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POINTWISE AND GLOBAL SUMS AND
NEGATIVES OF BINARY RELATIONS

Tamás Glavosits and Árpád Száz

Abstract

For any two relations F and G on one groupoid X to another Y ,
we define ( F + G )(x) = F (x) + G (x) for all x ∈ X and

F ⊕G =
�
( x + z, y + w ) : (x, y) ∈ F , (z, w) ∈ G

	
.

Moreover, if in particular X and Y are groups, then we may also
naturally define (− F )(x) = −F (x) for all x ∈ X and

ªF =
�
(− x , −y ) : (x, y) ∈ F

	
.

By using these definitions, we prove some basic theorems about the
images of subsets of X under the relations −F , ªF , F + G and
F ⊕G . In particular, we show that

( F ⊕G )(x) =
[

x=u+v

�
F (u) + G (v)

�
for all x ∈ X. Therefore, in contrast to the intersection convolution [1] ,
the union convolution of relations need not be introduced. Moreover, it
is also worth mentioning that the results obtained can, for instance, be
applied to translation and additive relations [2] .

1 A few basic facts on relations and groupoids

A subset F of a product set X×Y is called a relation on X to Y . In
particular, the relations ∆X = { (x, x ) : x ∈ X } and X2 = X×X are
called the identity and universal relations on X, respectively.

Namely, if in particular F ⊂ X2, then we may simply say that F is a
relation on X. Note that if F is a relation on X to Y , then F is also
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a relation on X ∪ Y . Therefore, it is frequently not a severe restriction to
assume that X = Y .

If F is a relation on X to Y , then for any x ∈ X and A ⊂ X the sets
F (x) = { y ∈ Y : ( x, y ) ∈ F } and F [A ] =

⋃
x∈A F (x) are called the

images of x and A under F , respectively. Whenever A ∈ X seems unlikely,
we may write F (A) in place of F [A ] .

If F is a relation on X to Y , then the values F (x) , where x ∈ X,
uniquely determine F since F =

⋃
x∈X {x}×F (x) . Therefore, the inverse

F−1 of F can, for instance, be defined such that F−1(y) =
{

x ∈ X : y ∈
F (x)

}
for all y ∈ Y .

If F is a relation on X to Y , then the sets DF = F−1(X) and RF =
F (X) are called the domain and range of F , respectively. If in particular
X = D

F
(and Y = R

F
) , then we say that F is a relation of X into (onto)

Y .
A relation F on X to Y is called a function if for each x ∈ DF there

exists y ∈ Y such that F (x) = {y} . In this case, by identifying singletons
with their elements, we usually write F (x) = y in place of F (x) = {y} .

If X is nonvoid set and + is a function of X2 into X, then the ordered
pair X (+) = ( X, + ) is called a groupoid. In this case, we may also naturally
write x + y = + ( x, y ) for all x, y ∈ X .

Moreover, if X is a groupoid, then we may also naturally write A + B ={
x + y : x ∈ A , y ∈ B

}
for all A , B ⊂ X. Thus, the family P (X) of all

subsets of X is also a groupoid.
Note that if X is, in particular, a group, then P (X) is, in general, only

a semigroup with zero element {0} . However, we can still naturally use the
notations −A = { − x : x ∈ A

}
and A−B = A + (−B ) .

2 Pointwise and global sums and negatives of relations

Definition 2.1 If F and G are relations on a set X to groupoid Y and
F + G is the relation on X to Y such that

( F + G )(x) = F (x) + G (x)

for all x ∈ X, then F + G is called the pointwise sum of F and G .
While, if F and G are relations on one groupoid X to another Y and

F ⊕G =
{
(x + z, y + w ) : (x, y) ∈ F , (z, w) ∈ G

}
,

then the relation F ⊕G is called the global sum of F and G .
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Remark 2.2 Thus, we have

D
F+G

= D
F
∩D

G
and D

F⊕G
= D

F
+ D

G
.

The global sum F ⊕ G is, in general, quite different from the pointwise
one F + G even if D

F+G
= D

F⊕G
.

Example 2.3 If X is a groupoid, then

(1) ∆
X

+ ∆
X

= ∆
X

if and only if x = x + x for all x ∈ X;

(2) ∆
X
⊕∆

X
= ∆

X
if and only if for each x ∈ X there exist u , v ∈ X

such that x = u + v .

Therefore, if in particular X is a group, then ∆
X
⊕ ∆

X
= ∆

X
, but

∆X + ∆X = ∆X if and only if X = {0} .

However, in some very particular cases, the global sum of relations may
coincide with the pointwise one.

Example 2.4 Let X be a nonvoid set, and for all x, y ∈ X define x+ y =
x . Then X is a semigroup such that, for any two relations F and G on X,
we have F ⊕G = F whenever G 6= ∅ , and F +G = F whenever G (x) 6= ∅
for all x ∈ D

F
.

Analogously to Definition 2.1, we may also naturally introduce the follow-
ing

Definition 2.5 If F is a relation on a set X to group Y and −F is the
relation on X to Y such that

(− F )(x) = −F (x)

for all x ∈ X, then −F is called the pointwise negative of F .

While, if F is a relation on one group X to another Y and

ªF =
{
(− x , −y ) : (x, y) ∈ F

}
,

then the relation ª F is called the global negative of F .

Remark 2.6 Thus, we have

D−F
= D

F
and DªF

= −D
F

.

The global negative ªF is, in general, also quite different from the point-
wise one −F even if DªF

= D−F
.
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Example 2.7 If X is a group, then ª∆
X

= ∆
X

, but −∆
X

= ∆
X

if and
only if −x = x for all x ∈ X.

However, in some very particular cases, the global negative of a relation
may coincide with the pointwise one.

Example 2.8 If X is a group such that −x = x for all x ∈ X, then
−F = F and ªF = F for any relation F on X.

Concerning the images of sets under the relations −F , ªF , F + G and
F ⊕G , we can easily prove the following theorems.

Theorem 2.9 If F is a relation on a set X to a group Y , then

(− F )(A) = −F (A)

for all A ⊂ X.

Theorem 2.10 If F is a relation on one group X to another Y , then

(ª F )(A) = −F (−A )

for all A ⊂ X.

Proof. If y ∈ (ªF )(A) , then there exists x ∈ A such that y ∈
(ªF )(x) , and thus ( x, y ) ∈ ªF . Hence, it follows that ( − x, −y ) ∈ F ,
and thus
−y ∈ F (−x ) . Thus, since F (−x ) ⊂ F (−A ) , we also have y ∈ −F (−A ) .
Therefore, (ª F )(A) ⊂ − F (−A ) .

Now, by writing ªF in place of F and −A in place A , we can also see
that

F (−A) =
(ª(ª F )

)
(−A ) ⊂ − (ªF )

(− (−A )
)

= −(ªF ) (A) ,

and thus −F (−A ) ⊂ (ª F )(A) is also true. ¤

Corollary 2.11 If F is a relation on one group X to another Y , then

(1) ªF = F if and only if F (− x ) = −F (x) for all x ∈ X;

(2) ªF = −F if and only if F (− x ) = F (x) for all x ∈ X.

Theorem 2.12 If F and G are relations on a set X to groupoid Y , then

(F + G )(A) ⊂ F (A) + G (A)

for all A ⊂ X.



Pointwise and global sums and negatives of binary relations 91

Theorem 2.13 If F and G are relations on one groupoid X to another Y ,
then

F (A) + G (B) ⊂ (F ⊕G )( A + B )

for all A , B ⊂ X.

Proof If w ∈ F (A) + G (B) , then there exist y ∈ F (A) and z ∈ G (B)
such that w = y + z . Moreover, there exist a ∈ A and b ∈ B such
that y ∈ F (a) and z ∈ G (b) , and thus ( a, y ) ∈ F and ( b, z ) ∈ G .
Hence, it follows that ( a + b , w ) = ( a + b , y + z ) ∈ F ⊕ G , and thus
w ∈ (F ⊕G )( a + b ) . Thus, since ( F ⊕G )( a + b ) ⊂ ( F ⊕G )(A + B ) , we
also have w ∈ (F ⊕G )( A + B ) . ¤

Corollary 2.14 If F and G are relations on one groupoid X to another
Y , and A is a subgroupoid of X, then

F (A) + G (A) ⊂ ( F ⊕G )(A) .

3 Some further results on the global sums of relations

Theorem 3.1 If F and G are relations on one groupoid X to another Y ,
then

(F ⊕G )(A) =
⋃

u+v∈A

(
F (u) + G (v)

)

for all A ⊂ X.

Proof If y ∈ ( F ⊕ G )(A) , then there exists x ∈ A such that y ∈
(F ⊕G )(x) , and hence ( x , y ) ∈ F ⊕G . Therefore, there exist ( u , z ) ∈ F
and ( v , w ) ∈ G such that ( x , y ) = ( u + v , z + w ) . Hence, it follows
that z ∈ F (u) and w ∈ G (v) , and moreover x = u + v and y = z + w .
Therefore, y ∈ F (u) + G ( v ) , and hence y ∈ ⋃

x=u+v

(
F (u) + G (v)

) ⊂⋃
u+v∈A

(
F (u) + G (v)

)
.

While, if y ∈ ⋃
u+v∈A

(
F (u) + G (v)

)
, then there exist u , v ∈ X , with

x = u+v ∈ A , such that y ∈ F (u)+G (v) . Therefore, there exist z ∈ F (u)
and w ∈ G (v) such that y = z +w. Hence, it is clear that (u , z ) ∈ F and
( v , w ) ∈ G such that ( x , y ) = ( u+v , z+w ) . Therefore, ( x , y ) ∈ F⊕G ,
and hence y ∈ (F ⊕G )(x) ⊂ ( F ⊕G )(A) . ¤

Remark 3.2 The A = {x} particular case of the above theorem shows that,
in contrast to the intersection convolution

(F ∗G )(x) =
⋂

x=u+v

(
F (u) + G (v)

)
,
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the union convolution of relations not be introduced since it coincides with the
global sum.

Now, as a useful consequence of Theorem 3.1, we can also prove

Corollary 3.3 If F and G are relations on one group X to a groupoid Y ,
then

(F ⊕G )(A) =
⋃

v∈X

(
F (A− v ) + G (v)

)

for all A ⊂ X.

Proof If y ∈ (F ⊕G )(A) , then by Theorem 3.1 y ∈ ⋃
u+v∈A

(
F (u) +

G (v)
)
. Therefore, there exist u , v ∈ X , with x = u + v ∈ A , such

that y ∈ F (u) + G (v) . Hence, it follows that y ∈ F (x − v ) + G (v) ⊂
F (A− v ) + G (v) , and thus y ∈ ⋃

v∈X

(
F (A− v ) + G (v)

)
.

While, if y ∈ ⋃
v∈X

(
F (A − v ) + G (v)

)
, then there exists v ∈ X

such that y ∈ F (A − v ) + G (v) . Therefore, there exists x ∈ A such that
y ∈ F (x − v ) + G (v) . Hence, by defining u = x − v , we can see that
u ∈ X such that x = u + v and y ∈ F (u) + G (v)

)
. Therefore, y ∈⋃

x=u+v

(
F (u) + G (v)

) ⊂ ⋃
u+v∈A

(
F (u) + G (v)

)
, and hence by Theorem

3.1 y ∈ ( F ⊕G )(A) . ¤
Moreover, as a simple reformulation of the above corollary we can also

state

Corollary 3.4 If F and G are relations on one group X to a groupoid Y ,
then

(F ⊕G ) (A) =
⋃

u∈X

(
F (u) + G (− u + A )

)

for all A ⊂ X.

Proof If y ∈ ( F ⊕ G )(A) , then by Corollary 3.3 y ∈ ⋃
v∈X

(
F ( A −

v )+G (v)
)
. Therefore, there exists v ∈ X such that y ∈ F ( A−v )+G (v) .

Thus, there exists x ∈ A such that y ∈ F (x− v ) + G (v) . Now, by defining
u = x− v , we can see that y ∈ F (u) + G (−u + x ) ⊂ F (u) + G (−u + A ) .
Therefore, y ∈ ⋃

u∈X

(
F (u) + G (− u + A )

)
.

While, if y ∈ ⋃
u∈X

(
F (u) + G ( − u + A )

)
, then there exists u ∈ X

such that y ∈ F (u)+G (−u+A ) . Therefore, there exists x ∈ A such that
y ∈ F (u) + G ( − u + x ) . Now, by defining v = −u + x , we can see that
y ∈ F ( x− v ) + G (v) ⊂ F (A− v ) + G (v) . Therefore, y ∈ ⋃

v∈X

(
F (A−

v ) + G (v)
)
, and hence by Corollary 3.3 y ∈ (F ⊕G )(A) . ¤
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Remark 3.5 Now, by using the preceding results, one can also easily establish
some properties of the images of sets under the relations

F −G = F + (−G ) and F ªG = F ⊕ (ªG ) .
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