sigma_{1}(\bar{x})=(\bar{x}, \hat{0}), \text { for any } \bar{x} \in \mathbb{Z}_{m}
$$

respectively

$$
\sigma_{2}: \mathbb{Z}_{n} \longrightarrow S, \sigma_{2}(\hat{y})=(\overline{0}, \hat{y}), \text { for any } \hat{y} \in \mathbb{Z}_{n}
$$

If $L(S), L(G)$ and $L(H)$ are the subgroup lattices of $S, G$, respectively $H$, then we have $L(S)=L(G) \stackrel{\vee}{\oplus} L(H)$ if and only if $(m, n)=1$ and $k_{0} \equiv 1(\bmod n)$ (see [10], Proposition 3).

Proposition 1. If $L$ is a distributive $G$-lattice having the initial element 0 and $\left(L_{i}\right)_{i \in I}$ is a finite family of $G$-sublattices of $L$ such that $L_{j} \wedge\left(\bigvee_{\substack{i \in I \\ i \neq j}} L_{i}\right)=\{0\}$, for any $j \in I$, then the following two conditions are equivalent:
i) $L=\bigoplus_{i \in I}^{\bigvee} L_{i}$.
ii) Every element $\ell \in L$ can be written uniquely as $\bigvee_{i \in I} \ell_{i}$, where $\ell_{i} \in L_{i}$, for any $i \in I$.

Proof. i) $\Longrightarrow$ ii) Since $L=\bigoplus_{i \in I}^{\bigvee} L_{i}$, we have $L=\bigvee_{i \in I} L_{i}$, therefore every element $\ell \in L$ can be written as $\bigvee_{i \in I} \ell_{i}$, where $\ell_{i} \in L_{i}, i \in I$. If $\ell=\bigvee_{i \in I} \ell_{i}=\bigvee_{i \in I} \ell_{i}^{\prime}$ with $\ell_{i}, \ell_{i}^{\prime} \in L_{i}, i \in I$, then, for any $j \in I$, we have $\ell_{j}^{\prime}=\ell_{j}^{\prime} \wedge \ell=\ell_{j}^{\prime} \wedge\left(\bigvee_{i \in I} \ell_{i}\right)=$
$\ell_{j}^{\prime} \wedge\left[\ell_{j} \vee\left(\underset{\substack{i \in I \\ i \neq j}}{ } \ell_{i}\right)\right]=\left(\ell_{j}^{\prime} \wedge \ell_{j}\right) \vee\left[\ell_{j}^{\prime} \wedge\left(\underset{\substack{i \in I \\ i \neq j}}{ } \ell_{i}\right)\right]=\ell_{j}^{\prime} \wedge \ell_{j}$, thus $\ell_{j}^{\prime} \leq \ell_{j}$. In the same way, we obtain $\ell_{j} \leq \ell_{j}^{\prime}$, therefore $\ell_{j}^{\prime}=\ell_{j}, j \in I$.
ii) $\Longrightarrow$ i) Obvious.

Next aim is to establish connections between the direct product of $G$-lattices and the direct $\vee$-sum of $G$-sublattices.

Proposition 2. If $\left(L_{i}\right)_{i \in I}$ is a finite family of $G$-lattices having initial elements (denoted all by 0 ), $0 \in \operatorname{Fix}_{G}\left(L_{i}\right), i \in I$, and $L$ is the direct product of the family $\left(L_{i}\right)_{i \in I}$, then there exists a family $\left(L_{i}^{\prime}\right)_{i \in I}$ of $G$-sublattices of $L$ which satisfies the following properties:
i) $L=\bigoplus_{i \in I}^{\vee} L_{i}^{\prime}$.
ii) $L_{i}^{\prime} \cong L_{i}$ (isomorphism of $G$-lattices), for any $i \in I$.

Proof. It is easy to see that the sets $L_{i}^{\prime}=\left\{\left(a_{j}\right)_{j \in I} \in L \mid a_{j}=0\right.$, for any $j \in I \backslash\{i\}\}, i \in I$, are $G$-sublattices of $L$ and $L=\bigoplus_{i \in I}^{\vee} L_{i}^{\prime}$. Moreover, the maps

$$
\begin{aligned}
& f_{i}: L_{i} \longrightarrow L_{i}^{\prime} \\
& f_{i}\left(\ell_{i}\right)=\left(a_{j}\right)_{j \in I}, \text { where } a_{i}=\ell_{i} \text { and } a_{j}=0, \text { for } j \neq i,
\end{aligned}
$$

are isomorphism of $G$-lattices, $i \in I$.
Let $L$ be a finite $G$-lattice with the initial element denoted by 0 such that $0 \in \operatorname{Fix}_{G}(L)=\{\ell \in L \mid g \circ \ell=\ell$, for any $g \in G\}$. If $\left(\ell_{i}\right)_{i=\overline{1, k}}$ is a family of elements of $L$, then we make the following notations:

$$
\begin{aligned}
& L_{i}=\left[0, \ell_{i}\right]=\left\{\ell \in L \mid 0 \leq \ell \leq \ell_{i}\right\}, \\
& G \circ L_{i}=\left\{g \circ \ell \mid g \in G, \ell \in L_{i}\right\},
\end{aligned}
$$

where $i \in\{1,2, \ldots, k\}$.
Definition 2. The family $\left(\ell_{i}\right)_{i=\overline{1, k}}$ is called a maximal system of $L$ if it satisfies the properties:
i) $L=\bigvee_{i=1}^{k} G \circ L_{i}$.
ii) $G \circ L_{j} \wedge\left(\bigvee_{\substack{i=I \\ i \neq j}}^{k} G \circ L_{i}\right)=\{0\}$, for any $j=\overline{1, k}$.

Remark. If $\left(\ell_{i}\right)_{i=\overline{1, k}}$ is a maximal system of $L$, then, for $i \in\{1,2, \ldots, k\}$, the sublattice $L_{i}$ of $L$ is not necessarily a $G$-sublattice. A sufficient condition for this fact holds is $\ell_{i} \in \operatorname{Fix}_{G}(L)$. In the case when $\left(\ell_{i}\right)_{i=\overline{1, k}} \subseteq \operatorname{Fix}_{G}(L)$, we have $G \circ L_{i}=L_{i}$ for any $i=\overline{1, k}$ and $L=\bigoplus_{i=\overline{1, k}}^{\vee} L_{i}$.

Definition 3. Let $U, V \in L(G)$.
(i) We say that $U$ and $V$ form a permutable pair if $[U \cup V]=U V=V U$ (where $[U \cup V]$ denotes the subgroup of $G$ generated by $U \cup V$ ).
(ii) We say that $U$ and $V$ form a modular pair if $W \cap[U \cup V]=[U \cup(W \cap V)]$ for any $W \in L(G)$ with $U \subseteq W$ and
$W \cap[U \cup V]=[V \cup(W \cap U)]$ for any $W \in L(G)$ with $V \subseteq W$.
Remarks. 1) Any permutable pair of subgroups is a modular pair (see [7], Theorem 5, page 5).
2) If the group $G$ is finite and it satisfies the property tht any two subgroups $U, V \in L(G)$ with $(|U|,|V|)=1$ form a permutable pair, then, for any $H_{1}, H_{2}, \ldots, H_{k} \in L(G)$ with $\left(\left|H_{i}\right|,\left|H_{j}\right|\right)=1, i \neq j$, we have:

$$
H_{1} H_{2} \ldots H_{k}=\left[\bigcup_{i=1}^{k} H_{i}\right] \in L(G)
$$

and

$$
\left|H_{1} H_{2} \ldots H_{k}\right|=\prod_{i=1}^{k}\left|H_{i}\right|
$$

Proposition 3. For a finite group $G$ which satisfies the property that any two subgroups $U, V \in L(G)$ with $(|U|,|V|)=1$ form a permutable pair, the $G$-lattice $L(G)$ has a maximal system.
Proof. Let $n=|G|$. If $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$, is the decomposition of $n$ as a product of prime factors, then, for any $i=\overline{1, k}$, let $H_{i}$ be Sylow $p_{i}$-subgroup of $G$.

We prove that $\left\{H_{1}, H_{2}, \ldots, H_{k}\right\}$ is a maximal system for $L(G)$. Let $H \in$ $L(G)$ and $m=|H|$. Then $m / n$, therefore there exist the numbers $\beta_{i} \in \mathbb{N}$, $\beta_{i} \leq \alpha_{i}, i=\overline{1, k}$, such that $m=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \ldots p_{k}^{\beta_{k}}$. For any $i=\overline{1, k}$, let $U_{i}$ be a Sylow $p_{i}$-subgroup of $H$ and, using the Theorems of Sylow, let $x_{i} \in G$ such that $U_{i} \leq H_{i}^{x_{i}}$, i.e. $U_{i}^{x_{i}^{-1}} \in\left[\{e\}, H_{i}\right]$ (where $e$ is the identity of $G$ ). From Remark 2), we obtain $H=U_{1} U_{2} \ldots U_{k}=\left(U_{1}^{x_{1}^{-1}}\right)^{x_{1}}\left(U_{2}^{x_{2}^{-1}}\right)^{x_{2}} \ldots\left(U_{k}^{x_{k}^{-1}}\right)^{x_{k}}$, thus:

$$
L(G)=\bigvee_{i=1}^{k} G \circ\left[\{e\}, H_{i}\right]
$$

Let $j \in\{1,2, \ldots, k\}$ and $K \in G \circ\left[\{e\}, H_{j}\right] \wedge\left(\bigvee_{\substack{i=1 \\ i \neq j}}^{k} G \circ\left[\{e\}, H_{i}\right]\right)$. Then $K=$ $V_{j}^{x_{j}} \wedge\left(\bigvee_{\substack{i=1 \\ i \neq j}}^{k} V_{i}^{x_{i}}\right)\left(\right.$ where $V_{s} \leq H_{s}$ and $x_{s} \in G$, for any $\left.s=\overline{1, k}\right)$.

Since $\left(\left|V_{j}^{x_{j}}\right|,\left|\bigvee_{\substack{i=1 \\ i \neq j}}^{k} V_{i}^{x_{i}}\right|\right)=1$, it follows that $K=\{e\}$, thus:

$$
G \circ\left[\{e\}, H_{j}\right] \wedge\left(\bigvee_{\substack{i=1 \\ i \neq j}}^{k} G \circ\left[\{e\}, H_{i}\right]\right)=\{e\}
$$

Remark. Let $G$ be a finite group of order $n, n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ be the decomposition of $n$ as a product of prime factors and $H_{i}$ be a Sylow $p_{i}$-subgroup of $G, i=\overline{1, k}$. If $\left(H_{i}\right)_{i=\overline{1, k}}$ is a maximal system of $L(G)$, then, for any $x_{i} \in G$, $i=\overline{1, k},\left(H_{i}^{x_{i}}\right)_{i=\overline{1, k}}$ is a maximal system of $L(G)$.

Let $L$ be a modular finite $G$-lattice with the initial element denoted by 0 and $\left(\ell_{i}\right)_{i=\overline{1, k}}$ be a maximal system of $L$.

Lemma. The following equality holds:

$$
h_{L}\left(\bigvee_{i=1}^{k} \ell_{i}\right)=\sum_{i=1}^{k} h_{L}\left(\ell_{i}\right)
$$

Proof. We prove the above equality by induction on $k$. For $k=2$, we have $h_{L}\left(\ell_{1} \vee \ell_{2}\right)=h_{L}\left(\ell_{1}\right)+h_{L}\left(\ell_{2}\right)-h_{L}\left(\ell_{1} \wedge \ell_{2}\right)=h_{L}\left(\ell_{1}\right)+h_{L}\left(\ell_{2}\right)-h_{L}(0)=h_{L}\left(\ell_{1}\right)+$ $h_{L}\left(\ell_{2}\right)$. Let us assume the equality to hold for $k=1$. We obtain $h_{L}\left(\bigvee_{i=1}^{k} \ell_{i}\right)=$ $h_{L}\left(\left(\bigvee_{i=1}^{k-1} \ell_{k}\right) \vee \ell_{j}\right)=h_{L}\left(\bigvee_{i=1}^{k-1} \ell_{i}\right)+h_{L}\left(\ell_{k}\right)-h_{L}\left(\left(\bigvee_{i=1}^{k-1} \ell_{i}\right) \wedge \ell_{k}\right)=$ $=\sum_{i=1}^{k-1} h_{L}\left(\ell_{i}\right)+h_{L}\left(\ell_{k}\right)-h_{L}(0)=\sum_{i=1}^{h} h_{L}\left(\ell_{i}\right)$.

For any $i=\overline{1, k}$, let $\alpha_{i}=h_{L}\left(G \circ L_{i}\right)$, (i.e. $\alpha_{i}=\max \left\{h_{L}(g \circ \ell) \mid g \in G\right.$, $\left.\left.\ell \in L_{i}\right\}\right), \mathbb{N}_{\alpha_{i}}=\left\{0,1, \ldots, \alpha_{i}\right\}$ and $h_{i}: G \circ L_{i} \rightarrow \mathbb{N}_{\alpha_{i}}$ be the restriction of the height function $h_{L}$ on the set $G \circ L_{i}$. We suppose that is well defined the function:

$$
\begin{aligned}
& h^{\prime}: L \longrightarrow \bigotimes_{i=1}^{k} \mathbb{N}_{\alpha_{i}} \\
& h^{\prime}\left(\bigvee_{i=1}^{k} g_{i} \circ \ell_{i i}\right)=\left(h_{1}\left(\ell_{11}\right), h_{2}\left(\ell_{22}\right), \ldots, h_{k}\left(\ell_{k k}\right)\right),
\end{aligned}
$$

where $g_{i} \in G, \ell_{i i} \in L_{i}$, for any $i=\overline{1, k}$ (it is easy to see that a sufficient condition for this fact holds is " $L=$ distributive lattice").

Proposition 4. The function $h^{\prime}$ is onto. Moreover, for any $\left(\beta_{1}, \beta_{2}, \ldots, \beta_{k}\right) \in$ $\chi_{i=1}^{k} \mathbb{N}_{\alpha_{i}}$, we have:

$$
\left(h^{\prime}\right)^{-1}\left(\beta_{1}, \beta_{2}, \ldots, \beta_{k}\right) \cap\left\{\ell \in L \mid h_{L}(\ell)=\sum_{i=1}^{k} \beta_{i}\right\} \neq \emptyset
$$

Proof. For each $i \in\{1,2, \ldots, k\}$, the function $h_{i}$ is onto.
Let $\left(\beta_{1}, \beta_{2}, \ldots, \beta_{k}\right) \in \chi_{i=1}^{k} \mathbb{N}_{\alpha_{i}}$ and $\ell_{i i} \in G \circ L_{i}$ such that $h_{i}\left(\ell_{i i}\right)=\beta_{i}$, $i=\overline{1, k}$. Using the above lemma, it is a simple exercise to verify that

$$
\bigvee_{i=1}^{k} \ell_{i i} \in\left(h^{\prime}\right)^{-1}\left(\beta_{1}, \beta_{2}, \ldots, \beta_{k}\right) \cap\left\{\ell \in L \mid h_{L}(\ell)=\sum_{i=1}^{k} \beta_{i}\right\}
$$

Proposition 5. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ be the decomposition of the natural number $n$ as a product of prime factors, $L_{n}$ be the lattice of all natural divisors of $n$ and $G$ be a finite group of order $n$ which satisfies the following properties:
(i) $L(G)$ is a modular lattice.
(ii) There exists a maximal system $\left(H_{i}\right)_{i=\overline{1, k}}$ of $L(G)$ such that $H_{i}$ is a Sylow $p_{i}$-subgroup of $G, i=\overline{1, k}$.
(iii) For any $H \in L(G),|H|=\prod_{i=1}^{k} p_{i}^{x_{i}}$ implies $h_{L(G)}(H) \geq \sum_{i=1}^{k} x_{i}$.

Then the function ord : $L(G) \rightarrow L_{n}, \operatorname{ord}(H)=|H|$, for any $H \in L(G)$, is onto.

Proof. If $m \in L_{n}$, then $m=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \ldots p_{k}^{\beta_{k}}$, where $\beta_{i} \in \mathbb{N}, \beta_{i} \leq \alpha_{i}, i=\overline{1, k}$. For each $i \in\{1,2, \ldots, k\}$, let $U_{i} \subseteq H_{i}$ be a subgroup of $G$ having order $p_{i}^{\beta_{i}}$. Since $\left(H_{i}\right)_{i=\overline{1, k}}$ is a maximal system of $L(G)$, it results that $h_{L(G)}\left(\bigvee_{i=1}^{k} U_{i}\right)=$ $h_{L(G)}\left(\left[\bigcup_{i=1}^{k} U_{i}\right]\right)=\sum_{i=1}^{k} h_{L(G)}\left(U_{i}\right)=\sum_{i=1} \beta_{i}$. This fact implies the equality $\operatorname{ord}\left(\left[\bigcup_{i=1}^{k} U_{i}\right]\right)=\prod_{i=1}^{k} p_{i}^{\beta_{i}}=m$. Indeed, if we suppose that ord $\left(\left[\bigcup_{i=1}^{k} U_{i}\right]\right) \neq$ $m$, then ord $\left(\left[\bigcup_{i=1}^{k} U_{i}\right]\right)=\prod_{i=1}^{k} p_{i}^{\gamma_{i}}$, where $\beta_{i} \leq \gamma_{i} \leq \alpha_{i}$, for any $i=\overline{1, k}$ and there exists $i_{0} \in\{1,2, \ldots, k\}$ such that $\beta_{i_{0}}<\gamma_{i_{0}}$ (this fact holds because $U_{q} \leq\left[\bigcup_{i=1}^{k} U_{i}\right]\left(\right.$ so that $\left.\left|U_{q}\right| /\left|\left[\bigcup_{i=1}^{k} U_{i}\right]\right|\right)$ for any $q=\overline{1, k}$ and $\left(\left|U_{q}\right|,\left|U_{q^{\prime}}\right|=1\right.$ for $\left.q \neq q^{\prime}\right)$. From property (iii), we obtain $h_{L(G)}\left(\left[\bigcup_{i=1}^{k} U_{i}\right]\right) \geq \sum_{i=1}^{k} \gamma_{i} \geq \sum_{i=1}^{k} \beta_{i}+1$; contradiction.

Corollary 1. For any finite group $G$ of order $n$ which satisfies the property that any two subgroups $U, V \in L(G)$ with $(|U|,|V|)=1$ form a permutable pair, the function ord : $L(G) \longrightarrow L_{n}$ is onto.

Proof. The statement results from Proposition 3 and Proposition 5 or, directly, making the next reasoning.

Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ be the decomposition of $n$ as a product of prime factors and $m \in L_{n}$. Then $m / n$, therefore $m=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \ldots p_{k}^{\beta_{k}}$, where $\beta_{i} \in \mathbb{N}$, $\beta_{i} \leq \alpha_{i}, i=\overline{1, k}$. For each $i \in\{1,2, \ldots, k\}$, let $U_{i}$ be a subgroup of $G$ having
the order $p_{i}^{\beta_{i}}$. From hypothesis, it results tht the subgroup $\left[\bigcup_{i=1}^{k} U_{i}\right] \in L(G)$ has the order $m$.

Corollary 2. For any finite nilpotent group $G$ of order $n$, the function ord : $L(G) \longrightarrow L_{n}$ is onto.

Proof. The statement results from Corollary 1, using the fact that, for a finite nilpotent group, any two subgroups of relative prime orders form a permutable pair.

Corollary 3. For any finite abelian group $G$ of order $n$, the function ord : $L(G) \longrightarrow L_{n}$ is onto.

Proof. Since any abelian group is nilpotent, the statement results from Corollary 2.

## References

[1] Birkhoff, G., Lattice theory, Amer. Math. Soc., Providence, R.I., 1967.
[2] Davis, A.C., A characterization of complete lattices, Pacific J. Math., n. 5, 1955, 311-319.
[3] Grätzer, G., General lattice theory, Academic Press, New York, 1978.
[4] Ore, O., Structures and group theory, I., Duke Math. J., n. 3, 1937, 149-174.
[5] Ore, O., Structures and group theory, II, Duke Math. J., n. 4, 1938, 247-269.
[6] Suzuki, M., Group theory, I, II, Springer Verlag, Berlin, 1980, 1985.
[7] Suzuki, M., Structure of a group and the structure of its lattice of subgroups, Springer Verlag, Berlin, 1956.
[8] Ştefănescu, M., Introduction to group theory (Romanian), Editura Universităţii "Al.I. Cuza", Iaşi, 1993.
[9] Tărnăuceanu, M., On the subgroup lattice of an abelian finite group, accepted for publication in Ratio Matematica.
[10] Tărnăuceanu, M., On the subgroup lattice of a semidirect product of finite cyclic groups, accepted for publication in Memoriile Ştiinţifice ale Academiei Române.
[11] Tărnăuceanu, M., Fundamental group lattices, accepted for publication in Mathematics and Informatics, Theory and Applications (F. Eugeni, H. Luchian eds.) , Editura Panfilius, Iaşi, 2003.

