

An. Şt. Univ. Ovidius Constanța

$Vol. \ 10(1), \ 2002, \ \ 135{-}148$

ACTIONS OF GROUPS ON LATTICES

Abstract

The aim of this paper is to study the actions of the groups on lattices and to give some connections between the structure of a group and the structure of its subgroup lattice. Moreover, we shall introduce the concept of direct \lor -sum of *G*-sublattices and we shall present a generalization of a result about finite nilpotent groups.

1 Preliminaries

Let (G, \cdot, e) be a monoid and L be a G-set (relative to an action ρ of G on L; for $(g, \ell) \in G \times L$, we denote by $g \circ \ell$ the element $\rho(g)(\ell) \in L$). If L is a poset (reltive to a partial ordering relation " \leq ") and, for $\ell, \ell' \in L, \ell \leq \ell'$ implies $g \circ \ell \leq g \circ \ell'$, for any $g \in G$, then L is called a G-poset. Moreover, if (L, \leq) is a lattice and, for $\ell, \ell' \in L$, we have:

$$\begin{split} g \circ (\ell \wedge \ell') &= (g \circ \ell) \wedge (g \circ \ell'), \\ g \circ (\ell \lor \ell') &= (g \circ \ell) \lor (g \circ \ell'), \end{split}$$

for any $g \in G$, then L is called a *G*-lattice.

A G-sublattice of a G-lattice L is a sublattice L' of L satisfying the property:

$$G \circ L' = \{g \circ \ell' \mid g \in G, \ \ell' \in L'\} \subseteq L'.$$

Let L_1 and L_2 be two *G*-posets (respectively two *G*-lattices). A monotone map (respectively a lattice homomorphism) $f: L_1 \longrightarrow L_2$ is called a *G*-poset homomorphism (respectively a *G*-lattice homomorphism) if $f(g \circ \ell_1) = g \circ f(\ell_1)$, for any $(g, \ell_1) \in G \times L_1$. Moreover, if f is one-to-one and onto, then it is called a *G*-poset isomorphism (respectively a *G*-lattice isomorphism).

A *G*-congruence on a *G*-lattice *L* is a congruence relation "~" on *L* which has the property that $\ell \sim \ell'$ ($\ell, \ell' \in L$) implies $g \circ \ell \sim g \circ \ell'$, for any $g \in G$.

Let *L* be a *G*-lattice and "~" be a *G*-congruence on *L*. Then the quotient lattice $L/\sim = \{[\ell] \mid \ell \in L\}$ of *L* modulo "~" is a *G*-lattice, where $g \circ [\ell] = [g \circ \ell]$, for any $(g, \ell) \in G \times L$.

If $f: L_1 \longrightarrow L_2$ is a *G*-lattice homomorphism, then the sublattice Im $f = \{f(\ell_1) \mid \ell_1 \in L_1\}$ of L_2 is a *G*-lattice and there exists a *G*-congruence "~" on L_1 such that the *G*-lattices L_1/\sim and Im f are isomorphic.

Let *L* be a lattice having the initial element 0. On *L* is well defined the *height* function: for $\ell \in L$, let $h_L(\ell)$ denote the length of a longest maximal chain in $[0, \ell]$ if there is a finite longest maximal chain; otherwise put $h_L(\ell) = \infty$. If *L* is of finite length, then the following conditions are equivalent:

- i) L is modular.
- ii) The height function h_L on L satisfies the property: $h_L(\ell) + h_L(\ell') = h_L(\ell \wedge \ell') + h_L(\ell \vee \ell')$, for any $\ell, \ell' \in L$.

2 Main results

2.1 Finite *G*-lattice

Let (G, \cdot, e) be a monoid.

Proposition 1. Let (L, \leq) be a complete lattice such that L is a G-poset. Then we have:

$$G = \bigcup_{\ell \in L} \operatorname{Stab}_G(\ell).$$

Proof. Let $g \in G$ and $L_g = \{\ell \in L \mid g \circ \ell \geq \ell\}$. We have $L_g \neq \emptyset$ (L_g contains the initial element of L). Since L is complete, there exists $\bar{\ell} = \lor L_g$. We have $\ell \leq g \circ \ell \leq g \circ \bar{\ell}$, for any $\ell \in L_g$, therefore:

$$\bar{\ell} \le g \circ \bar{\ell}.\tag{1}$$

Using the relation (1), we obtain that $g \circ \overline{\ell} \leq g \circ (g \circ \overline{\ell})$, thus $g \circ \overline{\ell} \in L_g$. Since $\overline{\ell} = \vee L_g$, it results:

$$g \circ \bar{\ell} \le \bar{\ell}.\tag{2}$$

The relations (1) and (2) give us $g \circ \overline{\ell} = \overline{\ell}$, so that $g \in \operatorname{Stab}_G(\overline{\ell})$. Thus $G = \bigcup_{\ell \in L} \operatorname{Stab}_G(\ell)$.

Corollary. (The Fixed–Point Theorem of complete lattice)

Any monotone map of a complete lattice L into itself has a fixed point.

Proof. The set G' of all monotone maps of L into itself is a monoid. Moreover, L is a G'-poset, where $f \circ \ell = f(\ell)$, for any $(f, \ell) \in G' \times L$. From Proposition 1, we obtain $G' = \bigcup_{\ell \in L} \operatorname{Stab}_{G'}(\ell)$, therefore, for any $f \in G'$, there exists $\ell \in L$ such that $f \in \operatorname{Stab}_{G'}(\ell)$, i.e. $f(\ell) = f \circ \ell = \ell$.

In the followings we suppose that (G, \cdot, e) is a group and we denote by L(G) (respectively by $L_0(G)$) the lattice of subgroups of G (respectively the lattice of normal subgroups of G).

Proposition 2. Let L be a complete G-lattice such that $\operatorname{Stab}_G(\ell) = \{e\}$, for any $\ell \in L$. Then the group G is abelian.

Proof. Let g_1, g_2 be two elements of G and $f_{g_1,g_2} : L \longrightarrow L$ be the map defined by $f_{g_1,g_2} = [g_1,g_2] \circ \ell$, for any $\ell \in L$ (where $[g_1,g_2]$ is the commutator of g_1 and g_2). We have $f_{g_1,g_2}(\ell \wedge \ell') = [g_1,g_2] \circ (\ell \wedge \ell') = ([g_1,g_2] \circ \ell) \wedge ([g_1,g_2] \circ \ell') =$ $f_{g_1,g_2}(\ell) \wedge f_{g_1,g_2}(\ell')$, for any $\ell, \ell' \in L$, thus f_{g_1,g_2} is a monotone map. From the above corollary, we obtain that there exists $\ell_0 \in L$ such that $f_{g_1,g_2}(\ell_0) = \ell_0$. It results $[g_1,g_2] \in \operatorname{Stab}_G(\ell_0)$, i.e. $[g_1,g_2] = e$.

Since any ordered lattice al group G is a $G\!-\!\mathrm{lattice},$ from Proposition 2 we obtain the following result:

Corollary. Any ordered latticeal group complete as lattice is abelian.

Let L be a finite G-lattice, 0 be the initial element of L and 1 be the final element of L.

Remark. If $L = \{\ell_1 = 0, \ell_2, ..., \ell_m = 1\}$ and $H_i = \operatorname{Stab}_G(\ell_i), i = \overline{1, m}$, then from Proposition 1, we have $G = \bigcup_{i=1}^m H_i$. Let I be a maximal subset of $\{1, 2, ..., m\}$ with the property:

$$\begin{cases} G = \bigcup_{i \in I} H_i \\ H_j \not\subseteq \bigcup_{i \in I \setminus \{j\}} H_i, \text{ for any } j \in I \end{cases}$$

Then, for any $g \in G$, there exists $n_g \in \mathbb{N}^*$ such that $g^{n_g} \in \bigcap_{i \in I} H_i$. Since, for any $\ell, \ell' \in L$, $\operatorname{Stab}_G(\ell) \cap \operatorname{Stab}_G(\ell') \subseteq \operatorname{Stab}_G(\ell \wedge \ell')$, we obtain that there exists $\ell_0 \in L$ such that every element of G has a natural power in $\operatorname{Stab}_G(\ell_0)$.

We suppose that G is a finite group, $\operatorname{Stab}_G(0) = \operatorname{Stab}_G(1) = G$ and let $f_L : L \longrightarrow L$ be the map defined by $f_L(\ell) = \bigwedge_{g \in G} g \circ \ell$, for any $\ell \in L$.

Proposition 3. The map f_L is a G-poset homomorphism which has the following properties:

- a) $f_L(\ell) \leq \ell$, for any $\ell \in L$.
- b) Im $f_L = \operatorname{Fix}_G(L)$, where $\operatorname{Fix}_G(L) = \{\ell \in L \mid g \circ \ell = \ell, \text{ for any } g \in G\}$.
- c) $f_L^2 = f_L$.

Proof. a) Since $e \circ \ell = \ell$, we obtain $f_L(\ell) = \ell \land \left(\bigwedge_{g \in G \setminus \{e\}} g \circ \ell\right) \leq \ell$, for any $\ell \in L$.

b) Let $\ell' \in \text{Im } f_L$. Then there exists $\ell \in L$ such that $\ell' = f_L(\ell)$. For any $g' \in G'$, we have:

$$g' \circ \ell' = g' \circ f_L(\ell) = g' \circ \left(\bigwedge_{g \in G} g \circ \ell\right) = \bigwedge_{g \in G} g' \circ (g \circ \ell) = \bigwedge_{g \in G} (g'g) \circ \ell = f_L(\ell) = \ell',$$

therefore $\ell' \in \operatorname{Fix}_G(L)$.

Conversely, let $\ell' \in \operatorname{Fix}_G(L)$. Then $g \circ \ell' = \ell'$, for any $g \in G$. It results $f_L(\ell') = \bigwedge_{g \in G} g \circ \ell' = \bigwedge_{g \in G} \ell' = \ell'$, thus $\ell \in \operatorname{Im} f_L$.

c) We have
$$f_L^2(\ell) = f_L(f_L(\ell)) = \bigwedge_{g \in G} g \circ f_L(\ell) = \bigwedge_{g \in G} f_L(\ell) = f_L(\ell)$$
, for any

 $\ell \in L$. Thus $f_L^2 = f_L$.

Now, the fact that f_L is a *G*-poset homomorphism is obvious.

Remark. If L is a fully ordered G-lattice, then f_L is a G-lattice homomorphism. Moreover, the binary relation" \sim " on L defined by $\ell \sim \ell'$ if and only if $f_L(\ell) = f_L(\ell')$ is a G-congruence. Therefore, we obtain the G-latice isomorphism:

$$L/\sim \cong \operatorname{Fix}_G(L).$$

Let $n = |\operatorname{Fix}_G(L)|$ and $C_1, C_2, ..., C_n$ be the equivalence classes modulo "~". If $(\ell'_i)_{i=\overline{1,n}}$ is a set of representatives for the equivalence classes $(C_i)_{i=\overline{1,n}}$ then $C_i = \{\ell \in L \mid f_L(\ell) = f_L(\ell'_i)\} \neq \emptyset$, $i = \overline{1,n}$, $C_i \cap C_j = \emptyset$, for $i \neq j$ and $L = \bigcup_{i=1}^n C_i$. Moreover, for any $i \in \{1, 2, ..., n\}$, we have:

$$G \circ \ell'_i = \{g \circ \ell'_i \mid g \in G\} \subseteq C_i.$$

It results that:

$$G \circ \ell'_i| = rac{|G|}{|\operatorname{Stab}_G(\ell'_i)|} \le |C_i|, \ i = \overline{1, n}$$

This implies the following inequality:

(*)
$$|G| \sum_{i=1}^{n} \frac{1}{|\operatorname{Stab}_{G}(\ell'_{i})|} \leq \sum_{i=1}^{n} |C_{i}| = |L|.$$

Let $C_{i_1}, C_{i_2}, ..., C_{i_r}$ be the classes having an unique element (i.e. $c_{i_j} = \{\ell'_{i_j}\}, j = \overline{1, r}$, where $r \leq n, i_r = n$ and $\ell'_n = 1$). Then, for each $s \in \{1, 2, ..., n\} \setminus \{i_1, i_2, ..., i_r\}$, we can suppose that $\ell'_s \notin \operatorname{Fix}_G(L)$. We obtain $|G \circ \ell'_s| \neq 1$, therefore

$$\frac{|G|}{\operatorname{Stab}_G(\ell'_s)|} \ge p,$$

where p is the smallest prime divisor of |G|. Using the inequality (*), it results that:

$$|L| \ge pn - (p-1)r.$$

Taking the particular case L = L(G), it obtains the following results:

Corollary 1. If G is a finite group and r is the number of equivalence classes modulo " \sim " having a unique element, then:

$$|L(G)| \ge p|L_0(G)| - (p-1)r,$$

where p is the smallest prime divisor of |G|.

Corollary 2. If G is a nonabelian simple finite group, then:

$$|L(G)| \ge p+1,$$

where p is the smallest prime divisor of |G|.

Remark. Let Min(L) be the set of all minimal elements of L and $Ker f_L = \{\ell \in L \mid f_L(\ell) = 0\}$. Then the following relations hold:

$$(**) \qquad \operatorname{Min}(L) \subseteq \operatorname{Ker} f_L \cup \operatorname{Fix}_G(L).$$

Indeed, if $\ell \in Min(L)$ and $f_L(\ell) \neq 0$, then, from the inequalities $0 \leq f_L(\ell) \leq \ell$, we obtain $f_L(\ell) = \ell$, i.e. $\ell \in Fix_G(L)$.

Let k be the length of the finite G-lattice L.

Definition 1. We say that *L* is *regular* if it satisfies the following conditions:

- (i) All maximal chains of L have the same length.
- (ii) For any $\ell \in L \setminus (\text{Ker } f_L \cup \{1\})$ with $h_L(\ell) = p$, the equivalence class modulo "~" of ℓ has at most k p elements.

Definition 2. A family $U = (u_i)_{i=\overline{1,k}}$ of elements of L is called a *k*-independent minimal system if it has the properties:

- (i) $U \subseteq \operatorname{Min}(L), \ U \cap \operatorname{Fix}_G(L) \neq \emptyset$.
- (ii) For any distinct numbers $i_1, i_2, ..., i_k \in \{1, 2, ..., k\}$, we have:

$$\begin{split} |\{u_{i_1} \lor u_j \mid j \neq i_1\}| &= k - 1, \\ |\{u_{i_1} \lor u_{i_2} \lor u_j \mid j \notin \{i_1, i_2\}\}| &= k - 2, \\ \vdots \\ |\{u_{i_1} \lor u_{i_2} \lor \cdots \lor u_{i_{k-2}} \lor u_j \mid j \notin \{i_1, i_2, \dots, i_{k-2}\}\}| &= 2. \end{split}$$

(iii) For any distinct numbers $i_1, i_2, ..., i_k \in \{1, 2, ..., k\}$ (where $p \in \mathbb{N}^*, p \le k$), if $\{u_{i_1}, u_{i_2}, ..., u_{i_p}\} \cap \operatorname{Fix}_G(L) \neq \emptyset$, then $h_L(u_{i_1} \lor u_{i_2} \lor \cdots \lor u_{i_p}) = p$.

Proposition 4. Let L be a finite G-lattice of length k. If L is regular and it has a k-independent minimal system, then there exists a maximal chain of L:

$$0 = a_0 < a_1 < \dots < a_k = 1,$$

with $a_i \in \operatorname{Fix}_G(L)$, for any $i = \overline{0, k}$.

Proof. We prove the statement by induction on k. If $k \leq 1$, the statement is trivial. Let us assume the statement to hold for k-1 and let $U = (u_i)_{i=\overline{1,k}}$ be a k-independent minimal system of L. Since $U \cap \operatorname{Fix}_G(L) \neq \emptyset$, we can suppose that $u_k \in \operatorname{Fix}_G(L)$. Let $L' = [u_k, 1] = \{\ell \in L \mid u_k \leq \ell \leq 1\}$. L' is a finite G-lattice of length k-1. For any $\ell \in L' \setminus (\operatorname{Ker} f_{L'} \cup \{1\})$ with $h_{L'}(\ell) = p$, we have $h_L(\ell) = p + 1$, therefore the equivalence class modulo "~" of ℓ has at most k - 1 - p elements. It results that L' is regular.

Now we prove that $V = (v_i)_{i=\overline{1,k-1}}$, where $v_i = u_i \lor u_k$ for any $i = \overline{1,k-1}$, is a (k-1)-independent minimal system of L'.

Since $u_k \in \operatorname{Fix}_G(L)$, we have $h_L(v_i) = 2$, $i = \overline{1, k-1}$, thus $h_{L'}(v_i) = 1$, $i = \overline{1, k-1}$, i.e. $V \subseteq \operatorname{Min}(L')$. If we suppose $V \cap \operatorname{Fix}_G(L') = \emptyset$, then, using the remark (**), we obtain that V is containing in the equivalence class modulo "~" of u_k . It results that the equivalence class modulo "~" of u_k has at least k elements $(u_k \text{ and } v_i, i = \overline{1, k-1})$. This contradicts the assumption that L is regular. The fact that V satisfies the property (ii) of Definition 2 is obvious. For the property (iii), let the distinct numbers $i_1, i_2, ..., i_p \in \{1, 2, ..., k-1\}$ (where $p \in \mathbb{N}^*$, $p \leq k-1$). We have $h_{L'}(v_{i_1} \vee v_{i_2} \vee \cdots \vee v_{i_p}) = h_{L'}(u_k \vee u_{i_1} \vee u_{i_2} \vee \cdots \vee u_{i_p}) = h_L(u_k \vee u_{i_1} \vee u_{i_2} \vee \cdots \vee u_{i_p}) - 1 = (p+1) - 1 = p$.

From inductive hypothesis, it results that there exists a maximal chain of L':

$$a_k = a_1 < a_2 < \dots < a_k = 1,$$

with $a_i \in \operatorname{Fix}_G(L')$, $i = \overline{1, k}$. Thus

$$0 = a_0 < a_1 < \dots < a_k = 1$$

is a maximal chain of L, with $a_i \in \operatorname{Fix}_G(L)$, $i = \overline{0, k}$.

Corollary. The symmetric group of degree $3 \Sigma_3$ and the dihedral group of order $8 D_8$ have principal series of subgroups.

Proof. We have $\Sigma_3 = \{e, \sigma_1, \sigma_2, \sigma_3, \tau, \tau^2\}$ (where $\sigma_1 = (2 \ 3), \sigma_2 = (1 \ 3), \sigma_3 = (1 \ 2)$ and $\tau = (2 \ 3 \ 1)$) and $D_8 = \{1, \rho, \rho^2, \rho^3, \varepsilon, \rho\varepsilon, \rho^2\varepsilon, \rho^3\varepsilon\}$ (where $\rho^4 = \varepsilon^2 = 1$ and $\varepsilon\rho = \rho^3\varepsilon$). We obtain $L(\Sigma_3) = \{H_0 = \{e\}, H_1 = \{e, \sigma_1\}, H_2 = \{e, \sigma_2\}, H_3 = \{e, \sigma_3\}, H_4 = \{e, \tau, \tau^2\}, H_5 = \Sigma_3\}$ and $L(D_8) = \{H'_0 = \{1\}, H'_1 = \{1, \varepsilon\}, H'_2 = \{1, \rho^2\varepsilon\}, H'_3 = \{1, \rho^2\}, H'_4 = \{1, \rho\varepsilon\}, H'_5 = \{1, \rho^3\varepsilon\}, H'_6 = \{1, \rho^3, \rho\varepsilon, \rho^3\varepsilon\}, H'_7 = \{1, \rho, \rho^2, \rho^3\}, H'_8 = \{1, \rho^2, \rho\varepsilon, \rho^3\varepsilon\}, H'_9 = D_8\}$. It is a simple exercise to verify that the Σ_3 -lattice $L(\Sigma_3)$ (respectively the D_8 -lattice $L(D_8)$) is regular and that $U = \{H_3, H_4\}$ (respectively $U' = \{H'_2, H'_3, H'_4\}$) is a 2-independent minimal system of $L(\Sigma_3)$). Now the statement results from Proposition 4.

2.2 On a property of finite nilpotent groups

Let (G, \cdot, e) be a group.

Definition 1. Let L be a G-lattice having the initial element 0 and $(L_i)_{i \in I}$ be a finite family of G-sublattices of L. We say that L is the *direct* \vee -sum of the family $(L_i)_{i \in I}$ (and we denote this by $L = \bigoplus_{i \in I}^{\vee} L_i$) if the following two equalities hold:

equalities hold:

i)
$$L = \bigvee_{i \in I} L_i.$$

ii) $L_j \wedge \left(\bigvee_{\substack{i \in I \\ i \neq j}} L_i\right) = \{0\}$, for any $j \in I.$

Examples. 1) Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$, be the decomposition of the natural number n as a product of prime factors. If, for any $m \in \mathbb{N}^*$, we denote by L_m the lattice of all natural divisors of m and we consider the set $G = \{\sigma \in \operatorname{Aut}(L_n) \mid \sigma(L_{p_i^{\alpha_i}}) = L_{p_i^{\alpha_i}}, i = \overline{1, k}\}$, then G is a group, L_n is a G-lattice (where $\sigma \circ d = \sigma(d)$, for any $(\sigma, d) \in G \times L_n$) and $L_{p_i^{\alpha_i}}$ is a G-sublattice of L_n , $i = \overline{1, k}$. It is easy to see that L_n is the direct \vee -sum of the family $(L_{p_i^{\alpha_i}})_{i=\overline{1,k}}$.

2) Let $m \geq 2$, $n \geq 2$ be two natural numbers, $f : \mathbb{Z}_m \longrightarrow \operatorname{Aut}(\mathbb{Z}_n)$ be a group homomorphism and $\hat{k}_0 = f(\bar{1})(\hat{1})$. We denote by S the semidirect product of \mathbb{Z}_m and \mathbb{Z}_n with respect to the homomorphism f and by G, respectively H the images of \mathbb{Z}_m , respectively \mathbb{Z}_n through the group homomorphisms:

$$\sigma_1: \mathbb{Z}_m \longrightarrow S, \ \sigma_1(\bar{x}) = (\bar{x}, \hat{0}), \text{ for any } \bar{x} \in \mathbb{Z}_m,$$

respectively

$$\sigma_2: \mathbb{Z}_n \longrightarrow S, \ \sigma_2(\hat{y}) = (\bar{0}, \hat{y}), \ \text{for any } \hat{y} \in \mathbb{Z}_n.$$

If L(S), L(G) and L(H) are the subgroup lattices of S, G, respectively H, then we have $L(S) = L(G) \stackrel{\vee}{\oplus} L(H)$ if and only if (m, n) = 1 and $k_0 \equiv 1 \pmod{n}$ (see [10], Proposition 3).

Proposition 1. If L is a distributive G-lattice having the initial element 0 and

 $(L_i)_{i \in I}$ is a finite family of *G*-sublattices of *L* such that $L_j \land \left(\bigvee_{\substack{i \in I \\ i \neq j}} L_i\right) = \{0\},$ for any $j \in I$, then the following two conditions are equivalent:

i)
$$L = \bigoplus_{i \in I}^{\mathsf{V}} L_i.$$

ii) Every element $\ell \in L$ can be written uniquely as $\bigvee_{i \in I} \ell_i$, where $\ell_i \in L_i$, for any $i \in I$.

Proof. i) \Longrightarrow ii) Since $L = \bigoplus_{i \in I}^{\bigvee} L_i$, we have $L = \bigvee_{i \in I} L_i$, therefore every element $\ell \in L$ can be written as $\bigvee_{i \in I}^{\bigvee} \ell_i$, where $\ell_i \in L_i$, $i \in I$. If $\ell = \bigvee_{i \in I}^{\bigvee} \ell_i = \bigvee_{i \in I}^{\bigvee} \ell'_i$ with $\ell_i, \ell'_i \in L_i, i \in I$, then, for any $j \in I$, we have $\ell'_j = \ell'_j \wedge \ell = \ell'_j \wedge \left(\bigvee_{i \in I}^{\bigvee} \ell_i\right) = \ell'_i$

$$\ell'_j \wedge \left[\ell_j \vee \left(\bigvee_{\substack{i \in I \\ i \neq j}} \ell_i \right) \right] = (\ell'_j \wedge \ell_j) \vee \left[\ell'_j \wedge \left(\bigvee_{\substack{i \in I \\ i \neq j}} \ell_i \right) \right] = \ell'_j \wedge \ell_j, \text{ thus } \ell'_j \leq \ell_j. \text{ In the same way, we obtain } \ell_j \leq \ell'_j, \text{ therefore } \ell'_j = \ell_j, j \in I.$$

ii) \Longrightarrow i) Obvious.

Next aim is to establish connections between the direct product of G-lattices and the direct \lor -sum of G-sublattices.

Proposition 2. If $(L_i)_{i \in I}$ is a finite family of *G*-lattices having initial elements (denoted all by 0), $0 \in \operatorname{Fix}_G(L_i)$, $i \in I$, and *L* is the direct product of the family $(L_i)_{i \in I}$, then there exists a family $(L'_i)_{i \in I}$ of *G*-sublattices of *L* which satisfies the following properties:

i)
$$L = \bigoplus_{i \in I}^{\vee} L'_i.$$

ii) $L'_i \cong L_i$ (isomorphism of G-lattices), for any $i \in I$.

Proof. It is easy to see that the sets $L'_i = \{(a_j)_{\substack{j \in I \\ \lor}} \in L \mid a_j = 0$, for any $j \in I \setminus \{i\}\}, i \in I$, are *G*-sublattices of *L* and $L = \bigoplus_{i \in I} L'_i$. Moreover, the maps

$$\begin{aligned} f_i : L_i &\longrightarrow L'_i \\ f_i(\ell_i) = (a_j)_{j \in I}, \text{ where } a_i = \ell_i \text{ and } a_j = 0, \text{ for } j \neq i, \end{aligned}$$

are isomorphism of G-lattices, $i \in I$.

Let *L* be a finite *G*-lattice with the initial element denoted by 0 such that $0 \in \operatorname{Fix}_G(L) = \{\ell \in L \mid g \circ \ell = \ell, \text{ for any } g \in G\}$. If $(\ell_i)_{i=\overline{1,k}}$ is a family of elements of *L*, then we make the following notations:

$$L_{i} = [0, \ell_{i}] = \{\ell \in L \mid 0 \le \ell \le \ell_{i}\},\ G \circ L_{i} = \{g \circ \ell \mid g \in G, \ \ell \in L_{i}\},\$$

where $i \in \{1, 2, ..., k\}$.

Definition 2. The family $(\ell_i)_{i=\overline{1,k}}$ is called a *maximal system* of *L* if it satisfies the properties:

i)
$$L = \bigvee_{i=1}^{k} G \circ L_i.$$

ii)
$$G \circ L_j \land \left(\bigvee_{\substack{i=I\\i \neq j}}^k G \circ L_i\right) = \{0\}$$
, for any $j = \overline{1,k}$.

Remark. If $(\ell_i)_{i=\overline{1,k}}$ is a maximal system of L, then, for $i \in \{1, 2, ..., k\}$, the sublattice L_i of L is not necessarily a G-sublattice. A sufficient condition for this fact holds is $\ell_i \in \operatorname{Fix}_G(L)$. In the case when $(\ell_i)_{i=\overline{1,k}} \subseteq \operatorname{Fix}_G(L)$, we have

$$G \circ L_i = L_i$$
 for any $i = \overline{1, k}$ and $L = \bigoplus_{i=\overline{1, k}} L_i$.

Definition 3. Let $U, V \in L(G)$.

- (i) We say that U and V form a permutable pair if $[U \cup V] = UV = VU$ (where $[U \cup V]$ denotes the subgroup of G generated by $U \cup V$).
- (ii) We say that U and V form a modular pair if $W \cap [U \cup V] = [U \cup (W \cap V)]$ for any $W \in L(G)$ with $U \subseteq W$ and $W \in [U \cup V] = [U \cup (W \cap V)]$ for any $U \in L(G)$ with $U \subseteq W$
 - $W \cap [U \cup V] = [V \cup (W \cap U)]$ for any $W \in L(G)$ with $V \subseteq W$.

Remarks. 1) Any permutable pair of subgroups is a modular pair (see [7], Theorem 5, page 5).

2) If the group G is finite and it satisfies the property that any two subgroups $U, V \in L(G)$ with (|U|, |V|) = 1 form a permutable pair, then, for any $H_1, H_2, ..., H_k \in L(G)$ with $(|H_i|, |H_j|) = 1$, $i \neq j$, we have:

$$H_1H_2...H_k = \left[\bigcup_{i=1}^k H_i\right] \in L(G)$$

and

$$|H_1H_2...H_k| = \prod_{i=1}^k |H_i|.$$

Proposition 3. For a finite group G which satisfies the property that any two subgroups $U, V \in L(G)$ with (|U|, |V|) = 1 form a permutable pair, the G-lattice L(G) has a maximal system.

Proof. Let n = |G|. If $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$, is the decomposition of n as a product of prime factors, then, for any $i = \overline{1, k}$, let H_i be Sylow p_i -subgroup of G.

We prove that $\{H_1, H_2, ..., H_k\}$ is a maximal system for L(G). Let $H \in L(G)$ and m = |H|. Then m/n, therefore there exist the numbers $\beta_i \in \mathbb{N}$, $\beta_i \leq \alpha_i, i = \overline{1, k}$, such that $m = p_1^{\beta_1} p_2^{\beta_2} ... p_k^{\beta_k}$. For any $i = \overline{1, k}$, let U_i be a Sylow p_i -subgroup of H and, using the Theorems of Sylow, let $x_i \in G$ such that $U_i \leq H_i^{x_i}$, i.e. $U_i^{x_i^{-1}} \in [\{e\}, H_i]$ (where e is the identity of G). From Remark 2), we obtain $H = U_1 U_2 ... U_k = \left(U_1^{x_1^{-1}}\right)^{x_1} \left(U_2^{x_2^{-1}}\right)^{x_2} ... \left(U_k^{x_k^{-1}}\right)^{x_k}$, thus:

$$L(G) = \bigvee_{i=1}^{k} G \circ [\{e\}, H_i].$$

Let $j \in \{1, 2, ..., k\}$ and $K \in G \circ [\{e\}, H_j] \land \left(\bigvee_{\substack{i=1\\i \neq j}}^k G \circ [\{e\}, H_i]\right)$. Then $K = \begin{pmatrix} k \\ k \end{pmatrix}$

$$\begin{split} V_j^{x_j} \wedge \left(\bigvee_{\substack{i=1\\i\neq j}}^k V_i^{x_i}\right) \text{ (where } V_s \leq H_s \text{ and } x_s \in G, \text{ for any } s = \overline{1,k}\text{).} \\ \text{Since } \left(|V_j^{x_j}|, \left|\bigvee_{\substack{i=1\\i\neq j}}^k V_i^{x_i}\right|\right) = 1, \text{ it follows that } K = \{e\}, \text{ thus:} \\ G \circ [\{e\}, H_j] \wedge \left(\bigvee_{\substack{i=1\\i\neq j}}^k G \circ [\{e\}, H_i]\right) = \{e\}. \end{split}$$

Remark. Let G be a finite group of order $n, n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ be the decomposition of n as a product of prime factors and H_i be a Sylow p_i -subgroup of $G, i = \overline{1, k}$. If $(H_i)_{i=\overline{1,k}}$ is a maximal system of L(G), then, for any $x_i \in G$, $i = \overline{1, k}, (H_i^{x_i})_{i=\overline{1,k}}$ is a maximal system of L(G).

Let L be a modular finite G-lattice with the initial element denoted by 0 and $(\ell_i)_{i=\overline{1,k}}$ be a maximal system of L.

Lemma. The following equality holds:

$$h_L\left(\bigvee_{i=1}^k \ell_i\right) = \sum_{i=1}^k h_L(\ell_i).$$

Proof. We prove the above equality by induction on k. For k = 2, we have $h_L(\ell_1 \vee \ell_2) = h_L(\ell_1) + h_L(\ell_2) - h_L(\ell_1 \wedge \ell_2) = h_L(\ell_1) + h_L(\ell_2) - h_L(0) = h_L(\ell_1) + h_L(\ell_2)$. Let us assume the equality to hold for k = 1. We obtain $h_L\left(\bigvee_{i=1}^k \ell_i\right) = h_L\left(\bigvee_{i=1}^k \ell_i\right) + h_L(\ell_k) - h_L\left(\bigvee_{i=1}^{k-1} \ell_i\right) \wedge \ell_k\right) = \sum_{i=1}^{k-1} h_L(\ell_i) + h_L(\ell_k) - h_L(0) = \sum_{i=1}^k h_L(\ell_i).$

For any $i=\overline{1,k}$, let $\alpha_i = h_L(G \circ L_i)$, (i.e. $\alpha_i = \max\{h_L(g \circ \ell) \mid g \in G, \ell \in L_i\}$), $\mathbb{N}_{\alpha_i} = \{0, 1, ..., \alpha_i\}$ and $h_i : G \circ L_i \to \mathbb{N}_{\alpha_i}$ be the restriction of the height function h_L on the set $G \circ L_i$. We suppose that is well defined the function:

$$h': L \longrightarrow \bigotimes_{i=1}^{k} \mathbb{N}_{\alpha_{i}},$$
$$h'\left(\bigvee_{i=1}^{k} g_{i} \circ \ell_{ii}\right) = (h_{1}(\ell_{11}), h_{2}(\ell_{22}), \dots, h_{k}(\ell_{kk})),$$

where $g_i \in G$, $\ell_{ii} \in L_i$, for any i = 1, k (it is easy to see that a sufficient condition for this fact holds is "L = distributive lattice").

Proposition 4. The function h' is onto. Moreover, for any $(\beta_1, \beta_2, ..., \beta_k) \in$ $\stackrel{k}{\times} \mathbb{N}$ we have:

 $X_{i=1} \mathbb{N}_{\alpha_i}, we have:$

$$(h')^{-1}(\beta_1,\beta_2,...,\beta_k) \cap \left\{ \ell \in L \mid h_L(\ell) = \sum_{i=1}^k \beta_i \right\} \neq \emptyset$$

Proof. For each $i \in \{1, 2, ..., k\}$, the function h_i is onto.

Let $(\beta_1, \beta_2, ..., \beta_k) \in \underset{i=1}{\overset{}{\times}} \mathbb{N}_{\alpha_i}$ and $\ell_{ii} \in G \circ L_i$ such that $h_i(\ell_{ii}) = \beta_i$,

 $i = \overline{1, k}$. Using the above lemma, it is a simple exercise to verify that

$$\bigvee_{i=1}^{k} \ell_{ii} \in (h')^{-1}(\beta_1, \beta_2, ..., \beta_k) \cap \left\{ \ell \in L \mid h_L(\ell) = \sum_{i=1}^{k} \beta_i \right\}.$$

Proposition 5. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ be the decomposition of the natural number n as a product of prime factors, L_n be the lattice of all natural divisors of n and G be a finite group of order n which satisfies the following properties:

- (i) L(G) is a modular lattice.
- (ii) There exists a maximal system $(H_i)_{i=\overline{1,k}}$ of L(G) such that H_i is a Sylow p_i -subgroup of G, $i = \overline{1,k}$.

(iii) For any
$$H \in L(G)$$
, $|H| = \prod_{i=1}^{k} p_i^{x_i}$ implies $h_{L(G)}(H) \ge \sum_{i=1}^{k} x_i$.

Then the function ord : $L(G) \to L_n$, $\operatorname{ord}(H) = |H|$, for any $H \in L(G)$, is onto.

Proof. If $m \in L_n$, then $m = p_1^{\beta_1} p_2^{\beta_2} \dots p_k^{\beta_k}$, where $\beta_i \in \mathbb{N}$, $\beta_i \leq \alpha_i$, $i = \overline{1,k}$. For each $i \in \{1, 2, \dots, k\}$, let $U_i \subseteq H_i$ be a subgroup of G having order $p_i^{\beta_i}$. Since $(H_i)_{i=\overline{1,k}}$ is a maximal system of L(G), it results that $h_{L(G)}\left(\bigvee_{i=1}^k U_i\right) = h_{L(G)}\left(\left[\bigcup_{i=1}^k U_i\right]\right) = \sum_{i=1}^k h_{L(G)}(U_i) = \sum_{i=1}^k \beta_i$. This fact implies the equality ord $\left(\left[\bigcup_{i=1}^k U_i\right]\right) = \prod_{i=1}^k p_i^{\beta_i} = m$. Indeed, if we suppose that $\operatorname{ord}\left(\left[\bigcup_{i=1}^k U_i\right]\right) \neq m$, then $\operatorname{ord}\left(\left[\bigcup_{i=1}^k U_i\right]\right) = \prod_{i=1}^k p_i^{\gamma_i}$, where $\beta_i \leq \gamma_i \leq \alpha_i$, for any $i = \overline{1,k}$ and there exists $i_0 \in \{1, 2, \dots, k\}$ such that $\beta_{i_0} < \gamma_{i_0}$ (this fact holds because $U_q \leq \left[\bigcup_{i=1}^k U_i\right]$ (so that $|U_q| / \left|\left[\bigcup_{i=1}^k U_i\right]\right|$) for any $q = \overline{1,k}$ and $(|U_q|, |U_{q'}| = 1$ for $q \neq q'$). From property (iii), we obtain $h_{L(G)}\left(\left[\bigcup_{i=1}^k U_i\right]\right) \geq \sum_{i=1}^k \gamma_i \geq \sum_{i=1}^k \beta_i + 1$; contradiction.

Corollary 1. For any finite group G of order n which satisfies the property that any two subgroups $U, V \in L(G)$ with (|U|, |V|) = 1 form a permutable pair, the function ord : $L(G) \longrightarrow L_n$ is onto.

Proof. The statement results from Proposition 3 and Proposition 5 or, directly, making the next reasoning.

Let $n = p_1^{\alpha_1} p_2^{\alpha_2} ... p_k^{\alpha_k}$ be the decomposition of n as a product of prime factors and $m \in L_n$. Then m/n, therefore $m = p_1^{\beta_1} p_2^{\beta_2} ... p_k^{\beta_k}$, where $\beta_i \in \mathbb{N}$, $\beta_i \leq \alpha_i, i = \overline{1,k}$. For each $i \in \{1, 2, ..., k\}$, let U_i be a subgroup of G having

the order $p_i^{\beta_i}$. From hypothesis, it results the subgroup $\left[\bigcup_{i=1}^k U_i\right] \in L(G)$ has the order m.

Corollary 2. For any finite nilpotent group G of order n, the function ord : $L(G) \longrightarrow L_n$ is onto.

Proof. The statement results from Corollary 1, using the fact that, for a finite nilpotent group, any two subgroups of relative prime orders form a permutable pair.

Corollary 3. For any finite abelian group G of order n, the function ord : $L(G) \longrightarrow L_n$ is onto.

Proof. Since any abelian group is nilpotent, the statement results from Corollary 2.

References

- [1] Birkhoff, G., Lattice theory, Amer. Math. Soc., Providence, R.I., 1967.
- [2] Davis, A.C., A characterization of complete lattices, Pacific J. Math., n. 5, 1955, 311–319.
- [3] Grätzer, G., General lattice theory, Academic Press, New York, 1978.
- [4] Ore, O., Structures and group theory, I., Duke Math. J., n. 3, 1937, 149–174.
- [5] Ore, O., Structures and group theory, II, Duke Math. J., n. 4, 1938, 247–269.
- [6] Suzuki, M., Group theory, I, II, Springer Verlag, Berlin, 1980, 1985.
- Suzuki, M., Structure of a group and the structure of its lattice of subgroups, Springer Verlag, Berlin, 1956.
- [8] Ştefănescu, M., Introduction to group theory (Romanian), Editura Universității "Al.I. Cuza", Iași, 1993.
- [9] Tărnăuceanu, M., On the subgroup lattice of an abelian finite group, accepted for publication in Ratio Matematica.
- [10] Tărnăuceanu, M., On the subgroup lattice of a semidirect product of finite cyclic groups, accepted for publication in Memoriile Științifice ale Academiei Române.
- [11] Tărnăuceanu, M., Fundamental group lattices, accepted for publication in Mathematics and Informatics, Theory and Applications (F. Eugeni, H. Luchian eds.), Editura Panfilius, Iași, 2003.