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TORSION FREE EXTERIOR POWERS OF A
MODULE AND THEIR RESOLUTIONS

Giovanni Molica and Gaetana Restuccia

Abstract

We study the q-torsion freeness of (q a positive integer) of the exte-
rior powers of a finitely generated module E over a commutative ring,
of finite projective dimension. We obtain results by utilizing suitable
associated complexes.

INTRODUCTION

Let E be a finitely generated module on a commutative noetherian ring R
with unit element. Many results about the torsion freeness of the symmet-
ric powers of E can be deduced from syzygietic properties of the module E
(cf. [2], [3], [10], [11]). This paper contains results for the torsion freeness of
the exterior powers of E, when the resolution of E is given. More precisely
we give necessary and sufficient conditions for the q-torsion freeness of sym-
metric and exterior powers of a module E, modulo bounds on the grade of
all th-determinantal ideals that are present in the resolution of E, when these
powers have acyclic resolution given by the Weyman-Tchernev complexes [11].
For a module E of projective dimension is one, we particularize the results and
we succeed to find necessary and sufficient conditions for the q-torsion free-
ness of the exterior powers of E, under weaker hypotheses. As a corollary, we
obtain a global result for q-torsion freeness of the exterior algebra of a mod-
ule E of rank r and such that its r-th exterior power is a torsion- free cyclic
R-module.
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1

Let R be a commutative noetherian ring with unit element and let E be a
finitely generated R-module. We shall denote by ∧E and SymR(E) or simply
SR(E) the exterior, respectively, the symmetric algebra of E on R. Their

degree t component will be denoted by
t∧ E, respectively St(E).

Definition 1 We shall say that E has rank r if, denoting by Q(R) the total
quotient ring of R, E ⊗R Q(R) is a free Q(R)-module of rank r.

Definition 2 Let R be a ring and E a finitely generated R-module. We say
that E is q- torsion free if every R-regular sequence of length q is also E-
regular.

Proposition 1.1 Let E be a finitely generated R-module, q ≥ 1 an integer.
Consider the following conditions:

(aq) E is q-torsion free;

(bq) for every prime ideal ℘ of R, depthE℘ ≥ min{q, depthE℘};
(cq) E is a q-th syzygy, i.e. there is an exact sequence of free R-modules of

as the following

E → Gq → Gq−1 → ... → G1 → 0.

We have (cq) ⇒ (bq) ⇒ (aq). If pdRE < ∞, then (aq),(bq),(cq) are
equivalent.

Proof : cf. [1], [2], [9].

In all this section, we suppose that the ring R contains a field of charac-
teristic zero and the projective dimension of the finitely generated R-module
E is finite.

Let F. : 0 → Fn
fn→ Fn−1

fn−1→ Fn−2 → ... → F1
f1→ F0 be a finite free

resolution of E, where E = Cokerf1. In [10] and [11], ∀i > 0 the complexes
Si(F.) and Li(F.) are considered. With some assumptions, they are finite

resolutions of Si(E) and
i∧ E when R contains a field k of characteristic zero.

More precisely, we denote by It(fj) the determinantal ideal of t× t-minors of
a matrix that represents fj and rj = rank(Fj). The grade of an ideal I of
R is the length of a maximal R-sequence contained in I. The lengthSi(F )
(respectively lengthLi(F ) ) is the length of the complex Si(F ) (respectively
Li(F )).
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Theorem 1.2 Let F. : 0 → Fn
fn→ Fn−1

fn−1→ Fn−2 → ... → F1
f1→ F0 be a

finite free resolution of E,where E = Cokerf1. Then:

1) Si(F.) is acyclic if and only if:

i) for all j even, gradeIrj
(fj) ≥ ji;

ii) for all j odd,
gradeIrj−i+1(fj) ≥ ji, gradeIrj−i+2(fj) ≥ ji− 1,
gradeIrj

(fj) ≥ (j − 1)i + 1.

2) Li(F.) is acyclic if and only if:

i) for all j even, gradeIrj
(fj) ≥ ji;

ii) for all j odd,
gradeIrj−i+1(fj) ≥ ji, gradeIrj−i+2(fj) ≥ ji− 1,
gradeIrj (fj) ≥ (j − 1)i + 1.

If Si(F.) is exact, it is a finite free resolution of the symmetric power Si(E).

If Li(F.) is exact, it is a finite free resolution of the exterior power
i∧ E.

Proof : cf. [11].

Definition 3 Let F. : 0 → Fn
fn→ Fn−1

fn−1→ Fn−2 → ... → F1
f1→ F0 be a

finite free resolution of E, where E = Cokerf1. We say that E satisfies the
property (SWi) (respectively (EWi)) if Si(F.) (respectively Li(F.)) is a finite

free resolution of Si(E) (respectively
i∧ E).

Theorem 1.3 Let F. : 0 → Fn
fn→ Fn−1

fn−1→ Fn−2 → ... → F1
f1→ F0 be a

finite free resolution of E,where E = Cokerf1. The following statement are
equivalent:
a)

1) Si(E) is q-torsion free and E satisfies (SWi).

2) For all j,

if j is odd, gradeIrj (fj) ≥ ji + q;

if j is even, gradeIrj−i+1(fj) ≥ ji + q, gradeIrj−i+2(fj) ≥ ji− 1 + q,
gradeIrj (fj) ≥ (j − 1)i + q + 1.
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b)

1)
i∧ E is q-torsion free and E satisfies (EWi).

2) for all j,

if j is odd, gradeIrj
(fj) ≥ ji + q;

if j is even, gradeIrj−i+1(fj) ≥ ji + q, gradeIrj−i+2(fj) ≥ ji − 1 + q,
gradeIrj

(fj) ≥ (j − 1)i + q + 1.

Proof : We prove a). The proof of b) is similar. 1) ⇒ 2) Since Si(E) is
q-torsion free, the exact sequence that gives the resolution of Si(E) can be
prolonged to right by an exact sequence of q free modules. The result comes
from the exactness criterion of Buchsbaum-Eisenbud for complexes [4] of free
modules and from Peskine and Szpiro lemma [7].
2) ⇒ 1) Let ℘ ∈ Spec(R) such that depthR℘ ≥ lengthSi(F.) + q.
We have pdRSi(E) ≤ lengthSi(F.). Then

depthSi(E)℘ = depthR℘ − pdRSi(E)℘ ≥ q = min{q, depth(R℘)}.

Let ℘ ∈ Spec(R) such that depth(R℘) < lengthSi(F ) + q. We proceed by
induction on n. For n = 1, the assertion is in [2]. For n > 1, by induction on
rank(Fn). If n is even, we have gradeI1(fn) ≥ lengthSi(F.)+ q = ni+ q, then
I1(fn) " ℘. By changing the bases in Fn and Fn−1, at all the localizations
R℘, with depthR℘ < ni + q, we have:

0 → F
′
n ⊕R → F

′
n−1 ⊕R → ...

One concludes by dividing by R. For n odd, we have gradeIn(fn) ≥ lengthSi(F.)+
q, hence gradeI1(fn) ≥ ni+q. Then we can divide for R at all the localizations
R℘ with depthR℘ < lengthSi(F.)+q. We conclude by induction on rank(Fn).

Proposition 1.4 Let E be a finitely generated R-module, q ≥ 1 be an integer.

1) If St(E) is q-torsion free and E satisfies (SWt), then Si(E) is q-torsion
free and E satisfies (SWi) for every i < t

2) If
t∧ E is q-torsion free and E satisfies (EWt), then

i∧ E is q-torsion free
and E satisfies (EWi) for every i < t

Proof : It follows from theorem 1.3, a) and b).
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2

In all this section we consider a finitely generated R-module E of projective
dimension one.

Theorem 2.1 Let E be a finitely generated R-module with resolution:

0 → Rm f1→ Rn f0→ E → 0.

Let i ≥ 0 and q ≥ 1 be two integer such that ∀℘ ∈ Spec(R), depthR℘ < i + q,
gradeI1(f1)℘ ≥ i + q. Then the following facts are equivalent:

1) gradeIm(f1) ≥ i + q.

2)
i∧ E is q-torsion free and ∀℘ ∈ Spec(R), depthR℘ ≥ i + q,

gradeIm(f1)℘ ≥ i + q.

Proof : 1) ⇒ 2) Since depthIm(f1) ≥ i + q > i, then

Li(F.) : 0 → Di(Rm)
fi→ Di−1(Rm)⊗Rn → ... → i∧ Rn → i∧ E → 0

is an exact complex and a resolution of
i∧ E ([11], theorem 1 or theorem 1.2,

2)), where Di(Rm) is the i-th divided power of Rm (see:[11]). The length of

Li(F.) equals i and Li(F.) is a minimal resolution of
i∧ E, if the resolution of

E is minimal.
We have to prove that

i∧ E is q-torsion free, that is, ∀℘ ∈ Spec(R),

depth(
i∧ E)℘ ≥ min{q, depthR℘}

Case 1: Let ℘ ∈ Spec(R) such that depthR℘ ≥ pdR

i∧ E + q.

Then depth(
i∧ E)℘ = depthR℘ − pdR(

i∧ E)℘ ≥ pdR

i∧ E + q − pdR(
i∧ E)℘.

Since pdR(
i∧ E)℘ ≤ pdR

i∧ E

depth(
i∧ E)℘ ≥ pdR

i∧ E + q − pdR

i∧ E = q = min{q, depthR℘}

Case 2: Let ℘ ∈ Spec(R) such that depthR℘ < pdR(
i∧ E) + q.

Since gradeIm(f1) ≥ i + q, Im(f1) * ℘ and this implies I1(f1) * ℘. In fact, if
I1(f1) ⊂ ℘,Im(f1) ⊂ I1(f1) and then Im(f1) ⊂ ℘, contradiction. If I1(f1) * ℘,
there exists an entry aij , 1 ≤ i ≤ m and 1 ≤ j ≤ n, of the matrix that repre-
sents f1, that is invertible in R. We can suppose that this entry is a11 after a
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change of rows and columns of the matrix.

Then we can change the bases in Rm and Rn in such a way that f1 =
f
′ ⊕ 1 : Rm−1 ⊕ R → Rn−1 ⊕ R and Im(f1) = Im−1(f

′
). We proceed by

induction on n. If n = 0 the assertion follows, because E is a free module.
After a change of the bases, we have for E the presentation:

0 → Rm−1 → Rn−1 → E → 0

and by Im(f1) = Im−1(f
′
), we have: gradeIm(f1) = gradem−1I(f

′
) ≥ i + q,

hence the assertion.
2) ⇒ 1) By induction on rank(Rm). For m = 1 the assertion is true by hypoth-
esis. Suppose m > 1. We prove that gradeIm(f1)℘ ≥ i + q,∀℘ ∈ Spec(R). By
assumption, we have the assertion for all ℘ ∈ Spec(R), depthR℘ ≥ i+q. Then
we have to prove that ∀℘ ∈ Spec(R), depthR℘ < i+q, gradeIm(f1)℘ ≥ i+q. By
our assumptions, gradeI1(f1)℘ ≥ i + q, so that I1(f1) * ℘ and so I1(f1) * ℘.
As in the preceding proof, we obtain a presentation of E℘ of the form

0 → Rm−1
℘

f
′
1→ Rn−1

℘ → E℘ → 0

and gradeIm−1(f
′
1)℘ = gradeIm(f1)℘. We have moreover depth(

t∧ E)℘ ≥ q =
min{q, depthR℘}, then the conclusion follows by induction on m.

Remark 2.2 Let (R, m) be a local ring containing a field k. Let i > 0 an
integer for which one of the conditions a) and b) is true. Then we must have
that i ≤ rank(E)− 1− q.

Proof : Suppose i > rank(E)−1−q, then i+q > rank(E)−1, gradeIm(f1) >
rank(E)−1 and depthR > rank(E)−1, depthR ≥ rank(E). But this implies
E is a free R-module, by syzygy theorem [1].

Proposition 2.3 Let E be an R-module of rank r with resolution

F. : 0 → Rm f1→ Rn f0→ E → 0

and let i ≥ 1 be an integer. The following statement are equivalent:

1) ∀℘ ∈ Spec(R), depthR℘ < i, I1(f1) " ℘ and I1(f
′
1) " ℘ for any application

f
′
1 given by a sub-matrix of the matrix that represents f1.

2) Li(F.) is exact and gradeIm(f1) ≥ i.
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Proof : 1) ⇒ 2) By induction on m. For m = 1, we have the resolution

0 → R
f1→ Rn f0→ E → 0.

Since I1(f1) " ℘, E℘
∼= Rn−1

℘ , hence (Li(F.))℘ is exact and by Peskine-Szpiro
[7], Li(F.) is exact. This forces gradeI1(f1) ≥ i. Since I1(f1) " ℘, localizing
F. at the prime ideal ℘, we have:

0 → Rm−1
℘ ⊕R℘

f
′
1⊕id→ Rn−1

℘ ⊕R℘ → E℘ → 0

and Im−1(f
′
1) = Im(f1)℘. We conclude by the inductive hypothesis.

2) ⇒ 1) Let gradeIm(f1) ≥ i, hence gradeI1(f1) ≥ i and I1(f1) " ℘, ∀℘ ∈
Spec(R), depthR℘ < i. By localization at ℘, we have that Li(F.

′
) is acyclic

where

F.
′
: 0 → Rm−1

℘

f
′
1→ Rn−1

℘ → E℘ → 0

and gradeIm(f
′
1) ≥ i. Hence gradeI1(f

′
1) ≥ i, and I1(f

′
1) " ℘. This process

can be continued and we have the assertion.

Remark 2.4 If
l∧ E non zero for l > rank(E) = r, it is useful to out down the

highest exteriors powers of E, more precisely the powers
l∧ E, for l > rank(E).

This may be done in several ways, for example by requiring that (
r∧ E) is a

cyclic R-module.

Proposition 2.5 Let E be an R-module of rank r. Then

1) if
r∧ E is a free R-module, then E is a free R-module;

2) if
r∧ E is a cyclic R-module, then

l∧ E = 0, for l > r.

Proof: See [5].

Corollary 2.6 (q = 1) Let E be a finitely generated R-module of rank r and
with resolution

0 → Rm f1→ Rn f0→ E → 0.

Suppose that ∀℘ ∈ Spec(R), depthR℘ < r, gradeI1(f1)℘ ≥ r and
r∧ E is a

torsion free cyclic R-module. Then the following facts are equivalent:

1) gradeIm(f1) ≥ r.

2) The exterior algebra ∧E = ⊕r
i=0

i∧ E is torsion free and ∀℘ ∈ Spec(R),
depthR℘ ≥ r, we have gradeIm(f1)℘ ≥ r.
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Proof : 1) ⇒ 2) We have to consider only the exterior powers
i∧ E with

i < r. The hypothesis gradeIm(f1) ≥ (r − 1) + 1 implies that Li(F.) acyclic

(Theorem 1.2, 2)) and
i∧ E 1-torsion free (Theorem 2.1 ), for all i ≤ r − 1.

Finally, ∧E is torsion free.
2) ⇒ 1) From Theorem 2.1, gradeIm(f1) ≥ i + 1, for all i ≥ r − 1, hence

1).
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