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ON SOME DIOPHANTINE EQUATIONS (I)

Diana Savin

Abstract
In this paper we study the equation m*—n* = py? where p is a prime
natural number, p> 3. Using the above result, we study the equations
zt + 6pz?y® + p*y* = 2% and the equations c(z* + 6pz®y® + p*y?) +
4pdy (2®y + pry®) = 2%, where the prime number p € {3,7,11,19} and
(ck, dy) is a solution of the Pell equation, either of the form ¢ —pd® = 1
or of the form ¢ — pd® = —1.

I. Preliminaries.
We recall some necessary results.

Proposition 1.1. ([3],p.74) The integer solutions of the Diophantine equa-
tion

2 2 2 2
T+ T+ .+ T =T

are the following ones

ry =+(m? +mi+..+mi_ | —m})
To = 2mimy

T = 2mp_1my
Tpr1 = (M3 +m3+ .. +mi_, +m}),

with mq, ..., my, integer numbers.

From the geometrical point of view, the solutions (X1, %2, ooy Ty Tpt1)
are the sizes x1, %o, ...,z of a right hyper-parallelipiped in the space R* and
Ty 1S the length of its diagonal.

Proposition 1.2. ([1],p.150) The quadratic field Q(+/d), where d € N* ,
d is square free, has an Euclidean ring of integers A (with respect to the norm
N), for d € {2,3,5,6,7,11,13,17,19,21, 29, 33,37,41,57,73} .
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Proposition 1.3.([1],p.141) Let K=Q(+/d) be a quadratic field with A as
its ring of integers and a € A. Then a €U(A) if and only if N(a)=1.

Proposition 1.4.(Lagrange, [2], p.168)Let D > 2 be a rational square-
free integer and k be the number of incomplete demominators which make
up the period of the reqular continued fraction of the number o = /D. Then
(Trs Yn)s with Ty, = Apk—1, Yn = Bnk—1, where n € N*when k is an even num-
ber, and n € 2N* when k is an odd number, verifies the equation x?>—Dy? =1
and gives all the positive solutions of the Pell equation. Particularly, the fun-
damental solution is (Ag_1, Bx—1) for k an even number, and (Asg—_1, Bak—1)
for k an odd number.

By using Proposition 1.4., we obtain all the elements of U (Z [\/f)]) .

These are uy, k € Z, where p, = cp + dp\/p = (co —l—do\/f?)kH, ke Z,
(co,do) being the fundamental solution of the Pell equation 22— py? = 1.

Proposition 1.5. ( [5], p.134 ) Let p and k be two rational integers, p 3
0, p # h%,Vh € N* and let be given the equation % — py? = k.

(i) If (z0,1y0) € N*x N* is the minimal solution of the equation x*—py? =
1, e = xo + yo/P and (x;,y;), i = 1,7, are different solutions of the equation
2?2 —py? =k, with |z;] < \/|kle, |yi] < %, then there exists an infinity
of solutions of the given equation and these solutions have the form: p = tpu,
e™ or p=tp;e",n € Z, where p; = x; +y;\/p, i = 1,7 .

(i) If the given equation does not have solutions satisfying the above con-
ditions, then it does not have any solutions.

Proposition 1.6. ([7], p.123-127). Consider the system

{x2+ky2:z2

2?2 — ky? =12,

where k € N, k > 2,k is square free. If the system has one solution x,y, z,t €
Z*, then (X,Y,Z,T),where X = x*+k*y*)Y = 2xyzt, Z = x*+2ka?y? —k3y?,
T = x* —2kx%y? —k%y* is also a solution of the system. Therefore if the system
has one integer solution, it has an infinity of integer solutions.

Proposition 1.7. ( [7], p.128 ) The system
22 4 3y% = 22
2?2 — 3y? = 12
does not have nontrivial integer solutions.

Proposition 1.8. ([3], p. 115) For p € {3,7,11,19}, the equation
c® — pd? = —1 does not have integer solutions.
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2. Diophantine equation m?* —n* = 3y

We shall take a particular p, namely we shall consider p a prime natural
number, p > 3.

The main result of this section, which will be applied in the paper, is given
in the following theorem:

4

Theorem 2.1. The equation m* —n* = 3y? does not have nontrivial

integer solutions.

Proof. Assume that (m,n)=1.Otherwise, if (m,n)=d # 1, then d*/3y?
and, after simplifying with d*, we obtain an equation of the same type, sat-
isfying the condition (m,n) = 1.

There are two cases:

[Case 1.] If m is odd and n is even or conversely, then 3y? is odd, and,
we get that y is odd .

We transform the equation m?* —n* = 3y? and we get n* +3y% = m?,
more explicitly, we have (n?)? + y? + y? + 32> = (m?)?, and by applying the
Proposition 1.1., we obtain: n? = ’3a2 —b?|, y=2ab, m?> =3a%2+b a,bcZ
and y is an even number, in contradiction with the hypothesis on y. Therefore,
the equation m* —n* = 3y? does not have nontrivial integer solutions.

[Case 2.] If m and n are odd numbers, then, by using the same reasoning
as in the Case 1, we obtain n? = |3a? — b%|, y = 2ab,m? = 3a*> + b?, a,b € Z.

If 3a® Z b2, we obtain n? = 3a? — b2, y = 2ab,m? = 3a® + b* , a,b € Z.
Moreover if a and b are one even and another odd, then the equation could
have solutions.

If a is an odd number and b is an even number, the equation m? = 3a?+b?
has, according to Proposition 1.1., only the solutions: b = 3r? — s2, a = 2rs,
m=3r+s% rscZ.

Then a is an even number, which is a contradiction.

If @ is an even number and b is an odd number, from n? = 3a% —b%,m? =
3a? + b2, it results m? — n? = 2b% and y is an even number, which is not the
case.

Therefore, the equation m

4

4 — p* = 3y? does not have nontrivial integer

solutions.
If 3a? £ b2, we obtain n? = b — 3a?, y = 2ab,m? = 3a® + b* , a,b € Z.
The Proposition 1.7. implies that the system

n? = b2 — 3a2
m? = b2 + 3a?
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does not have nontrivial integer solutions and then the equation m?* — n*

= 3y? does not have also nontrivial integer solutions m, n, y.
As straightforward applications of the Theorem 2.1., we obtain the next
two propositions.

Proposition 2.2. The equations z* + 1822 y? +9y* = 22 and
x* — 1822 y? + 9y*| = 22 do not have also nontrivial integer solutions.

Proof. From the Theorem 2.1., the equation m* — n* = 3y? does not

have nontrivial integer solutions m, n, y. We transform this equation using
the same method as in the previous proof.

The equation m* — n* = 3y? is equivalent to n? = [3a® — V2|, y =
2ab,m? = 3a® + b?, a,b € Z.

If 3a? £ b?, we obtain n? = b? — 3a?, which is equivalent to n? + 3a? = b?,
and, by Proposition 1.1., we get n = +(3u? —v?), a = 2uv, b = +(3u? +
v?), u,v € Z . Therefore n* = (3u? — v?)4, and y = +4uv(3u?® + v?), hence
3y? = 48u2v?(3u? + v?)?, and n* + 3y? = (3u? — v?)* + 48u2v?(3u? + v?)?,
which is equivalent to n* + 3y? = (v? + 3%2u? + 18u?v?)%.

Then the equation m* = (v* + 32u* + 18u?v?)? does not have nontrivial
integer solutions, hence the equation m? = v* + 9u* + 18u2v? does not have
nontrivial integer solutions.

We just proved that the equation z* 4 1822 32 +9y* = 22 does not have
nontrivial integer solutions.

If 3a® Z b?, we obtain n? = b? — 3a?, y = 2ab,m? = 3a®> +b* , a,b €
Z.m? = 3a® + b . Using the Proposition 1.1., we get b = +(3r% — s2),
a = 2rs, m = £(3r% + %), r,s € Z . Then m* = (3r? + s?)4, 3y =
48r%5%(3r? — 52)% and m* — 3y? = (3r? + s2)* + 48r252(3r? — 5?)2. Finally,
we get that the equation n* = (s* + 32r* — 18r25%)? does not have nontrivial
integer solutions, therefore the equation 2% = |z* + 9y* — 1822y?| does not
have nontrivial integer solutions.

The proof is ready.

Proposition 2.3. The equation c(x*+ 1822 y? +9y*) +12d(x>y+32y?) =
22, where (c,d) is a solution of the Pell equation u? — 3v? = 1, does not have
nontrivial integer solutions.

Proof. We know (by Proposition 1.2.) that the ring of algebraic integers
A of the quadratic fields Q(v/3) is Euclidean with respect to the norm N
and A=7 [\/ﬂ . Consider the equation m* — n* = 3y? under the form m*
—3y%=n* in the ring Z [\/ﬂ, knowing all the time that it has not nontrivial
integer solutions.

Then n? = (m? — yv3)(m? + yv/3) and we try to see if have a proper
common divisor @ = c+dv/3 € Z [\/3] of the elements m2—y\/§ and m2—|—y\/§.
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Such a divisor @ will divide also 2m? and 2yv/3, which implies that its norm
N(a) = |c* = 3d?| divides 4m* and 12y2. As (m,y) = 1, it follows that N(a)
divides 4,hence N(«a) € {1,2,4}.

N(a) =1 implies a € U (A) and it is not a proper divisor.

If N(a) = 2, then ¢? — 3d? = +2. The equation ¢? — 3d?> = 2 does not have
integer solutions, as we see by using the ” game of even and odd ”.

The equation ¢ — 3d?> = —2 could have integer solutions if ¢ and d are odd
numbers. We want to apply the Proposition 1.5. and we need the fundamental
solution of the equation ¢ —3d? = 1,obtained by using the continued fraction
method ( by developing v/3 in the continued fraction). We havey/3 = [1, 1,72] ,
hence ag = a1 =1, ag = 2, A; = 2 and B; = 1,therefore we get ¢ = 2 + V3
associated to the fundamental solution (2,1) with positive components. Then
lc| < V2 and |d| < \/?{7 by replacing in the last inequality the value of
¢ and by an easy computation, we find |d| < 2, hence d € {1,—1}. We get
the solutions @ = 1 + /3. We see easily that 1+ V3 and 1 — /3 cannot be
simultaneously divisors neither for m? — y+/3 nor for m? +y+/3, since then m,
y and n are even numbers, which is false.

If @ =1++/3 isthe common divisor, then o divides n*. As N(a) = 2
is a prime number in Z, « is prime in Z[\/g] Hence o divides n and o*
= (14 v/3)*divides n* = (m? — yv/3)(m? + yv/3). But (1 ++/3)? =2(2+/3)
and it follows that 2 divides m? — yv/3 or m? + yv/3, implying that m and
y are even numbers, which is false. The same happens for a = 1 — /3. Then
m? —yv/3 and m? + yv/3 do not have common divisor o EZ[\/ﬂ with
N(a) =2.

Take N(«) = 4, hence ¢? — 3d* = +4.

By considering the possible cases for ¢ and d (odd and even), we see that
c? — 3d? = £4 could have integer solutions with ¢ and d even numbers, hence,
by simplifying with 4, we get the equations a? — 3b> = +1 and a = 2¢/,
o =a+by3ora =a—by3. Then 2 is a common divisor for m, n, y, which
is not possible.

We just proved that m? + yv/3 and m? — y+/3 are prime to each other in
Z [V3] . But m*—n* = 3y? is equivalent to (m?—yv/3)(m*+yv/3) = n*. Then
there exists an element f + gv/3 € Z [\/ﬂ and there exists k € Z such that
m? +yV3 = (f+9V3)* 2+ V3)F or m® +yv/3 = —(f+9gv3)*- (2+V/3)F since
the units of the ring Z [v/3] are +(2 4+ v/3)*,k € Z.

From the algorithm for computing the solutions of Pell equations, we obtain
that c+dv/3 € {£(2+ V3)*, k € Z} Then m?*+yv3 = (f+gv3)*(c+dV3)
and we get the system:

m? = cf* + 18¢cf%g? + 9cg* + 12f3gd + 36 fg>d
y =4dcf3g + 12¢fg® + dg* + 18df?g> + 9dg*
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This is equivalent to the system:

m? = c(f* +18f%¢* + 9¢*) +12d(f%g + 3f4°) 1)
y = d(f* +18f2g> + 9g%) + 4c(f39 + 3f9°).

As the equation m* — n* = 3y? does not have nontrivial integer solutions,

the system (1) also does not have nontrivial integer solutions. Then the first
equation of the system

m? = c(f* + 1829 + 9g*) + 12d(f3g + 3f¢%)

does not have nontrivial integer solutions.

3. Remarks on some Diophantine equations

4

We have seen that, in the case p = 3, the equation m* —n* = 3y? does

not have nontrivial integer solutions.

Remark 3.1. On the other hand, the equation m* —n* = Ty? has at least
two solutions:
(i) m=4,n=3,y =05 and (i3) m = 463, n = 113, y = 80 880, which
means that it has many solutions.
How many solutions could have a Diophantine equation of the form
m* —n* = py?, for a prime p greater then 3 ?

We answer by the next theorem:

Theorem 3.2. Let p be a natural prime number greater than 3. If the

equation m*greater than 3. If the equation m* —n* = py? has a solution

m,n,y € Z*, then it has an infinity of integer solutions.

Proof. As above, (m,n)=1,otherwise the equation can be simplified by
d* ,where d =(m,n) # 1.

We can consider the equivalent form of the equation, n* + py? = m
we apply to it

Proposition 1.1. Its solution is of the form: n? = ’pa2 — b2|7 y = 2ab,
m? = pa® + b%, with a,b € Z*. We see that y has to be even, therefore m and
n are odd numbers.

If pa? Z b2 we obtain n? = pa® — b?,y = 2ab, m? = pa® + b%, a,b € Z*.

The last equation m? = pa? + b? has, according to Proposition 1.1., only
the solutions: b = pr? —s?,a = 2rs,m = pr2+s2, r,s € Z*.Then a is an even
number and b is an odd number. From n? = pa? — b? and m? = pa® + b, it
follows m? — n? = 2b2.

4 and
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But m and n are are odd numbers, hence m?, n?> = 1(mod 4), therefore
m? — n? = 0(mod 4).

Since b is odd, then b? = 1(mod 4) = 2b? = 2(mod 4), hence the equation
m? — n? = 2b% does not have nontrivial integer solutions.

If pa® £ b?, the first equation is n? = b — pa?, a,b € Z and, from the
Proposition 1.6, if the system:

2 2 2
n° =b°—pa
{ m? = pa® + b2, a,beZ,
has one solution in the set of integer numbers, then it has one infinity of
integer solutions. It’s the same for the equation m* —n? = py?, p prime,
p > 3 :if it has one solution in the set of integer numbers, then it has an
infinity of integer solutions.

Proposition 3.3. Let p be a prime natural number, p> 3. If the equation
zt +6px? Y2 +p2y* = 22 has a nontrivial solution in Z, then it has an infinity
of integer solutions. Also, if the equation ’x‘l — 6px? y? +p2y4’ =22 has a
nontrivial solution in Z, then it has an infinity of integer solutions.

Proof. From the Theorem 3.2., if the equation m* —n*= = py? has a

solution m,n,y € Z, then it has infinitely many integer solutions.
The equation m* —n* = py? is equivalent to the system:

n? = |pa2 —-b
y = 2ab a,beZ”.
m? = pa® + b?,

’|

If pa? £ b2, we obtain n? = b? — pa? therefore n? + pa® = b2.

By using the Proposition 1.1., we get the form of the solutions: n = +(pu?—
v?), a = 2uv, b= +(pu?® +v?),u,v € Z*, which implies that n* = (pu? —v?)%.
The second equation: y = 2ab is equivalent to y = +duv(pu® + v?) and this
implies that py? = 16pu?v?(pu? + v?)2.

By introducing n* and py? in the given equation, we obtain m?* = (v* +
p?u* + 6puv?)2, which is equivalent to m? = v* + p?u* + 6puv?.

But, from Theorem 3.2., if the equation m? = v* + p?u? + 6puv? has one
solution m,u, v € Z* then it has an infinity of integer solutions.

Hence, if the equation z*+6pz? y? +p?y* = 22 has one solution z,y,2 € Z,
then it has an infinity of integer solutions.

If pa® Z b, we obtain : n? = b? — pa?, y = 2ab, m* = pa® + b?, with a,b
SV/AN

Take m? = pa® +b> and apply Proposition 1.1., for getting the equivalent
system:
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b==4(pr? — s?)
a=2rs r,s €l
m = +(pr? + s?),
and m* = (pr? + s?)%.
Replacing py? and m?* in the given equation, we obtain n* = (s* + p?r* —
6pr?s?)?, therefore n? = |s* 4 p?rt — 6pr?s?|.
By Theorem 3.2., we know that, if the equation n? = [s* + p?r® — 6pr?s?
has one solution m,u,v € Z*, then it has an infinity of integer solutions.
Hence, if the equation }x‘* — 6px? 2 —|—p2y4| = 22 has one solution z,y,z €
Z, then it has an infinity of integer solutions.

Proposition 3.4. If the equation c(z* + 6px? y? +p?y?) + dpd(x3y +
pry3) = 22, where p € {11,19} and (c,d) is a solution of the Pell equation
u? — pv? = 1 has one solution x,y,z € Z*, then it has an infinity of integer
solutions.

Proof. If p € {11,19} then p = 3 (mod 8) and p = 3 (mod 4).

From Proposition 1.2., the ring of integers A of the quadratic field Q(,/p)
is Euclidean with respect to the norm N, A =7 [\/]3] .

We study the equation m?* —n* = py?, where p is 11 or 19, in the ring

z[\/p]

We take the same way as in the proof of the Theorem 3.2. We have the
equivalent form of the given equation: (m? —y,/p)(m? 4+ y,/p) = n*. Let a €
Z[\/p| be a common divisor of (m?—y,/p) and (m?+y,/p). Take a = c+d,/p,
cdeZ,agU (Z[\/[)])

As in the proof of the Theorem 3.2., we get N(«a) € {1,2,4} and, since
0 ¢ U (2Z[y5). Vo) € (2.4},

But N(«) = 2 gives the equations |02 - pd2| = 2, which means ¢? — pd? =
+2.

The equation c¢? — pd? = 2 has not integers solutions, as we see by taking
all the cases for ¢ and d.

For p = 11, we consider the equation: ¢? — 11d?> = —2.We use the
equation ¢ — 11d?> = 1, developing +/11 in a continued fraction. We get:
ap = 3,a; = 3, ap = 6, and repeated figures, hence V11 = [ag, a1, a2] =
[3, 3, 6] . We need A; = 10 and B; = 3, therefore the fundamental solution of
the equation ¢ — 11d? = 1 is (10;3) and & = 10 + 3/11.

If the equation ¢ — 11d? = —2 has integer solutions (c,d), then |c| < v/2¢
and |d| < /2, hence |d| < \/20+f1‘/ﬁ = (3+1/1ﬁ)2 = 3'\%1171 $£2

Since d € Z is an odd number, we get d € {—1,1} and ¢ € {—3,3}. Hence

the solutions of the equation ¢ — 11d* = —2 are u = +e*(3 £ V/11), k € Z,
ie. u==4(10+3V11)*(3 £ V11),k € Z.
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Then a common divisor o, with N () = 2 (in Z [v/11]) of m? — /11y and

m? + /11y could be a = +(10 + 3v/11)¥(3 + V/11), k € Z.

As 3+ /11 and 3 — /11 are prime elements in Z [\/T7 because of their
norm, if (3++v/11)(3—v/11) / (m?+y+/11), then 2 / (m?+y+/11), and therefore
2 / m and 2 / y, which is not true.

We get, that m?+y+/11 can have (in Z [m) only divisors of the type +(10+
3v11)(34+/11), t € Z or of the type +(10 4 3v/11)*(3 — /11), t € Z,but not
of both types simultaneously.

Analogously for m? — yv/11.

If 3+ V11)* / (m?+yv/11), with k € N, k > 2 (in Z [V/11]) , then again
m and n are even numbers, which is not the case.

Analogously, m? — yv/11 cannot be divided by (3 + v/11)2.

Hence (3+v11)2 or (3 — \/ﬁ)2 is the biggest power dividing n*.

But if 3 + /11 divides m? + yv/11 and m? — yv/11, then 3+ \/ﬁ)2
/(m + yV/11)(m? — y/11). From (3 + V/11) / n*, we get that (3 + /11)*
/ n* contradicting the assumption that (3 + /11)? is the biggest power of
3 + /11 which divides n*.

The same for 3 — v/11 , it cannot divide nt.

We have proved that m? + /11 and m? — yy/11 cannot have common
divisors in Z [\/ﬁ] , with the norm 2.

We have the same argument in the case p = 19 and the equation:
2 —19d? = —

Developing o = /19 in a continued fraction, we get: aq = 4, a; = 2,
ag =1,a3 =3, ag = 1, as = 2, ag = 8 and repeated figures, hence /19 =
[ao, a1, az, as, ag, as, ag| = [4,2, 1,3,1,2,8] . We have (cg,dp) = (45, Bs), and
As = 170, hence ¢g = 170, Bs = 39, hence dy = 39. Therefore e = 170+39+/19.

If the equation ¢? — 19d? = —2 has integer solutions (c, d), then |¢| < v/2¢

and |d] < (/% = %@ < 37. Since d is an odd number, we have

de {+1,+3, ..., +£35}.

We come back to the equation ¢? — 19d? = —

If d € {+1,£11,+21,4+31,4£9, 419, £29} , this implies that the last figure
of d? is 1, the last figure of 19 d? is 9, hence the last figure of ¢? is 7 and ¢ ¢ Z.

If d € {45, 415,425,435}, this implies that the last figure of d? is 5, the
last figure of 19 d? is 5, hence the last figure of ¢? is 3 and ¢ ¢ Z.

The cases which remain to be studied are

d e {43, 47,413, +17, £23, +27, +33} .

If d € {£3}, then ¢ € {£13}, hence (13,3), (13, -3),(—13,3),(—13,-3)
are solutions of the equation ¢? — 19d? = —2.
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For d € {£7,+13,£17, 423,427,433} | we cannot find a solution (c¢,d) €
72

Therefore the integer solutions of the equation ¢? — 19d? = —2 are of the
form + (170 4 39v/19)" (13 + 3v/19) , ¢ € Z.

A divisor a,with N(a) =2 (in Z [V19]) of m? — yv/19and m? + yv/19
could be £(170 4+ 39v/19)!(13 &+ 3v/19),t € Z.

As in the Theorem 3.2., we show that, if 13 4+ 3v/19 divides m? + /19,
then 13 — 3v/19 cannot divide m?2 — y\/ﬁ and conversely. Then we show that,
if (13—|—3\/E)t, t € N*, divides one of elements m? +y1/19, then t = 1. Hence
the common divisor a of m? 4 yv/19 can be either 13 4+ 3v/19 or 13 — 3/19. If
a = 13+3v19( or 13—3+/19), then o2 divides n*. Since « is prime in Z [\/@,
a divides n and therefore a?* divides n* = (m2 —&—y\/ﬁ) (m2 — y\/ﬁ), in
contradiction with the assumption that a? is the greatest power of « dividing

nt

We get that, for p € {11,19}, N(a) # 2.

If N(a) = 4, then we get the equations ¢ — pd? = +4, p € {11,19} .

We use the same argument as above, obtaining the impossibility of getting
solutions for these equations.

We have just proved that, for p € {11,19} ,m? + y/p and m? — y/D are
relatively prime in Z [,/p| , which means that m?+y,/p = (c-+d\/p)(f+9/P)*,
with f, g € Z and (c,d) being a solution of the Pell equation u? — pv? = 1. Of
course, then m? — y,/p = (¢ — d\/p)(f — 9/D)-

By identifying the elements in the two members of the two equalities, we
get the system:
m? = c(f* +6pf3g> + p°g*) + 4pd(f2g + pfg®)
y=d(f*+6pfig®> +pg*) +4c(f3g + pfo®)

It is obvious that, if the first equation of the above system has solutions
in Z*, then, from the second equation, we get y € Z.

Hence as the equation m* —n* = py? has either none nontrivial integer
solutions or an infinity of nontrivial integer solutions, the same will happen
with the first equation of the above system:

Either the equation m? = c(f* + 6pf2g? + p*g*) + 4pd(f3g + pfg?)
has no nontrivial integer solutions (m, f, g) or it has an infinity of nontrivial
integer solutions, where (c,d) is a solution of the Pell equation u? — dv? = 1.

Proposition 3.5. The equation of the form c(x* + 422% y? +49y*) +
28d(x3y +Txy?) = 22, where (c,d) is a solution of the Pell equation u?—Tv? =
1 has an infinity of integer solutions.

Proof.From Proposition 1.2., if p = 7, the ring of integers A of the
quadratic field Q(/p) is Euclidean with respect to the norm N. Since 7 =3

(mod 4), A=Z[V7] .
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We study the equation m* — n* = 7y? in the ring Z [\/ﬂ

This equation has at least a solution: m = 463, n = 113 , y = 80 880. But
then it has an infinity of integer solutions.

Now, consider m* —n* =T7y? written as (m? — y/7)(m? + yv/7) = n*.
Let a € Z[V7] be a common divisor of (m? — yv/7) and (m?+ yv/7), then
a=c+dVJ7,cdeZ.

As a/(m? + yV/7) and a/(m? — y\/7), we have a/2m? and «/2y/7,50
N(a)/4m? (inZ) and N(«)/28y? (in Z), hence N («)/(4m*, 28y?). But (m,n) =
1 implies (m,y) = 1 (if (m,y) = d )1 then d/n, which is false). Analogously
by (m,p) = 1, we get (m*, py?) = 1, (4m*,28y?) = 4, hence N(a) € {1,2,4}.

If N(a) =2, then |¢* — 7d?| = 2, this is ¢ — 7d* = £2.

Firstly we solve the equation ¢? — 7d?> = 2. We see that the equation
c? — 7d? = 2 could have integer solutions (c,d), with ¢, d odd numbers.

We consider the equation ¢ —7d? = 1. We develop a = /7 in a continued

fraction and we get: ag = [\/ﬂ =2 a5 = ‘/73“, ap =1, as = ‘/Zﬂ,ag =
Lag= YT a3 =1, au = VT +2,a0 = 4,05 = VT2 = ay.

3 3

We get that /7 = [ag, @1, a3, a3, as), hence V7 = [2,1,1,1,4], and the
number of the incomplete denominators is k = 4. Using Lagrange theorem, we
find the fundamental solution of the equation c¢? — 7d? = 1 namely: (8;3).We
have ¢ = 8 4+ 3v/7.Then ¢®> — 7d> = 2 has integer solutions (c, d), if |c| < v/2¢
and |d] < /% and this implies [d] < /220 < 8.

But d € Z, d is an odd number, hence d € {—1,1}.

We go back to the equation ¢ — 7d? = 2 and we get ¢ € {—3,3}, hence
(3,1),(3,-1),  (=3,1),(=3,—1) are solutions for the equation ¢* —7d? = 2.

All integer solutions of the equation ¢? — 7d? = 2 are u = +¢'(3 + /7),
teZ.

We prove that m? + y/7 and m? — yy/7 do not have common divisors
of the type +(8 + 3v7) (3£ /7), t € Z.

If (3+v7) / (m2+yv/7) and (3—vD)/(m2+yv7) (in Z[V7]), as 3+V7
and 3 — /7 are prime elements in Z [\/ﬂ ( their norm is 2, a prime
element in N), we get (3+v/7)(3—v7) / (m?+y+/7),hence 2 / (m?+y+/7).Then

there exists (a + bv/7) € Z [V/7] such that m? + yv/7 = 2(a + by/7),hence
m? = 2a, y = 2b implying 2 / m and 2 / y. But m* —n* = 7y?, and then 2/n,
a contradiction with the fact that (m,n) = 1. We get that m? +y+/7 can have
(in Z [V/7]) only divisors of the type +(8 +3v7)*(3 + V/7), t € Z or the type
+(8 4+ 3v7)4 (3 — V/T7), t € Z, but not of both types simultaneously.
Analogously for m? — y/7.
If 34+ V7)? / (m*+yV7) (in Z [V7]), hence (16 + 6v/7) / (m* + yV/7),
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implying 2/(m? + yv/7),hence 2 / m and 2 / y (in Z), hence 2 / n, a contra-
diction with the fact that (m,n) = 1.

We get that (3 +/7)F t (m? + y/7), for k € N, k > 2. Analogously for
m? — y/T.

f 34+V7) / (m*+yV7) and 3+ V7) / (m?* —yV7) (in Z [V7]) then
(B+VD2 /) J(m*+yVT)(m*—yVT), equivalently to (3+v7)% / (m* — Ty?),
hence (3++7)%2 / n*  ((3+4+/7)? is the biggest power of 3 + /7 with divides
n).

But 3 4+ /7 is a prime element in Z [v/7] (since N(3 + /7) = 2 is a prime
element in N) hence (3 ++/7) / n and (3 + v/7)* / n*, contradiction with the
fact that 2 is the biggest power of (3 + /7) which divides n?.

From the previously proved, we get that m? + /7 and m? — /7 can’t
have common divisors of the type +(8 +3v7) (34 V7),t € Z, in Z [\/ﬂ .

Analogously, we prove that m? +yv/7 and m? —y+/7 can’t have common
divisors of the type +(8+3v7)(3—V7),t€Z,in Z[V7].

Now, we solve the equation ¢? — 7d?> = —2. Taking all the cases for ¢ and
d, we get that c? — 7d? # —2.

As before, m? + y\ﬁ and m? — y\ﬁ can’t have common divisors o €

Z V7], if N(a) = 2.

If N(a) = 4, then ¢? — 7d® = 44

Studying the equation ¢ — 7d? = 4, we see that ¢ and d have to be even.

We denote ¢ = 2¢/,d = 2d', ¢/,d’ € Z. Then ¢ — 7d®> = 4 is equivalent
to ()2 — 7(d")? = 1. Denote o’ = ¢ + d'/7, with N(a/) = 1, implying
o € U(Z[VT]), and o = 2a/. But a / (m? + y/7) implies 2 /
(m?* +yv7) (in Z[V7] ), hence there exists (a + bv/7) € Z [V/7] such that
m? + yv/7 = 2(a + b\/7), hence m? = 2a and y = 2b, implying 2 / m and 2 /
y (in Z). But m* —n* = 7y? implies 2 / n, a contradiction with the fact that
(m,n) =1.

The case ¢ — 7d? = —4 is similar, hence N(«) # 4.

We obtained that N(a) = 1. As m? 4+ /7 and m? — y/7 are prime
to each other in Z[V7] and (m? + yv7)( m? — yv7) = n4, there exists
(f +gV7) € Z[\f] and there exists k € Z such that m? —|—y\f = (c+
dV)(f + gV7)* where ¢ + dVT € {:|:8+3\f) kGZ} ) being the
fundamental solution of the Pell equation u? — 7v? = 1.

We obtain: m24+yv/7 = (c+dvV7)(f*+4f3gVT+42f%g% +28 f >/ T+49g").

We get the system:

m? = cf* + 42¢f%¢? + 49cg* + 28 f3gd + 196 f¢°d
y =4dcf3g +28cfg® + df* + 42df?g* + 49dg*
which is equivalent to the system:
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m? = c(f* 4+ 42f%9% + 49¢*) + 28d(f3g + 7fg°)
y=d(f*+42f%g® +49¢*) + 4c(f3g + Tfg%)

4 _n* = 792 has an infinity

We have already proved that the equation m
of integer solutions.

Hence, the system

m? = c(f*+42f%¢* + 49¢*) + 28d(f>g + Tfg%)
{ y=d(f*+42f%g* + 499*) + 4c(f29 + Tfg°)
has an infinity of integer solutions. Moreover, the equation
m? = c(f* + 421292 + 49g%) + 28d(f3g + 7fg%)

has an infinity of integer solutions.

Remark 3.6. We have got some solutions:

(1) f=236,g=—13, m =463, for k=4, c =32 257 and d =12 192,

(i¢) f = 561, g = —212, m = 463, for k = 8, ¢ = 2 081 028 097 and
d = 859 672 304.

This has been done by considering the corresponding solutions for the equa-
tion

m*— n* = 7y?, where m = 463, y = 80 880 and n = 113.
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