

An. Şt. Univ. Ovidius Constanța

$Vol. \ 10(1), \ 2002, \ \ 101{-}108$

TORSION FREE EXTERIOR POWERS OF A MODULE AND THEIR RESOLUTIONS

Giovanni Molica and Gaetana Restuccia

Abstract

We study the q-torsion freeness of (q a positive integer) of the exterior powers of a finitely generated module E over a commutative ring, of finite projective dimension. We obtain results by utilizing suitable associated complexes.

INTRODUCTION

Let E be a finitely generated module on a commutative noetherian ring R with unit element. Many results about the torsion freeness of the symmetric powers of E can be deduced from syzygietic properties of the module E (cf. [2], [3], [10], [11]). This paper contains results for the torsion freeness of the exterior powers of E, when the resolution of E is given. More precisely we give necessary and sufficient conditions for the q-torsion freeness of symmetric and exterior powers of a module E, modulo bounds on the grade of all th-determinantal ideals that are present in the resolution of E, when these powers have acyclic resolution given by the Weyman-Tchernev complexes [11]. For a module E of projective dimension is one, we particularize the results and we succeed to find necessary and sufficient conditions for the q-torsion freeness of the exterior powers of E, under weaker hypotheses. As a corollary, we obtain a global result for q-torsion freeness of the exterior algebra of a module E of rank r and such that its r-th exterior power is a torsion-free cyclic R-module.

Key Words: Approximation complex, Cohen-Macaulay ring, Symmetric Algebra, Exterior Algebra Approximation complex, Cohen-Macaulay ring, Symmetric Algebra, Exterior Algebra

Mathematical Reviews subject classification: 13D25, 13H10

Let R be a commutative noetherian ring with unit element and let E be a finitely generated R-module. We shall denote by $\wedge E$ and $Sym_R(E)$ or simply $S_R(E)$ the exterior, respectively, the symmetric algebra of E on R. Their

degree t component will be denoted by $\bigwedge^{t} E$, respectively $S_t(E)$.

Definition 1 We shall say that E has rank r if, denoting by Q(R) the total quotient ring of R, $E \otimes_R Q(R)$ is a free Q(R)-module of rank r.

Definition 2 Let R be a ring and E a finitely generated R-module. We say that E is q- torsion free if every R-regular sequence of length q is also E-regular.

Proposition 1.1 Let E be a finitely generated R-module, $q \ge 1$ an integer. Consider the following conditions:

- (a_q) E is q-torsion free;
- (b_q) for every prime ideal \wp of R, $depthE_{\wp} \ge min\{q, depthE_{\wp}\};$
- (c_q) E is a q-th syzygy, i.e. there is an exact sequence of free R-modules of as the following

 $E \to G_q \to G_{q-1} \to \dots \to G_1 \to 0.$

We have $(c_q) \Rightarrow (b_q) \Rightarrow (a_q)$. If $pd_R E < \infty$, then $(a_q), (b_q), (c_q)$ are equivalent.

Proof : cf. [1], [2], [9].

In all this section, we suppose that the ring R contains a field of characteristic zero and the projective dimension of the finitely generated R-module E is finite.

Let $F.: 0 \to F_n \xrightarrow{f_n} F_{n-1} \xrightarrow{f_{n-1}} F_{n-2} \to \dots \to F_1 \xrightarrow{f_1} F_0$ be a finite free resolution of E, where $E = Cokerf_1$. In [10] and [11], $\forall i > 0$ the complexes $\mathcal{S}_i(F.)$ and $\mathcal{L}_i(F.)$ are considered. With some assumptions, they are finite resolutions of $S_i(E)$ and $\stackrel{i}{\wedge} E$ when R contains a field k of characteristic zero. More precisely, we denote by $I_t(f_j)$ the determinantal ideal of $t \times t$ -minors of a matrix that represents f_j and $r_j = rank(F_j)$. The grade of an ideal I of R is the length of a maximal R-sequence contained in I. The $length\mathcal{S}_i(F)$ (respectively $length\mathcal{L}_i(F)$) is the length of the complex $\mathcal{S}_i(F)$ (respectively $\mathcal{L}_i(F)$).

1

Theorem 1.2 Let $F_{\cdot}: 0 \to F_n \xrightarrow{f_n} F_{n-1} \xrightarrow{f_{n-1}} F_{n-2} \to \dots \to F_1 \xrightarrow{f_1} F_0$ be a finite free resolution of E, where $E = Cokerf_1$. Then:

- 1) $S_i(F_i)$ is acyclic if and only if:
 - i) for all j even, gradeI_{rj}(f_j) ≥ ji;
 ii) for all j odd, gradeI_{rj}-i+1(f_j) ≥ ji, gradeI_{rj}-i+2(f_j) ≥ ji - 1, gradeI_{ri}(f_j) ≥ (j - 1)i + 1.
- **2)** $\mathcal{L}_i(F)$ is acyclic if and only if:
 - i) for all j even, gradeI_{rj}(f_j) ≥ ji;
 ii) for all j odd, gradeI_{rj}-i+1(f_j) ≥ ji, gradeI_{rj}-i+2(f_j) ≥ ji - 1, gradeI_{ri}(f_j) ≥ (j - 1)i + 1.

If $S_i(F_i)$ is exact, it is a finite free resolution of the symmetric power $S_i(E)$. If $\mathcal{L}_i(F_i)$ is exact, it is a finite free resolution of the exterior power $\stackrel{i}{\wedge} E_i$.

Proof : cf. [11].

Definition 3 Let $F_{\cdot}: 0 \to F_n \xrightarrow{f_n} F_{n-1} \xrightarrow{f_{n-1}} F_{n-2} \to \dots \to F_1 \xrightarrow{f_1} F_0$ be a finite free resolution of E, where $E = Cokerf_1$. We say that E satisfies the property (SW_i) (respectively (EW_i)) if $S_i(F_{\cdot})$ (respectively $\mathcal{L}_i(F_{\cdot})$) is a finite free resolution of $S_i(E)$ (respectively $\stackrel{i}{\wedge} E$).

Theorem 1.3 Let $F_{\cdot}: 0 \to F_n \xrightarrow{f_n} F_{n-1} \xrightarrow{f_{n-1}} F_{n-2} \to \dots \to F_1 \xrightarrow{f_1} F_0$ be a finite free resolution of E, where $E = Cokerf_1$. The following statement are equivalent:

- a)
- 1) $S_i(E)$ is q-torsion free and E satisfies (SW_i) .
- 2) For all j,
 - if j is odd, $gradeI_{r_i}(f_i) \ge ji + q;$
 - $\begin{array}{l} \textit{if } j \textit{ is even, } gradeI_{r_j-i+1}(f_j) \geq ji+q, \ gradeI_{r_j-i+2}(f_j) \geq ji-1+q, \\ gradeI_{r_j}(f_j) \geq (j-1)i+q+1. \end{array} \end{array}$

b)

- 1) $\bigwedge^{i} E$ is q-torsion free and E satisfies (EW_i) .
- 2) for all j,
 - $\begin{array}{l} \textit{if } j \textit{ is odd, } gradeI_{r_j}(f_j) \geq ji+q; \\ \textit{if } j \textit{ is even, } gradeI_{r_j-i+1}(f_j) \geq ji+q, \; gradeI_{r_j-i+2}(f_j) \geq ji-1+q, \\ gradeI_{r_j}(f_j) \geq (j-1)i+q+1. \end{array}$

Proof: We prove a). The proof of b) is similar. $1 \Rightarrow 2$) Since $S_i(E)$ is q-torsion free, the exact sequence that gives the resolution of $S_i(E)$ can be prolonged to right by an exact sequence of q free modules. The result comes from the exactness criterion of Buchsbaum-Eisenbud for complexes [4] of free modules and from Peskine and Szpiro lemma [7].

 $(2) \Rightarrow 1)$ Let $\wp \in Spec(R)$ such that $depthR_{\wp} \ge lengthS_i(F_i) + q$. We have $pd_RS_i(E) \le lengthS_i(F_i)$. Then

$$depth\mathcal{S}_i(E)_{\wp} = depthR_{\wp} - pd_RS_i(E)_{\wp} \ge q = min\{q, depth(R_{\wp})\}.$$

Let $\wp \in Spec(R)$ such that $depth(R_{\wp}) < lengthS_i(F) + q$. We proceed by induction on n. For n = 1, the assertion is in [2]. For n > 1, by induction on $rank(F_n)$. If n is even, we have $gradeI_1(f_n) \geq lengthS_i(F) + q = ni + q$, then $I_1(f_n) \not\subseteq \wp$. By changing the bases in F_n and F_{n-1} , at all the localizations R_{\wp} , with $depthR_{\wp} < ni + q$, we have:

$$0 \to F_{n}^{'} \oplus R \to F_{n-1}^{'} \oplus R \to \dots$$

One concludes by dividing by R. For n odd, we have $gradeI_n(f_n) \ge lengthS_i(F) + q$, hence $gradeI_1(f_n) \ge ni+q$. Then we can divide for R at all the localizations R_{\wp} with $depthR_{\wp} < lengthS_i(F) + q$. We conclude by induction on $rank(F_n)$.

Proposition 1.4 Let E be a finitely generated R-module, $q \ge 1$ be an integer.

- 1) If $S_t(E)$ is q-torsion free and E satisfies (SW_t) , then $S_i(E)$ is q-torsion free and E satisfies (SW_i) for every i < t
- 2) If $\stackrel{t}{\wedge} E$ is q-torsion free and E satisfies (EW_t) , then $\stackrel{i}{\wedge} E$ is q-torsion free and E satisfies (EW_i) for every i < t

Proof : It follows from theorem 1.3, a) and b).

$\mathbf{2}$

In all this section we consider a finitely generated R-module E of projective dimension one.

Theorem 2.1 Let E be a finitely generated R-module with resolution:

$$0 \to R^m \xrightarrow{f_1} R^n \xrightarrow{f_0} E \to 0.$$

Let $i \ge 0$ and $q \ge 1$ be two integer such that $\forall \wp \in Spec(R)$, $depthR_{\wp} < i + q$, $gradeI_1(f_1)_{\wp} \ge i + q$. Then the following facts are equivalent:

- 1) $gradeI_m(f_1) \ge i + q$.
- 2) $\wedge^{i} E$ is q-torsion free and $\forall \wp \in Spec(R), depthR_{\wp} \geq i+q,$ grade $I_{m}(f_{1})_{\wp} \geq i+q.$

Proof : 1) \Rightarrow 2) Since $depthI_m(f_1) \ge i + q > i$, then

$$\mathcal{L}_i(F_{\cdot}): 0 \to D_i(R^m) \xrightarrow{f_i} D_{i-1}(R^m) \otimes R^n \to \dots \to \bigwedge^i R^n \to \bigwedge^i E \to 0$$

is an exact complex and a resolution of $\bigwedge^{i} E$ ([11], theorem 1 or theorem 1.2, 2)), where $D_i(\mathbb{R}^m)$ is the *i*-th divided power of \mathbb{R}^m (see:[11]). The length of $\mathcal{L}_i(F.)$ equals *i* and $\mathcal{L}_i(F.)$ is a minimal resolution of $\bigwedge^{i} E$, if the resolution of *E* is minimal.

We have to prove that $\bigwedge^{i} E$ is q-torsion free, that is, $\forall \wp \in Spec(R)$,

$$depth(\bigwedge^{i} E)_{\wp} \geq min\{q, depthR_{\wp}\}$$

Case 1: Let $\wp \in Spec(R)$ such that $depthR_{\wp} \ge pd_R \stackrel{i}{\wedge} E + q$. Then $depth(\stackrel{i}{\wedge} E)_{\wp} = depthR_{\wp} - pd_R(\stackrel{i}{\wedge} E)_{\wp} \ge pd_R \stackrel{i}{\wedge} E + q - pd_R(\stackrel{i}{\wedge} E)_{\wp}$. Since $pd_R(\stackrel{i}{\wedge} E)_{\wp} \le pd_R \stackrel{i}{\wedge} E$

$$depth(\bigwedge^{i} E)_{\wp} \ge pd_R \stackrel{i}{\wedge} E + q - pd_R \stackrel{i}{\wedge} E = q = min\{q, depthR_{\wp}\}$$

Case 2: Let $\wp \in Spec(R)$ such that $depthR_{\wp} < pd_R(\bigwedge^i E) + q$. Since $gradeI_m(f_1) \ge i + q$, $I_m(f_1) \not\subseteq \wp$ and this implies $I_1(f_1) \not\subseteq \wp$. In fact, if $I_1(f_1) \subset \wp, I_m(f_1) \subset I_1(f_1)$ and then $I_m(f_1) \subset \wp$, contradiction. If $I_1(f_1) \not\subseteq \wp$, there exists an entry $a_{ij}, 1 \le i \le m$ and $1 \le j \le n$, of the matrix that represents f_1 , that is invertible in R. We can suppose that this entry is a_{11} after a change of rows and columns of the matrix.

Then we can change the bases in \mathbb{R}^m and \mathbb{R}^n in such a way that $f_1 = f' \oplus 1 : \mathbb{R}^{m-1} \oplus \mathbb{R} \to \mathbb{R}^{n-1} \oplus \mathbb{R}$ and $I_m(f_1) = I_{m-1}(f')$. We proceed by induction on n. If n = 0 the assertion follows, because E is a free module. After a change of the bases, we have for E the presentation:

$$0 \to R^{m-1} \to R^{n-1} \to E \to 0$$

and by $I_m(f_1) = I_{m-1}(f')$, we have: $gradeI_m(f_1) = grade_{m-1}I(f') \ge i + q$, hence the assertion.

2) \Rightarrow 1) By induction on $rank(\mathbb{R}^m)$. For m = 1 the assertion is true by hypothesis. Suppose m > 1. We prove that $gradeI_m(f_1)_{\wp} \ge i + q, \forall \wp \in Spec(\mathbb{R})$. By assumption, we have the assertion for all $\wp \in Spec(\mathbb{R})$, $depthR_{\wp} \ge i + q$. Then we have to prove that $\forall \wp \in Spec(\mathbb{R})$, $depthR_{\wp} < i + q$, $gradeI_m(f_1)_{\wp} \ge i + q$. By our assumptions, $gradeI_1(f_1)_{\wp} \ge i + q$, so that $I_1(f_1) \nsubseteq \wp$ and so $I_1(f_1) \nsubseteq \wp$. As in the preceding proof, we obtain a presentation of E_{\wp} of the form

$$0 \to R^{m-1}_{\wp} \xrightarrow{f_1'} R^{n-1}_{\wp} \to E_{\wp} \to 0$$

and $gradeI_{m-1}(f_1')_{\wp} = gradeI_m(f_1)_{\wp}$. We have moreover $depth(\bigwedge^{\tau} E)_{\wp} \ge q = min\{q, depthR_{\wp}\}$, then the conclusion follows by induction on m.

Remark 2.2 Let (R, \mathfrak{m}) be a local ring containing a field k. Let i > 0 an integer for which one of the conditions a) and b) is true. Then we must have that $i \leq \operatorname{rank}(E) - 1 - q$.

Proof: Suppose i > rank(E)-1-q, then i+q > rank(E)-1, $gradeI_m(f_1) > rank(E)-1$ and depthR > rank(E)-1, $depthR \ge rank(E)$. But this implies E is a free R-module, by syzygy theorem [1].

Proposition 2.3 Let E be an R-module of rank r with resolution

$$F_{\cdot}: 0 \to R^m \xrightarrow{f_1} R^n \xrightarrow{f_0} E \to 0$$

and let $i \geq 1$ be an integer. The following statement are equivalent:

- 1) $\forall \wp \in Spec(R), depthR_{\wp} < i, I_1(f_1) \not\subseteq \wp \text{ and } I_1(f_1') \not\subseteq \wp \text{ for any application} f_1' \text{ given by a sub-matrix of the matrix that represents } f_1.$
- 2) $\mathcal{L}_i(F_{\cdot})$ is exact and $gradeI_m(f_1) \geq i$.

Proof: 1) \Rightarrow 2) By induction on *m*. For m = 1, we have the resolution

$$0 \to R \xrightarrow{f_1} R^n \xrightarrow{f_0} E \to 0.$$

Since $I_1(f_1) \nsubseteq \wp$, $E_{\wp} \cong R_{\wp}^{n-1}$, hence $(\mathcal{L}_i(F_{\cdot}))_{\wp}$ is exact and by Peskine-Szpiro [7], $\mathcal{L}_i(F_{\cdot})$ is exact. This forces $gradeI_1(f_1) \ge i$. Since $I_1(f_1) \nsubseteq \wp$, localizing F_{\cdot} at the prime ideal \wp , we have:

$$0 \to R_{\wp}^{m-1} \oplus R_{\wp} \xrightarrow{f_1' \oplus id} R_{\wp}^{n-1} \oplus R_{\wp} \to E_{\wp} \to 0$$

and $I_{m-1}(f'_1) = I_m(f_1)_{\wp}$. We conclude by the inductive hypothesis. 2) \Rightarrow 1) Let $gradeI_m(f_1) \ge i$, hence $gradeI_1(f_1) \ge i$ and $I_1(f_1) \not\subseteq \wp, \forall \wp \in Spec(R), depthR_{\wp} < i$. By localization at \wp , we have that $\mathcal{L}_i(F')$ is acyclic where

$$F^{'}_{\cdot}: 0 \rightarrow R^{m-1}_{\wp} \xrightarrow{f^{'}_{1}} R^{n-1}_{\wp} \rightarrow E_{\wp} \rightarrow 0$$

and $gradeI_m(f_1') \geq i$. Hence $gradeI_1(f_1') \geq i$, and $I_1(f_1') \not\subseteq \wp$. This process can be continued and we have the assertion.

Remark 2.4 If $\bigwedge^{l} E$ non zero for l > rank(E) = r, it is useful to out down the highest exteriors powers of E, more precisely the powers $\bigwedge^{l} E$, for l > rank(E). This may be done in several ways, for example by requiring that $(\bigwedge^{r} E)$ is a cyclic R-module.

Proposition 2.5 Let E be an R-module of rank r. Then

- 1) if $\bigwedge^{r} E$ is a free *R*-module, then *E* is a free *R*-module;
- 2) if $\stackrel{r}{\wedge} E$ is a cyclic *R*-module, then $\stackrel{l}{\wedge} E = 0$, for l > r.

Proof: See [5].

Corollary 2.6 (q = 1) Let E be a finitely generated R-module of rank r and with resolution

$$0 \to R^m \stackrel{f_1}{\to} R^n \stackrel{f_0}{\to} E \to 0.$$

Suppose that $\forall \wp \in Spec(R)$, $depthR_{\wp} < r$, $gradeI_1(f_1)_{\wp} \ge r$ and $\land E$ is a torsion free cyclic *R*-module. Then the following facts are equivalent:

- 1) $gradeI_m(f_1) \ge r$.
- 2) The exterior algebra $\wedge E = \bigoplus_{i=0}^{r} \bigwedge^{i} E$ is torsion free and $\forall \wp \in Spec(R)$, $depthR_{\wp} \geq r$, we have $gradeI_{m}(f_{1})_{\wp} \geq r$.

Proof : 1) \Rightarrow 2) We have to consider only the exterior powers $\stackrel{i}{\wedge} E$ with i < r. The hypothesis $gradeI_m(f_1) \ge (r-1) + 1$ implies that $\mathcal{L}_i(F)$ acyclic (*Theorem 1.2, 2*)) and $\stackrel{i}{\wedge} E$ 1-torsion free (*Theorem 2.1*), for all $i \le r-1$. Finally, $\wedge E$ is torsion free.

2) \Rightarrow 1) From Theorem 2.1, $gradeI_m(f_1) \ge i + 1$, for all $i \ge r - 1$, hence 1).

References

- M. Auslander. M. Bridger, *Stable module theory*, Mem. Amer. Math. Soc. 94, Providence, R.I. (1969)
- L. Avramov., Complete intersections and symmetric algebras, J. of Algebra 73 (1981), 248-263 (1991), 83-91
- [3] V. Bonanzinga. G. Restuccia, Syzygietic properties of a module and torsion freeness of its symmetric powers, Analele Constancia, 2000
- [4] D. Buchsbaum. D. Eisembud, What makes a complex exact, J.of Algebra 25 (1973),259-268
- [5] H. Flanders., On free exterior powers, Trans. A.M.S., 145 (1969), 357-367
- [6] J. Herzog. A. Simis. W. Vasconcelos, On the arithmetic and homology of algebras of linear type, Trans. Amer. Math. Soc., Vol.283, N.2 (1984)
- C. Peskine. L. Szpiro, Dimension projective finite et cohomologie locale, Inst. Hautes Etudes Sci. Publ. Math. 42(1973),323-395
- [8] G. Restuccia. C. Ionescu, q torsion freeness of symmetric powers, Rend.Circolo Mat. Palermo, Serie II, Tomo XLVI,1997
- P. Samuel., Anneaux gradués factoriels et modules réfléxifs, Bull. Soc. Math. France 92(1964), 237-249
- [10] A.B. Tchernev., Acyclicity of symmetric and exterior powers of complexes, J.of Algebra 184, (1996),1113-1135
- [11] J. Weyman, Resolutions of the exterior and symmetric powers of a module, J.of Algebra 58, (1979),333-341

University of Messina, Department of Mathematics C.da Papardo, Salita Sperone, 31, 98166 - (Me) Italy e-mail: molica@dipmat.unime.it University of Messina, Department of Mathematics

C.da Papardo, Salita Sperone, 31 98166 - (Me) Italy. e-mail: grest@dipmat.unime.it