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ON SOME DIOPHANTINE EQUATIONS (I)

Diana Savin

Abstract

In this paper we study the equation m4−n4 = py2,where p is a prime
natural number, p≥ 3. Using the above result, we study the equations
x4 + 6px2y2 + p2y4 = z2 and the equations ck(x4 + 6px2y2 + p2y4) +
4pdk(x3y + pxy3) = z2, where the prime number p ∈ {3, 7, 11, 19} and
(ck, dk) is a solution of the Pell equation, either of the form c2−pd2 = 1
or of the form c2 − pd2 = −1.

I. Preliminaries.
We recall some necessary results.

Proposition 1.1. ([3],p.74)The integer solutions of the Diophantine equa-
tion

x2
1 + x2

2 + ... + x2
k = x2

k+1

are the following ones




x1 = ±(m2
1 + m2

2 + ... + m2
k−1 −m2

k)
x2 = 2m1mk

.....................

.....................
xk = 2mk−1mk

xk+1 = ±(m2
1 + m2

2 + ... + m2
k−1 + m2

k),

with m1, ..., mk integer numbers.
From the geometrical point of view, the solutions (x1, x2, ..., xk, xk+1)

are the sizes x1, x2, ..., xk of a right hyper-parallelipiped in the space Rk and
xk+1 is the length of its diagonal.

Proposition 1.2. ([1], p.150) The quadratic field Q(
√

d), where d ∈ N∗ ,
d is square free, has an Euclidean ring of integers A (with respect to the norm
N), for d ∈ {2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73} .
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Proposition 1.3.([1],p.141) Let K=Q(
√

d) be a quadratic field with A as
its ring of integers and a ∈ A. Then a ∈U(A) if and only if N(a)=1.

Proposition 1.4.(Lagrange, [2] , p.168)Let D ≥ 2 be a rational square-
free integer and k be the number of incomplete denominators which make
up the period of the regular continued fraction of the number α =

√
D. Then

(xn, yn), with xn = Ank−1, yn = Bnk−1, where n ∈ N∗when k is an even num-
ber, and n ∈ 2N∗ when k is an odd number, verifies the equation x2−Dy2 = 1
and gives all the positive solutions of the Pell equation. Particularly, the fun-
damental solution is (Ak−1, Bk−1) for k an even number, and (A2k−1, B2k−1)
for k an odd number.

By using Proposition 1.4., we obtain all the elements of U
(
Z

[√
p
])

.

These are ±µk, k ∈ Z, where µk = ck + dk
√

p =
(
c0 + d0

√
p
)k+1

, k ∈ Z,
(c0, d0) being the fundamental solution of the Pell equation x2− py2 = 1.

Proposition 1.5. ( [5] , p.134 ) Let p and k be two rational integers, p �
0, p 6= h2, ∀h ∈ N∗ and let be given the equation x2 − py2 = k.

(i) If (x0, y0) ∈ N∗×N∗ is the minimal solution of the equation x2−py2 =
1, ε = x0 + y0

√
p and (xi, yi), i = 1, r, are different solutions of the equation

x2 − py2 = k, with |xi| ≤
√
|k| ε, |yi| ≤

√
|k|ε
p , then there exists an infinity

of solutions of the given equation and these solutions have the form: µ = ±µi

εn or µ = ±µiε
n, n ∈ Z, where µi = xi + yi

√
p, i = 1, r .

(ii) If the given equation does not have solutions satisfying the above con-
ditions, then it does not have any solutions.

Proposition 1.6. ([7] , p.123-127). Consider the system
{

x2 + ky2 = z2

x2 − ky2 = t2,

where k ∈ N, k ≥ 2 , k is square free. If the system has one solution x, y, z, t ∈
Z∗, then (X,Y, Z, T ),where X = x4+k2y4, Y = 2xyzt, Z = x4+2kx2y2−k2y4,
T = x4−2kx2y2−k2y4 is also a solution of the system. Therefore if the system
has one integer solution, it has an infinity of integer solutions.

Proposition 1.7. ( [7] , p.128 ) The system
{

x2 + 3y2 = z2

x2 − 3y2 = t2

does not have nontrivial integer solutions.

Proposition 1.8. ([3] , p. 115) For p ∈ {3, 7, 11, 19} , the equation
c2 − pd2 = −1 does not have integer solutions.
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2. Diophantine equation m4 −n4 = 3y2

We shall take a particular p, namely we shall consider p a prime natural
number, p ≥ 3.

The main result of this section, which will be applied in the paper, is given
in the following theorem:

Theorem 2.1. The equation m4 −n4 = 3y2 does not have nontrivial
integer solutions.

Proof. Assume that (m,n)=1.Otherwise, if (m,n)=d 6= 1, then d4/3y2

and, after simplifying with d4, we obtain an equation of the same type, sat-
isfying the condition (m,n) = 1 .

There are two cases:
[Case 1.] If m is odd and n is even or conversely, then 3y2 is odd, and,

we get that y is odd .
We transform the equation m4 −n4 = 3y2 and we get n4 +3y2 = m4,

more explicitly, we have (n2)2 + y2 + y2 + y2 = (m2)2, and by applying the
Proposition 1.1., we obtain: n2 =

∣∣3a2 − b2
∣∣ , y = 2ab, m2 = 3a2 + b2, a, b ∈ Z

and y is an even number, in contradiction with the hypothesis on y. Therefore,
the equation m4 −n4 = 3y2 does not have nontrivial integer solutions.

[Case 2.] If m and n are odd numbers, then, by using the same reasoning
as in the Case 1, we obtain n2 =

∣∣3a2 − b2
∣∣ , y = 2ab,m2 = 3a2 + b2, a, b ∈ Z.

If 3a2 � b2, we obtain n2 = 3a2 − b2, y = 2ab,m2 = 3a2 + b2 , a, b ∈ Z.
Moreover if a and b are one even and another odd, then the equation could
have solutions.

If a is an odd number and b is an even number, the equation m2 = 3a2+b2

has, according to Proposition 1.1., only the solutions: b = 3r2 − s2, a = 2rs,
m = 3r2 + s2, r, s ∈ Z .

Then a is an even number, which is a contradiction.
If a is an even number and b is an odd number, from n2 = 3a2− b2, m2 =

3a2 + b2, it results m2 − n2 = 2b2 and y is an even number, which is not the
case.

Therefore, the equation m4 − n4 = 3y2 does not have nontrivial integer

solutions.
If 3a2 � b2, we obtain n2 = b2 − 3a2, y = 2ab,m2 = 3a2 + b2 , a, b ∈ Z.
The Proposition 1.7. implies that the system

{
n2 = b2 − 3a2

m2 = b2 + 3a2
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does not have nontrivial integer solutions and then the equation m4 − n4

= 3y2 does not have also nontrivial integer solutions m, n, y.
As straightforward applications of the Theorem 2.1., we obtain the next

two propositions.

Proposition 2.2. The equations x4 + 18x2 y2 +9y4 = z2 and∣∣x4 − 18x2 y2 + 9y4
∣∣ = z2 do not have also nontrivial integer solutions.

Proof. From the Theorem 2.1., the equation m4 − n4 = 3y2 does not
have nontrivial integer solutions m, n, y. We transform this equation using
the same method as in the previous proof.

The equation m4 − n4 = 3y2 is equivalent to n2 =
∣∣3a2 − b2

∣∣ , y =
2ab,m2 = 3a2 + b2, a, b ∈ Z.

If 3a2 � b2, we obtain n2 = b2 − 3a2, which is equivalent to n2 + 3a2 = b2,
and, by Proposition 1.1., we get n = ±(3u2 − v2), a = 2uv, b = ±(3u2 +
v2), u, v ∈ Z . Therefore n4 = (3u2 − v2)4, and y = ±4uv(3u2 + v2), hence
3y2 = 48u2v2(3u2 + v2)2, and n4 + 3y2 = (3u2 − v2)4 + 48u2v2(3u2 + v2)2,
which is equivalent to n4 + 3y2 = (v4 + 32u4 + 18u2v2)2.

Then the equation m4 = (v4 + 32u4 + 18u2v2)2 does not have nontrivial
integer solutions, hence the equation m2 = v4 + 9u4 + 18u2v2 does not have
nontrivial integer solutions.

We just proved that the equation x4 + 18x2 y2 +9y4 = z2 does not have
nontrivial integer solutions.

If 3a2 � b2, we obtain n2 = b2 − 3a2, y = 2ab,m2 = 3a2 + b2 , a, b ∈
Z. m2 = 3a2 + b2 . Using the Proposition 1.1., we get b = ±(3r2 − s2),
a = 2rs, m = ±(3r2 + s2), r, s ∈ Z . Then m4 = (3r2 + s2)4, 3y2 =
48r2s2(3r2 − s2)2 and m4 − 3y2 = (3r2 + s2)4 + 48r2s2(3r2 − s2)2. Finally,
we get that the equation n4 = (s4 + 32r4 − 18r2s2)2 does not have nontrivial
integer solutions, therefore the equation z2 =

∣∣x4 + 9y4 − 18x2y2
∣∣ does not

have nontrivial integer solutions.
The proof is ready.

Proposition 2.3. The equation c(x4+18x2 y2 +9y4)+12d(x3y+3xy3) =
z2, where (c, d) is a solution of the Pell equation u2 − 3v2 = 1, does not have
nontrivial integer solutions.

Proof. We know (by Proposition 1.2.) that the ring of algebraic integers
A of the quadratic fields Q(

√
3) is Euclidean with respect to the norm N

and A = Z
[√

3
]
. Consider the equation m4 − n4 = 3y2 under the form m4

−3y2= n4 in the ring Z
[√

3
]
, knowing all the time that it has not nontrivial

integer solutions.
Then n4 = (m2 − y

√
3)(m2 + y

√
3) and we try to see if have a proper

common divisor α = c+d
√

3 ∈ Z
[√

3
]
of the elements m2−y

√
3 and m2+y

√
3.
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Such a divisor α will divide also 2m2 and 2y
√

3, which implies that its norm
N(α) =

∣∣c2 − 3d2
∣∣ divides 4m4 and 12y2. As (m, y) = 1, it follows that N(α)

divides 4,hence N(α) ∈ {1, 2, 4} .
N(α) = 1 implies α ∈ U (A) and it is not a proper divisor.
If N(α) = 2, then c2− 3d2 = ±2. The equation c2− 3d2 = 2 does not have

integer solutions, as we see by using the ” game of even and odd ”.
The equation c2−3d2 = −2 could have integer solutions if c and d are odd

numbers. We want to apply the Proposition 1.5. and we need the fundamental
solution of the equation c2−3d2 = 1,obtained by using the continued fraction
method ( by developing

√
3 in the continued fraction). We have

√
3 =

[
1, 1, 2

]
,

hence a0 = a1 = 1, a2 = 2, A1 = 2 and B1 = 1,therefore we get ε = 2 +
√

3
associated to the fundamental solution (2, 1) with positive components. Then

|c| ≤ √
2ε and |d| ≤

√
2ε
3 , by replacing in the last inequality the value of

ε and by an easy computation, we find |d| � 2, hence d ∈ {1,−1} . We get
the solutions α = 1 ± √3.We see easily that 1 +

√
3 and 1 − √3 cannot be

simultaneously divisors neither for m2− y
√

3 nor for m2 + y
√

3, since then m,
y and n are even numbers, which is false.

If α = 1 +
√

3 is the common divisor, then α divides n4. As N(α) = 2
is a prime number in Z, α is prime in Z

[√
3
]
. Hence α divides n and α4

= (1 +
√

3)4divides n4 = (m2 − y
√

3)(m2 + y
√

3). But (1 +
√

3)2 = 2(2 +
√

3)
and it follows that 2 divides m2 − y

√
3 or m2 + y

√
3, implying that m and

y are even numbers, which is false. The same happens for α = 1−√3. Then
m2 − y

√
3 and m2 + y

√
3 do not have common divisor α ∈Z

[√
3
]

with
N(α) = 2.

Take N(α) = 4, hence c2 − 3d2 = ±4.
By considering the possible cases for c and d (odd and even) , we see that

c2− 3d2 = ±4 could have integer solutions with c and d even numbers, hence,
by simplifying with 4, we get the equations a2 − 3b2 = ±1 and α = 2α′,
α′ = a + b

√
3 or α′ = a− b

√
3. Then 2 is a common divisor for m, n, y, which

is not possible.
We just proved that m2 + y

√
3 and m2 − y

√
3 are prime to each other in

Z
[√

3
]
. But m4−n4 = 3y2 is equivalent to (m2−y

√
3)(m2+y

√
3) = n4. Then

there exists an element f + g
√

3 ∈ Z
[√

3
]

and there exists k ∈ Z such that
m2 +y

√
3 = (f +g

√
3)4(2+

√
3)k or m2 +y

√
3 = −(f +g

√
3)4 · (2+

√
3)k since

the units of the ring Z
[√

3
]

are ±(2 +
√

3)k, k ∈ Z.
From the algorithm for computing the solutions of Pell equations, we obtain

that c+ d
√

3 ∈ {±(2 +
√

3)k, k ∈ Z
}

.Then m2 + y
√

3 = (f + g
√

3)4(c+ d
√

3)
and we get the system:

{
m2 = cf4 + 18cf2g2 + 9cg4 + 12f3gd + 36fg3d

y = 4cf3g + 12cfg3 + dg4 + 18df2g2 + 9dg4 .
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This is equivalent to the system:
{

m2 = c(f4 + 18f2g2 + 9g4) + 12d(f3g + 3fg3)
y = d(f4 + 18f2g2 + 9g4) + 4c(f3g + 3fg3). (1)

As the equation m4 − n4 = 3y2 does not have nontrivial integer solutions,
the system (1) also does not have nontrivial integer solutions. Then the first
equation of the system

m2 = c(f4 + 18f2g2 + 9g4) + 12d(f3g + 3fg3)

does not have nontrivial integer solutions.

3. Remarks on some Diophantine equations

We have seen that, in the case p = 3, the equation m4−n4 = 3y2 does
not have nontrivial integer solutions.

Remark 3.1. On the other hand, the equation m4−n4 = 7y2 has at least
two solutions:

(i) m = 4, n = 3, y = 5 and (ii) m = 463, n = 113, y = 80 880, which
means that it has many solutions.

How many solutions could have a Diophantine equation of the form
m4 − n4 = py2, for a prime p greater then 3 ?

We answer by the next theorem:

Theorem 3.2. Let p be a natural prime number greater than 3. If the
equation m4greater than 3. If the equation m4 − n4 = py2 has a solution

m,n, y ∈ Z∗, then it has an infinity of integer solutions.

Proof. As above, (m,n)=1,otherwise the equation can be simplified by
d4,where d =(m,n) 6= 1.

We can consider the equivalent form of the equation, n4 + py2 = m4, and
we apply to it

Proposition 1.1. Its solution is of the form: n2 =
∣∣pa2 − b2

∣∣ , y = 2ab,
m2 = pa2 + b2, with a, b ∈ Z∗. We see that y has to be even, therefore m and
n are odd numbers.

If pa2 � b2 we obtain n2 = pa2 − b2, y = 2ab, m2 = pa2 + b2, a, b ∈ Z∗.
The last equation m2 = pa2 + b2 has, according to Proposition 1.1., only

the solutions: b = pr2− s2, a = 2rs, m = pr2 + s2, r, s ∈ Z∗.Then a is an even
number and b is an odd number. From n2 = pa2 − b2 and m2 = pa2 + b2, it
follows m2 − n2 = 2b2.
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But m and n are are odd numbers, hence m2, n2 ≡ 1(mod 4), therefore
m2 − n2 ≡ 0(mod 4).

Since b is odd, then b2 ≡ 1(mod 4) ⇒ 2b2 ≡ 2(mod 4), hence the equation
m2 − n2 = 2b2 does not have nontrivial integer solutions.

If pa2 � b2, the first equation is n2 = b2 − pa2, a, b ∈ Z and, from the
Proposition 1.6, if the system:

{
n2 = b2 − pa2

m2 = pa2 + b2,
a, b ∈ Z,

has one solution in the set of integer numbers, then it has one infinity of
integer solutions. It’s the same for the equation m4 −n4 = py2, p prime,
p ≥ 3 : if it has one solution in the set of integer numbers, then it has an
infinity of integer solutions.

Proposition 3.3. Let p be a prime natural number, p≥ 3. If the equation
x4 +6px2 y2 +p2y4 = z2 has a nontrivial solution in Z, then it has an infinity
of integer solutions. Also, if the equation

∣∣x4 − 6px2 y2 + p2y4
∣∣ = z2 has a

nontrivial solution in Z, then it has an infinity of integer solutions.

Proof. From the Theorem 3.2., if the equation m4 −n4 = = py2 has a
solution m,n, y ∈ Z, then it has infinitely many integer solutions.

The equation m4 −n4 = py2 is equivalent to the system:





n2 =
∣∣pa2 − b2

∣∣
y = 2ab

m2 = pa2 + b2,
a, b ∈ Z∗.

If pa2 � b2, we obtain n2 = b2 − pa2,therefore n2 + pa2 = b2.
By using the Proposition 1.1., we get the form of the solutions: n = ±(pu2−

v2), a = 2uv, b = ±(pu2 + v2), u, v ∈ Z∗, which implies that n4 = (pu2− v2)4.
The second equation: y = 2ab is equivalent to y = ±4uv(pu2 + v2) and this
implies that py2 = 16pu2v2(pu2 + v2)2.

By introducing n4 and py2 in the given equation, we obtain m4 = (v4 +
p2u4 + 6pu2v2)2, which is equivalent to m2 = v4 + p2u4 + 6pu2v2.

But, from Theorem 3.2., if the equation m2 = v4 + p2u4 + 6pu2v2 has one
solution m,u, v ∈ Z∗,then it has an infinity of integer solutions.

Hence, if the equation x4+6px2 y2 +p2y4 = z2 has one solution x, y, z ∈ Z,
then it has an infinity of integer solutions.

If pa2 � b2, we obtain : n2 = b2 − pa2, y = 2ab, m2 = pa2 + b2, with a, b
∈ Z∗.

Take m2 = pa2 + b2 and apply Proposition 1.1., for getting the equivalent
system:
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



b = ±(pr2 − s2)
a = 2rs

m = ±(pr2 + s2),
r, s ∈ Z

and m4 = (pr2 + s2)4.
Replacing py2 and m4 in the given equation, we obtain n4 = (s4 + p2r4 −

6pr2s2)2, therefore n2 =
∣∣s4 + p2r4 − 6pr2s2

∣∣ .

By Theorem 3.2., we know that, if the equation n2 =
∣∣s4 + p2r4 − 6pr2s2

∣∣
has one solution m,u, v ∈ Z∗, then it has an infinity of integer solutions.

Hence, if the equation
∣∣x4 − 6px2 y2 + p2y4

∣∣ = z2 has one solution x, y, z ∈
Z, then it has an infinity of integer solutions.

Proposition 3.4. If the equation c(x4 + 6px2 y2 +p2y4) + 4pd(x3y +
pxy3) = z2, where p ∈ {11, 19} and (c, d) is a solution of the Pell equation
u2 − pv2 = 1 has one solution x, y, z ∈ Z∗, then it has an infinity of integer
solutions.

Proof. If p ∈ {11, 19} then p ≡ 3 (mod 8) and p ≡ 3 (mod 4).
From Proposition 1.2., the ring of integers A of the quadratic field Q(

√
p)

is Euclidean with respect to the norm N, A = Z
[√

p
]
.

We study the equation m4 −n4 = py2, where p is 11 or 19, in the ring

Z
[√

p
]
.

We take the same way as in the proof of the Theorem 3.2. We have the
equivalent form of the given equation: (m2 − y

√
p)(m2 + y

√
p) = n4. Let α ∈

Z
[√

p
]
be a common divisor of (m2−y

√
p) and (m2+y

√
p). Take α = c+d

√
p,

c, d ∈ Z, α /∈ U
(

Z
[√

p
])

.
As in the proof of the Theorem 3.2., we get N(α) ∈ {1, 2, 4} and, since

α /∈ U
(

Z
[√

p
])

, N(α) ∈ {2, 4} .

But N(α) = 2 gives the equations
∣∣c2 − pd2

∣∣ = 2, which means c2 − pd2 =
±2.

The equation c2 − pd2 = 2 has not integers solutions, as we see by taking
all the cases for c and d.

For p = 11, we consider the equation: c2 − 11d2 = −2.We use the
equation c2 − 11d2 = 1, developing

√
11 in a continued fraction. We get:

a0 = 3, a1 = 3, a2 = 6, and repeated figures, hence
√

11 = [a0, a1, a2] =[
3, 3, 6

]
. We need A1 = 10 and B1 = 3, therefore the fundamental solution of

the equation c2 − 11d2 = 1 is (10; 3) and ε = 10 + 3
√

11.
If the equation c2 − 11d2 = −2 has integer solutions (c, d), then |c| ≤ √

2ε

and |d| ≤
√

2ε
11 , hence |d| ≤

√
20+6

√
11

11 =
√

(3+
√

11)2

11 = 3+
√

11√
11

� 2.

Since d ∈ Z is an odd number, we get d ∈ {−1, 1} and c ∈ {−3, 3} . Hence
the solutions of the equation c2 − 11d2 = −2 are µ = ±εk(3 ±√11), k ∈ Z,
i.e. µ = ±(10 + 3

√
11)k(3±√11), k ∈ Z.
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Then a common divisor α, with N(α) = 2 ( in Z
[√

11
]
) of m2−√11y and

m2 +
√

11y could be α = ±(10 + 3
√

11)k(3±√11), k ∈ Z.
As 3 +

√
11 and 3 −√11 are prime elements in Z

[√
11

]
, because of their

norm, if (3+
√

11)(3−√11) / (m2+y
√

11), then 2 / (m2+y
√

11), and therefore
2 / m and 2 / y, which is not true.

We get that m2+y
√

11 can have ( in Z
[√

11
]
) only divisors of the type ±(10+

3
√

11)t(3 +
√

11), t ∈ Z or of the type ±(10 + 3
√

11)t(3−√11), t ∈ Z,but not
of both types simultaneously.

Analogously for m2 − y
√

11.
If (3±√11)k / (m2 + y

√
11), with k ∈ N, k ≥ 2

(
in Z

[√
11

])
, then again

m and n are even numbers, which is not the case.
Analogously, m2 − y

√
11 cannot be divided by (3±√11)2.

Hence (3 +
√

11)2 or (3−√11)2 is the biggest power dividing n4.
But if 3 +

√
11 divides m2 + y

√
11 and m2 − y

√
11, then (3 +

√
11)2

/(m2 + y
√

11)(m2 − y
√

11). From (3 +
√

11) / n4, we get that (3 +
√

11)4

/ n4,contradicting the assumption that (3 +
√

11)2 is the biggest power of
3 +

√
11 which divides n4.

The same for 3−√11, it cannot divide n4.
We have proved that m2 + y

√
11 and m2 − y

√
11 cannot have common

divisors in Z
[√

11
]
, with the norm 2.

We have the same argument in the case p = 19 and the equation:
c2 − 19d2 = −2.

Developing α =
√

19 in a continued fraction, we get: a0 = 4, a1 = 2,
a2 = 1, a3 = 3, a4 = 1, a5 = 2, a6 = 8 and repeated figures, hence

√
19 =

[a0, a1, a2, a3, a4, a5, a6] =
[
4, 2, 1, 3, 1, 2, 8

]
. We have (c0, d0) = (A5, B5), and

A5 = 170, hence c0 = 170, B5 = 39, hence d0 = 39. Therefore ε = 170+39
√

19.
If the equation c2 − 19d2 = −2 has integer solutions (c, d), then |c| ≤ √

2ε

and |d| ≤
√

2ε
19 =

√
340+78

√
19

19 � 37. Since d is an odd number, we have
d ∈ {±1,±3, ...,±35} .

We come back to the equation c2 − 19d2 = −2.
If d ∈ {±1,±11,±21,±31,±9,±19,±29} , this implies that the last figure

of d2 is 1, the last figure of 19 d2 is 9, hence the last figure of c2 is 7 and c /∈ Z.
If d ∈ {±5,±15,±25,±35} , this implies that the last figure of d2 is 5, the

last figure of 19 d2 is 5, hence the last figure of c2 is 3 and c /∈ Z.
The cases which remain to be studied are

d ∈ {±3,±7,±13,±17,±23,±27,±33} .

If d ∈ {±3} , then c ∈ {±13} , hence (13, 3), (13,−3), (−13, 3), (−13,−3)
are solutions of the equation c2 − 19d2 = −2.
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For d ∈ {±7,±13,±17,±23,±27,±33} , we cannot find a solution (c, d) ∈
Z2.

Therefore the integer solutions of the equation c2 − 19d2 = −2 are of the
form ± (

170 + 39
√

19
)t (

13± 3
√

19
)
, t ∈ Z.

A divisor α,with N(α) = 2 ( in Z
[√

19
]
) of m2 − y

√
19and m2 + y

√
19

could be ±(170 + 39
√

19)t(13± 3
√

19), t ∈ Z.
As in the Theorem 3.2., we show that, if 13 + 3

√
19 divides m2 + y

√
19,

then 13− 3
√

19 cannot divide m2− y
√

19 and conversely. Then we show that,
if (13+3

√
19)t, t ∈ N∗, divides one of elements m2±y

√
19, then t = 1. Hence

the common divisor α of m2± y
√

19 can be either 13 + 3
√

19 or 13− 3
√

19. If
α = 13+3

√
19( or 13−3

√
19), then α2 divides n4. Since α is prime in Z

[√
19

]
,

α divides n and therefore α4 divides n4 =
(
m2 + y

√
19

) (
m2 − y

√
19

)
, in

contradiction with the assumption that α2 is the greatest power of α dividing
n4.

We get that, for p ∈ {11, 19} , N(α) 6= 2.
If N(α) = 4, then we get the equations c2 − pd2 = ±4, p ∈ {11, 19} .
We use the same argument as above, obtaining the impossibility of getting

solutions for these equations.
We have just proved that, for p ∈ {11, 19} ,m2 + y

√
p and m2 − y

√
p are

relatively prime in Z
[√

p
]
, which means that m2+y

√
p = (c+d

√
p)(f+g

√
p)4,

with f, g ∈ Z and (c, d) being a solution of the Pell equation u2 − pv2 = 1. Of
course, then m2 − y

√
p = (c− d

√
p)(f − g

√
p).

By identifying the elements in the two members of the two equalities, we
get the system: {

m2 = c(f4 + 6pf2g2 + p2g4) + 4pd(f3g + pfg3)
y = d(f4 + 6pf2g2 + p2g4) + 4c(f3g + pfg3) .

It is obvious that, if the first equation of the above system has solutions
in Z∗, then, from the second equation, we get y ∈ Z.

Hence as the equation m4−n4 = py2 has either none nontrivial integer
solutions or an infinity of nontrivial integer solutions, the same will happen
with the first equation of the above system:

Either the equation m2 = c(f4 + 6pf2g2 + p2g4) + 4pd(f3g + pfg3)
has no nontrivial integer solutions (m, f, g) or it has an infinity of nontrivial
integer solutions, where (c, d) is a solution of the Pell equation u2 − dv2 = 1.

Proposition 3.5. The equation of the form c(x4 + 42x2 y2 +49y4) +
28d(x3y+7xy3) = z2, where (c, d) is a solution of the Pell equation u2−7v2 =
1 has an infinity of integer solutions.

Proof.From Proposition 1.2., if p = 7, the ring of integers A of the
quadratic field Q(

√
p) is Euclidean with respect to the norm N. Since 7 ≡ 3

(mod 4), A=Z
[√

7
]
.
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We study the equation m4 − n4 = 7y2 in the ring Z
[√

7
]
.

This equation has at least a solution: m = 463, n = 113 , y = 80 880. But
then it has an infinity of integer solutions.

Now, consider m4 −n4 =7y2 written as (m2 − y
√

7)(m2 + y
√

7) = n4.
Let α ∈ Z

[√
7
]

be a common divisor of (m2 − y
√

7) and (m2 + y
√

7), then
α = c + d

√
7, c, d ∈ Z.

As α/(m2 + y
√

7) and α/(m2 − y
√

7), we have α/2m2 and α/2y
√

7,so
N(α)/4m4 (in Z) and N(α)/28y2 (in Z), hence N(α)/(4m4, 28y2). But (m,n) =
1 implies (m, y) = 1 (if (m, y) = d 〉1 then d/n, which is false). Analogously
by (m, p) = 1, we get (m4, py2) = 1, (4m4, 28y2) = 4, hence N(α) ∈ {1, 2, 4} .

If N(α) = 2, then
∣∣c2 − 7d2

∣∣ = 2, this is c2 − 7d2 = ±2.

Firstly we solve the equation c2 − 7d2 = 2. We see that the equation
c2 − 7d2 = 2 could have integer solutions (c, d), with c, d odd numbers.

We consider the equation c2−7d2 = 1. We develop α =
√

7 in a continued
fraction and we get: a0 =

[√
7
]

= 2, α1 =
√

7+2
3 , a1 = 1, α2 =

√
7+1
2 , a2 =

1, α3 =
√

7+1
3 , a3 = 1, α4 =

√
7 + 2, a4 = 4, α5 =

√
7+2
3 = α1.

We get that
√

7 = [a0, a1, a2, a3, a4] , hence
√

7 =
[
2, 1, 1, 1, 4

]
, and the

number of the incomplete denominators is k = 4. Using Lagrange theorem, we
find the fundamental solution of the equation c2− 7d2 = 1 namely: (8; 3).We
have ε = 8 + 3

√
7.Then c2 − 7d2 = 2 has integer solutions (c, d), if |c| ≤ √

2ε

and |d| ≤
√

2ε
7 , and this implies |d| ≤

√
2(8+3

√
7)

7 � 8
3 .

But d ∈ Z, d is an odd number, hence d ∈ {−1, 1} .

We go back to the equation c2 − 7d2 = 2 and we get c ∈ {−3, 3} , hence
(3, 1), (3,−1), (−3, 1), (−3,−1) are solutions for the equation c2−7d2 = 2.

All integer solutions of the equation c2 − 7d2 = 2 are µ = ±εt(3 ± √7),
t ∈ Z.

We prove that m2 + y
√

7 and m2 − y
√

7 do not have common divisors
of the type ±(8 + 3

√
7)t(3±√7), t ∈ Z.

If (3+
√

7) / (m2+y
√

7) and (3−√7)/(m2+y
√

7)
(

in Z
[√

7
])

, as 3+
√

7
and 3−√7 are prime elements in Z

[√
7
]

( their norm is 2, a prime
element in N), we get (3+

√
7)(3−√7) / (m2+y

√
7),hence 2 / (m2+y

√
7).Then

there exists (a + b
√

7) ∈ Z
[√

7
]

such that m2 + y
√

7 = 2(a + b
√

7),hence
m2 = 2a, y = 2b implying 2 / m and 2 / y. But m4−n4 = 7y2, and then 2/n,
a contradiction with the fact that (m,n) = 1. We get that m2 + y

√
7 can have

( in Z
[√

7
]
) only divisors of the type ±(8 + 3

√
7)t(3 +

√
7), t ∈ Z or the type

±(8 + 3
√

7)t(3−√7), t ∈ Z, but not of both types simultaneously.
Analogously for m2 − y

√
7.

If (3 +
√

7)2 / (m2 + y
√

7)
(

in Z
[√

7
])

, hence (16 + 6
√

7) / (m2 + y
√

7),
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implying 2/(m2 + y
√

7),hence 2 / m and 2 / y ( in Z), hence 2 / n, a contra-
diction with the fact that (m,n) = 1.

We get that (3 +
√

7)k - (m2 + y
√

7), for k ∈ N, k ≥ 2. Analogously for
m2 − y

√
7.

If (3 +
√

7) / (m2 + y
√

7) and (3 +
√

7) / (m2 − y
√

7)
(

in Z
[√

7
])

,then
(3+

√
7)2 / /(m2+y

√
7)(m2−y

√
7), equivalently to (3+

√
7)2 /

(
m4 − 7y2

)
,

hence (3 +
√

7)2 / n4 ((3 +
√

7)2 is the biggest power of 3 +
√

7 with divides
n4).

But 3 +
√

7 is a prime element in Z
[√

7
]
(since N(3 +

√
7) = 2 is a prime

element in N) hence (3 +
√

7) / n and (3 +
√

7)4 / n4, contradiction with the
fact that 2 is the biggest power of (3 +

√
7) which divides n4.

From the previously proved, we get that m2 + y
√

7 and m2 − y
√

7 can’t
have common divisors of the type ±(8 + 3

√
7)t(3 +

√
7), t ∈ Z, in Z

[√
7
]
.

Analogously, we prove that m2 + y
√

7 and m2− y
√

7 can’t have common
divisors of the type ±(8 + 3

√
7)t(3−√7), t ∈ Z, in Z

[√
7
]
.

Now, we solve the equation c2 − 7d2 = −2. Taking all the cases for c and
d, we get that c2 − 7d2 6= −2.

As before, m2 + y
√

7 and m2 − y
√

7 can’t have common divisors α ∈
Z

[√
7
]
, if N(α) = 2.

If N(α) = 4, then c2 − 7d2 = ±4.
Studying the equation c2 − 7d2 = 4, we see that c and d have to be even.
We denote c = 2c′, d = 2d′, c′, d′ ∈ Z. Then c2 − 7d2 = 4 is equivalent

to (c′)2 − 7(d′)2 = 1. Denote α′ = c′ + d′
√

7, with N(α′) = 1, implying
α′ ∈ U

(
Z

[√
7
])

, and α = 2α′. But α / (m2 + y
√

7) implies 2 /

(m2 + y
√

7) ( in Z
[√

7
]

), hence there exists (a + b
√

7) ∈ Z
[√

7
]

such that
m2 + y

√
7 = 2(a + b

√
7), hence m2 = 2a and y = 2b, implying 2 / m and 2 /

y ( in Z). But m4−n4 = 7y2 implies 2 / n, a contradiction with the fact that
(m,n) = 1.

The case c2 − 7d2 = −4 is similar, hence N(α) 6= 4.
We obtained that N(α) = 1. As m2 + y

√
7 and m2 − y

√
7 are prime

to each other in Z
[√

7
]

and (m2 + y
√

7)( m2 − y
√

7) = n4, there exists
(f + g

√
7) ∈ Z

[√
7
]

and there exists k ∈ Z such that m2 + y
√

7 = (c +
d
√

7)(f + g
√

7)4,where c + d
√

7 ∈ {±(8 + 3
√

7)k, k ∈ Z
}

, (8; 3) being the
fundamental solution of the Pell equation u2 − 7v2 = 1.

We obtain: m2+y
√

7 = (c+d
√

7)(f4+4f3g
√

7+42f2g2+28fg3
√

7+49g4).
We get the system:{

m2 = cf4 + 42cf2g2 + 49cg4 + 28f3gd + 196fg3d
y = 4cf3g + 28cfg3 + df4 + 42df2g2 + 49dg4 ,

which is equivalent to the system:
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{
m2 = c(f4 + 42f2g2 + 49g4) + 28d(f3g + 7fg3)
y = d(f4 + 42f2g2 + 49g4) + 4c(f3g + 7fg3) .

We have already proved that the equation m4 − n4 = 7y2 has an infinity
of integer solutions.

Hence, the system{
m2 = c(f4 + 42f2g2 + 49g4) + 28d(f3g + 7fg3)
y = d(f4 + 42f2g2 + 49g4) + 4c(f3g + 7fg3)

has an infinity of integer solutions. Moreover, the equation
m2 = c(f4 + 42f2g2 + 49g4) + 28d(f3g + 7fg3)

has an infinity of integer solutions.

Remark 3.6. We have got some solutions:
(i) f = 36, g = −13, m = 463, for k = 4, c = 32 257 and d = 12 192,
(ii) f = 561, g = −212, m = 463, for k = 8, c = 2 081 028 097 and

d = 859 672 304.
This has been done by considering the corresponding solutions for the equa-

tion
m4− n4 = 7y2, where m = 463, y = 80 880 and n = 113.
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