

An. Şt. Univ. Ovidius Constanța

$Vol. \ 10(1), \ 2002, \ \ 87{-}94$

POINTWISE AND GLOBAL SUMS AND NEGATIVES OF BINARY RELATIONS

Tamás Glavosits and Árpád Száz

Abstract

For any two relations F and G on one groupoid X to another Y, we define (F+G)(x) = F(x) + G(x) for all $x \in X$ and

$$F \oplus G = \{(x + z, y + w) : (x, y) \in F, (z, w) \in G\}.$$

Moreover, if in particular X and Y are groups, then we may also naturally define (-F)(x) = -F(x) for all $x \in X$ and

$$\ominus F = \{(-x, -y): (x, y) \in F\}.$$

By using these definitions, we prove some basic theorems about the images of subsets of X under the relations -F, $\ominus F$, F+G and $F \oplus G$. In particular, we show that

$$(F \oplus G)(x) = \bigcup_{x=u+v} (F(u) + G(v))$$

for all $x \in X$. Therefore, in contrast to the intersection convolution [1], the union convolution of relations need not be introduced. Moreover, it is also worth mentioning that the results obtained can, for instance, be applied to translation and additive relations [2].

1 A few basic facts on relations and groupoids

A subset F of a product set $X \times Y$ is called a relation on X to Y. In particular, the relations $\Delta_x = \{(x, x) : x \in X\}$ and $X^2 = X \times X$ are called the identity and universal relations on X, respectively.

Namely, if in particular $F \subset X^2$, then we may simply say that F is a relation on X. Note that if F is a relation on X to Y, then F is also

a relation on $X \cup Y$. Therefore, it is frequently not a severe restriction to assume that X = Y.

If F is a relation on X to Y, then for any $x \in X$ and $A \subset X$ the sets $F(x) = \{ y \in Y : (x, y) \in F \}$ and $F[A] = \bigcup_{x \in A} F(x)$ are called the images of x and A under F, respectively. Whenever $A \in X$ seems unlikely, we may write F(A) in place of F[A].

If F is a relation on X to Y, then the values F(x), where $x \in X$, uniquely determine F since $F = \bigcup_{x \in X} \{x\} \times F(x)$. Therefore, the inverse F^{-1} of F can, for instance, be defined such that $F^{-1}(y) = \{x \in X : y \in F(x)\}$ for all $y \in Y$.

If F is a relation on X to Y, then the sets $D_F = F^{-1}(X)$ and $R_F = F(X)$ are called the domain and range of F, respectively. If in particular $X = D_F$ (and $Y = R_F$), then we say that F is a relation of X into (onto) Y.

A relation F on X to Y is called a function if for each $x \in D_F$ there exists $y \in Y$ such that $F(x) = \{y\}$. In this case, by identifying singletons with their elements, we usually write F(x) = y in place of $F(x) = \{y\}$.

If X is nonvoid set and + is a function of X^2 into X, then the ordered pair X(+) = (X, +) is called a groupoid. In this case, we may also naturally write x + y = +(x, y) for all $x, y \in X$.

Moreover, if X is a groupoid, then we may also naturally write $A + B = \{x + y : x \in A, y \in B\}$ for all $A, B \subset X$. Thus, the family $\mathcal{P}(X)$ of all subsets of X is also a groupoid.

Note that if X is, in particular, a group, then $\mathcal{P}(X)$ is, in general, only a semigroup with zero element $\{0\}$. However, we can still naturally use the notations $-A = \{-x : x \in A\}$ and A - B = A + (-B).

2 Pointwise and global sums and negatives of relations

Definition 2.1 If F and G are relations on a set X to groupoid Y and F+G is the relation on X to Y such that

$$(F+G)(x) = F(x) + G(x)$$

for all $x \in X$, then F + G is called the pointwise sum of F and G.

While, if F and G are relations on one groupoid X to another Y and

$$F \oplus G = \{ (x + z, y + w) : (x, y) \in F, (z, w) \in G \},\$$

then the relation $F \oplus G$ is called the global sum of F and G.

Remark 2.2 Thus, we have

$$D_{_{F+G}}=D_{_F}\cap D_{_G} \qquad \quad and \qquad \quad D_{_{F\oplus G}}=D_{_F}+D_{_G}.$$

The global sum $F \oplus G$ is, in general, quite different from the pointwise one F + G even if $D_{F+G} = D_{F\oplus G}$.

Example 2.3 If X is a groupoid, then

(1) $\Delta_x + \Delta_x = \Delta_x$ if and only if x = x + x for all $x \in X$;

(2) $\Delta_x \oplus \Delta_x = \Delta_x$ if and only if for each $x \in X$ there exist $u, v \in X$ such that x = u + v.

Therefore, if in particular X is a group, then $\Delta_X \oplus \Delta_X = \Delta_X$, but $\Delta_X + \Delta_X = \Delta_X$ if and only if $X = \{0\}$.

However, in some very particular cases, the global sum of relations may coincide with the pointwise one.

Example 2.4 Let X be a nonvoid set, and for all $x, y \in X$ define x + y = x. Then X is a semigroup such that, for any two relations F and G on X, we have $F \oplus G = F$ whenever $G \neq \emptyset$, and F + G = F whenever $G(x) \neq \emptyset$ for all $x \in D_F$.

Analogously to Definition 2.1, we may also naturally introduce the following

Definition 2.5 If F is a relation on a set X to group Y and -F is the relation on X to Y such that

$$(-F)(x) = -F(x)$$

for all $x \in X$, then -F is called the pointwise negative of F.

While, if F is a relation on one group X to another Y and

$$\ominus F = \{(-x, -y): (x, y) \in F\},\$$

then the relation $\ominus F$ is called the global negative of F.

Remark 2.6 Thus, we have

$$D_{-F} = D_F$$
 and $D_{\ominus F} = -D_F$.

The global negative $\ominus F$ is, in general, also quite different from the pointwise one -F even if $D_{\ominus F} = D_{-F}$.

Example 2.7 If X is a group, then $\ominus \Delta_x = \Delta_x$, but $-\Delta_x = \Delta_x$ if and only if -x = x for all $x \in X$.

However, in some very particular cases, the global negative of a relation may coincide with the pointwise one.

Example 2.8 If X is a group such that -x = x for all $x \in X$, then -F = F and $\ominus F = F$ for any relation F on X.

Concerning the images of sets under the relations -F, $\ominus F$, F+G and $F \oplus G$, we can easily prove the following theorems.

Theorem 2.9 If F is a relation on a set X to a group Y, then

$$(-F)(A) = -F(A)$$

for all $A \subset X$.

Theorem 2.10 If F is a relation on one group X to another Y, then

$$(\ominus F)(A) = -F(-A)$$

for all $A \subset X$.

Proof. If $y \in (\ominus F)(A)$, then there exists $x \in A$ such that $y \in (\ominus F)(x)$, and thus $(x, y) \in \ominus F$. Hence, it follows that $(-x, -y) \in F$, and thus $-y \in F(-x)$. Thus, since $F(-x) \subset F(-A)$, we also have $y \in -F(-A)$.

 $-y \in F(-x)$. Thus, since $F(-x) \subset F(-A)$, we also have $y \in -F(-A)$. Therefore, $(\ominus F)(A) \subset -F(-A)$.

Now, by writing $\ominus F$ in place of F and -A in place A, we can also see that

$$F(-A) = (\ominus(\ominus F))(-A) \subset -(\ominus F)(-(-A)) = -(\ominus F)(A),$$

and thus $-F(-A) \subset (\ominus F)(A)$ is also true. \Box

Corollary 2.11 If F is a relation on one group X to another Y, then

(1) $\ominus F = F$ if and only if F(-x) = -F(x) for all $x \in X$; (2) $\ominus F = -F$ if and only if F(-x) = F(x) for all $x \in X$.

Theorem 2.12 If F and G are relations on a set X to groupoid Y, then

$$(F+G)(A) \subset F(A) + G(A)$$

for all $A \subset X$.

Theorem 2.13 If F and G are relations on one groupoid X to another Y, then

$$F(A) + G(B) \subset (F \oplus G)(A + B)$$

for all $A, B \subset X$.

Proof If $w \in F(A) + G(B)$, then there exist $y \in F(A)$ and $z \in G(B)$ such that w = y + z. Moreover, there exist $a \in A$ and $b \in B$ such that $y \in F(a)$ and $z \in G(b)$, and thus $(a, y) \in F$ and $(b, z) \in G$. Hence, it follows that $(a + b, w) = (a + b, y + z) \in F \oplus G$, and thus $w \in (F \oplus G)(a + b)$. Thus, since $(F \oplus G)(a + b) \subset (F \oplus G)(A + B)$, we also have $w \in (F \oplus G)(A + B)$. \Box

Corollary 2.14 If F and G are relations on one groupoid X to another Y, and A is a subgroupoid of X, then

$$F(A) + G(A) \subset (F \oplus G)(A).$$

3 Some further results on the global sums of relations

Theorem 3.1 If F and G are relations on one groupoid X to another Y, then

$$(F \oplus G)(A) = \bigcup_{u+v \in A} (F(u) + G(v))$$

for all $A \subset X$.

Proof If $y \in (F \oplus G)(A)$, then there exists $x \in A$ such that $y \in (F \oplus G)(x)$, and hence $(x, y) \in F \oplus G$. Therefore, there exist $(u, z) \in F$ and $(v, w) \in G$ such that (x, y) = (u + v, z + w). Hence, it follows that $z \in F(u)$ and $w \in G(v)$, and moreover x = u + v and y = z + w. Therefore, $y \in F(u) + G(v)$, and hence $y \in \bigcup_{x=u+v} (F(u) + G(v)) \subset \bigcup_{u+v \in A} (F(u) + G(v))$.

While, if $y \in \bigcup_{u+v \in A} (F(u) + G(v))$, then there exist $u, v \in X$, with $x = u+v \in A$, such that $y \in F(u) + G(v)$. Therefore, there exist $z \in F(u)$ and $w \in G(v)$ such that y = z+w. Hence, it is clear that $(u, z) \in F$ and $(v, w) \in G$ such that (x, y) = (u+v, z+w). Therefore, $(x, y) \in F \oplus G$, and hence $y \in (F \oplus G)(x) \subset (F \oplus G)(A)$. \Box

Remark 3.2 The $A = \{x\}$ particular case of the above theorem shows that, in contrast to the intersection convolution

$$(F * G)(x) = \bigcap_{x=u+v} (F(u) + G(v)),$$

the union convolution of relations not be introduced since it coincides with the global sum.

Now, as a useful consequence of Theorem 3.1, we can also prove

Corollary 3.3 If F and G are relations on one group X to a groupoid Y, then

$$(F \oplus G)(A) = \bigcup_{v \in X} \left(F(A - v) + G(v) \right)$$

for all $A \subset X$.

Proof If $y \in (F \oplus G)(A)$, then by Theorem 3.1 $y \in \bigcup_{u+v \in A} (F(u) + G(v))$. Therefore, there exist $u, v \in X$, with $x = u + v \in A$, such that $y \in F(u) + G(v)$. Hence, it follows that $y \in F(x-v) + G(v) \subset F(A-v) + G(v)$, and thus $y \in \bigcup_{v \in X} (F(A-v) + G(v))$.

While, if $y \in \bigcup_{v \in X} (F(A-v) + G(v))$, then there exists $v \in X$ such that $y \in F(A-v) + G(v)$. Therefore, there exists $x \in A$ such that $y \in F(x-v) + G(v)$. Hence, by defining u = x - v, we can see that $u \in X$ such that x = u + v and $y \in F(u) + G(v)$. Therefore, $y \in \bigcup_{x=u+v} (F(u) + G(v)) \subset \bigcup_{u+v \in A} (F(u) + G(v))$, and hence by Theorem 3.1 $y \in (F \oplus G)(A)$. \Box

Moreover, as a simple reformulation of the above corollary we can also state

Corollary 3.4 If F and G are relations on one group X to a groupoid Y, then

$$(F \oplus G)(A) = \bigcup_{u \in X} (F(u) + G(-u + A))$$

for all $A \subset X$.

Proof If $y \in (F \oplus G)(A)$, then by Corollary 3.3 $y \in \bigcup_{v \in X} (F(A - v) + G(v))$. Therefore, there exists $v \in X$ such that $y \in F(A - v) + G(v)$. Thus, there exists $x \in A$ such that $y \in F(x - v) + G(v)$. Now, by defining u = x - v, we can see that $y \in F(u) + G(-u + x) \subset F(u) + G(-u + A)$. Therefore, $y \in \bigcup_{u \in X} (F(u) + G(-u + A))$.

While, if $y \in \bigcup_{u \in X} (F(u) + G(-u + A))$, then there exists $u \in X$ such that $y \in F(u) + G(-u + A)$. Therefore, there exists $x \in A$ such that $y \in F(u) + G(-u + x)$. Now, by defining v = -u + x, we can see that $y \in F(x - v) + G(v) \subset F(A - v) + G(v)$. Therefore, $y \in \bigcup_{v \in X} (F(A - v) + G(v))$, and hence by Corollary 3.3 $y \in (F \oplus G)(A)$. \Box

Remark 3.5 Now, by using the preceding results, one can also easily establish some properties of the images of sets under the relations

F - G = F + (-G) and $F \ominus G = F \oplus (\ominus G)$.

References

- Á. Száz, The intersection convolution of relations and the Hahn–Banach type theorems, Ann. Polon. Math. 69 (1998), 235–249
- [2] Á. Száz, Translation relations, the building bloks of compatible relators, Math. Montisnigri, to appear

Institute of Mathematics and Informatics, University of Debrecen, H-4010 Debrecen, Pf. 12, Hungary