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EULER APPROXIMATION OF
NONCONVEX DISCONTINUOUS

DIFFERENTIAL INCLUSIONS

Tzanko Donchev∗

Abstract

In the paper we study two types of time-discretization of one sided
Lipschitz differential inclusions which right-hand side is neither upper
nor lower semicontinuous. In the first one the original right-hand side is
used. In the second one we use its closed graph convex regularization.
It is remarkable that the both schemes give O(h1/2) approximation of
the solution set of the regularized differential inclusion. In the last
section we apply these results to investigate some qualitative properties
of differential inclusions in Hilbert spaces.

The paper is a natural extension of [6] (see also [8]). Let H be a Hilbert
space and let I = [0, 1]. Consider the following differential inclusion:

ẋ(t) ∈ F (t, x(t)), x(0) = x0. (1)

Here x0 ∈ H and F is a multifunction from I × H into H with nonempty
closed and bounded values. The corresponding to (1) discretized inclusion is:

ẏ(t) ∈ F (t, y(ti)); y(ti) = lim
t↑ti

y(t); y(0) = x0. (2)

The mesh points on I are 0 = t0 < t1 < · · · < tN = 1.
The main advantage of (2) is that we require only that F (·, x) admits a

(strongly) measurable selection. No assumptions for F (t, ·) have to be made.
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The following scheme (called Euler’s scheme) is commonly used in the
literature:

{
z(t) = y(ti) + (t− ti)fi, z(0) = x0, z(ti+1) = lim

t→ti+1
z(t)

where fi ∈ F (ti, z(ti)), i = 0, 1, . . . , N − 1 ,
(3)

The problem of the approximation of the solution set of (1) by the solution
set of (3) is investigated in a great number of papers. We note only the survey
[14] and the refferences therein. The approximation of the reachable set of
(1) is considered in [1, 16, 19]. The most general result in case of Lipschitz
differential inclusions is obtained in [10]. The so called strengthened one sided
Lipschitz condition has been used in [13, 14] to obtain O(h) approximation
in case of autonomous differential inclusions. In [7] the one sided Lipschitz
condition is used to obtain C(w(F, h) + τ(F, h)) accuracy. Here w(·, ·) is the
modulus of continuity of F on the state variable, while τ(·, ·) denotes the so
called averaged modulus of smoothness (cf. [7, 10]). Similar results (with
accuracy O(h1/2)) are obtained in case of differential inclusions with almost
Upper SemiContinuous (USC) right-hand side in [8]. The case of nonconvex
right-hand side (without any accuracy estimation) is considered in [15]. In
all (to the author knowledge) papers the problem (1) is considered in Rn. In
[6] the space is infinite dimensional. The right hand side, however, admits
(convex) compact values and is almost LSC.

In the paper we study (mainly) the approximated differential inclusion (2).
We let S(t, x) =

⋂
ε>0

co F (t, x + εU), where U is the open unit ball and Ā is

the closure of A.
ẋ(t) ∈ S(t, x(t)), x(0) = x0. (4)

Denote by Ri the solution set of the (differential) inclusion (i).
We show that the Hausdorff distance DH(R2, R4) ≤ O(h1/2). Here

DH(A,B) = max{sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)}, where dist(a,B) = inf
b∈B

|a−b|.

Further we show that R4 is nonempty, C(I, H) closed and depends in Lipschitz
way by x0 and (depends) continuously on parameters.

Denote by Pf (H) the set of all nonempty, closed and bounded subsets of
H and by PC(H) the set of all convex sets in Pf (H). The support function of
the set A is σ(x,A) = sup

a∈A

〈
x, a

〉
.

Definition 1 The multifunction G : I → Pf (H) is said to be measurable
when the set {t ∈ I : G(t)

⋂
A 6= ∅} is measurable for every open A ⊂ H.
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The multifunction G : I → Pf (H) is said to be strongly measurable when there
exists a sequence Gn : I → Pf (H) of simple functions such that

lim
n→∞

∫

I

DH(G(t), Gn(t)) dt = 0.

The multifunction G is called upper hemicontinuous (UHC) when the support
function σ(l, G(·)) from H equpped with the strong topology is upper semicon-
tinuous as a real valued function.

Definition 2 The multifunction F : I × H → Pf (H) is said to be relaxed
one-sided Lipschitz (ROSL) with a constant L (not necessarily positive) when

σ(x− y, F (t, x))− σ(x− y, F (t, y)) ≤ L|x− y|2

for every x, y ∈ H and a.a. t ∈ I.

The last definition has been used in much author’s papers. Some properties
and applications of this condition are studied in [8] (see also [6, 14]). It is esy
to see that S(t, ·) is ROSL with a constant L if F (t, ·) is ROSL with a constant
L.

Notice that all the concepts not discussed in the sequel can be found in
[2, 5]. Now we give the main assumptios used in the paper.

A1. F : I ×H → Pf (H) is bounded on the bounded sets. F is ROSL.
A2. F (·, x) is strongly measurable or F (·, x) is measurable and H is sep-

arable. We need the following lemma which is proved in [6].

Lemma 1 Assume A1 and A2 hold. Then there exist constants M and K
such that |x(t)| ≤ M − 1 and |S(t, x(t) + U) + Ū | ≤ K, for every absolutely
continuous (AC) x(·) with x(0) = x0 and ẋ ∈ co S(t, x + U) + Ū .

In the next section we present our main results. In the last one we discuss
briefly some applications of the results.

1 Euler approximations.

In this section we consider (mainly) the discretized inclusion (2). Suppose the

mesh points are ti = ih where h =
1
N

. Throughout the paper we consider
only steps h > 0 such that hK ≤ 1, where K is the constant from lemma 1.
Given h we denote R2 by Rh.

Theorem 1 If A1 and A2 hold then Rh 6= ∅. Furthermore R = lim
h→0+

Rh

exists and R ⊂ R4.
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Proof. The fact that Rh 6= ∅ is obvious. Indeed if hK ≤ 1, every solution
y(·) of (2) is also a solution of

ẏ(t) ∈ S(t, y(t) + U) + Ū .

Thus Lemma 1 applies and hence y(·) can be extended on the whole I. Fix
h1 > 0 and let x1(·) be a solution of (2) with h = h1. Let h2 6= h1. Suppose
y(·) is AC function such that

ẏ(t) ∈ F (t, y(tj)); y(tj) = lim
t↑tj

y(t); y(0) = x0.

We have denoted by tj = jh2 the mesh points of the second subdivision (the
mesh points of the first subdivision are ti = ih1). For t ∈ [tj , tj+1] we take a
strongly measurable f(t) ∈ F (t, yj) (yj = y(tj)) such that

〈
yj − x1(ti), f(t)− ẋ1(t)

〉 ≤ L|yj − x1(ti)|2 when t ∈ [tj , tJ+1)
⋂

[ti, ti+1).

Notice first that |f(t)| ≤ K − 1 and |ẋ1(t)| ≤ K − 1. We set

y(t) = yj +
∫ t

tj

f(s) ds.

Denote h = max {h1, h2}. Evidently the following inequalities hold:

〈
y(t)−x1(t), f(t)− ẋ1(t)

〉 ≤ L|y(t)−x1(t)|2+ |L|
∣∣∣|yj−x1(ti)|−|y(t)−x1(t)|

∣∣∣+

+|y(t)− yj ||ẏ(t)− ẋ1(t)|+ |x1(t)− x1(ti)||ẏ(t)− ẋ1(t)|
≤ L|y(t)−x(t)|2+|L|

(
|yj−x1(t1)+y(t)−x1(t)|·|(yj−y(t))+(x1(t)−x1(ti))|

)

+4K2h ≤ L|y(t)− x(t)|2 + 8|L|MKh + 4K2h.

Obviously one can extend y(·) over the whole interval I such that y(·) ∈ Rh1 ;
y(0) = x0 and |y(t)− x(t)|2 ≤ r(t). Here r(0) = 0 and

ṙ(t) ≤ 2Lr(t) + 16|L|MKh + 8K2h,

i.e.

r(t) ≤ 8(|L|KM + 2K2)h exp (2Lt)
∫ t

0

exp (−2Ls) ds

If

C = max
t∈I

exp (Lt)
∫ t

0

exp (−Ls) ds
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then
|x(t)− y(t)| ≤ 4C

√
|L|MK + K2/2h1/2

(remind that h = max {h1, h2}). If we do not use h we can derive

|x(t)− y(t)| ≤ 2C
√

(2|L|MK + K2/2)(h1 + h2).

Obviously such estimation is valid also when the grids are not uniform and

h1 = max
i

(ti+1 − ti); h2 = max
j

(tj+1 − tj).

(h1K ≤ 1, h2K ≤ 1!) Therefore {Rh}h>0 is a Cauchy net of (nonempty)
closed subsets of C(I,H). Thus there exists a nonempty C(I,H) closed set
R = lim

h→0+
Rh. Suppose x(·) ∈ R, i.e. x(·) is AC and hence a.e. differentiable

function. Furthermore there exists a net {xh(·)}h>0 with xh(·) ∈ Rh and
lim

h→0+
xh(t) = x(t) uniformly on I. Since |ẋh(t)| ≤ K for every h > 0 and every

xh(·) ∈ Rh, one has that the net {ẋh(·)}h>0 is L1(I,H) weakly precompact.
Using standard considerations one can show with the help of Mazur’s lemma
that x(·) is a solution of (4).

Corollary 1 Assume all the conditions of theorem 1 hold. If y(·) ∈ Rh then

dist(y(·), R4) ≤ 2C
√

(2|L|MK + K2)h1/2.

Proof. Fix ε > 0. One can construct a sequence {xi(·)}∞i=1 of solutions of

(2) with |xj(t) − xj+1(t)| ≤ 2C
√

(2|L|MK + K2/2)(hj + hj+1) +
ε

2j
. Here

hi = max
i

(tji+1 − tji ) is the step of the subdivision corresponding to xj(·) and

hi+1 = max
l

(tj+1
l+1 −tj+1

l ) the step of xj+1(·). Obviously choosing appropriately

{hj}∞j=1 one will obtain
∞∑

j=0

|hj + hj+1|1/2 ≤ h
1/2
0 + ε.

Theorem 2 Assume all the conditions of theorem 1 hold. If x(·) ∈ R4, then
dist(x(·), Rh) ≤ 2C

√
(2|L|M + K)Kh1/2.

Proof. Consider the following discretized inclusion:

ẋ(t) ∈ S(t, x(ti)), x(ti) = lim
t↑ti

y(t); y(0) = x0. (5)
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The inclusion (5) is obtained when F (·, ·) in (2) is replaced by S(·, ·). Let x(·)
be a solution of (4). Define the solution z(·) of (5) as follows:

z(t) = z(ti) +
∫ t

ti

f(τ) dτ, where f(t) ∈ S(t, z(ti)) for t ∈ [ti, ti+1)

is such that〈
x(t)− z(ti), ẋ(t)− f(t)

〉 ≤ L|x(t)− z(ti)|2. Therefore〈
x(t)− z(t), ẋ(t)− ż(t)

〉 ≤∣∣∣
〈
x(t)− z(ti), ẋ(t)− ż(t)

〉− 〈
x(t)− z(t), ẋ(t)− ż(t)

〉∣∣∣ +

+
〈
x(t)− z(ti), ẋ(t)− ż(t)

〉 ≤ L|x(t)− z(ti)|2 + |x(t)− z(ti)||ẋ(t)− ż(t)|
≤ L|x(t)− z(t)|2 + |L|

(
|x(t)− z(ti)|2 − |x(t)− z(t)|2

)
+ M(tε − t)K2.

Using the same fashion as in the previous proof one obtains:

|x(t)− z(t)| ≤ 2C
√

(2|L|M + K)Kh1/2.

We have to prove that the solution set of (5) is the closure of the solution set
of (2).

First we will show that given x, y ∈ H, a (strongly) measurable f(t) ∈
S(t, x) and ε > 0 there exists a (strongly) measurable g(t) ∈ F (t, y) such that〈
x− y, f(t)− g(t)

〉
< L|x− y|2 + ε.

Let f1 ∈ S(t, x) be such that
〈
x−y, f1

〉
= σ(x−y, S(t, x)). Thus there exist

li → 0 and fi ∈ F (t, x+li) such that
〈
x−y, fi

〉 → 〈
x−y, f1

〉
. Furthermore for

every fi there exists gi ∈ F (t, x) with
〈
x + li− y, fi− gi

〉
< L|x− y + li|2 +

ε

i
.

Hence to δ > 0 there exists gδ ∈ F (t, y) such that
〈
x−y, f−gδ

〉
< L|x−y|2+δ.

Therefore σ(x − y, S(t, x)) − σ(x − y, F (t, y)) ≤ L|x − y|2 because δ > 0 is
arbitrary. Furthermore the multivalued map

Fδ(t) := {g ∈ F (t, y) :
〈
x(t)− y, f(t)− g

〉 ≤ L|x(t)− y|2 + δ

is obviously (strongly) measurable and hence admits a (strongly) measurable
selection.

Fix ε > 0 and consider the solution yε(·) of (2) defined as follows:

〈
yε(ti)− x(t), ẏε(t)− ẋ(t)

〉
< L|yε(ti)− x(t)|2 +

ε

2i
for t ∈ [ti, ti+1).

One can easily show that |x(t) − yε(t)| ≤ 2C
√

(2|L|M + K)Kh1/2 + αε1/2,
where α is a constant (not depending on h and ε). Theorem is proved because
ε > 0 is arbitrary.
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Corollary 2 Under the assumptions of theorem 1

DH(Rh, R4) ≤ 2C
√

(2|L|+ K)Kh1/2.

We have proved that DH(R4, Rh) = O(h1/2). Now we consider the approxi-
mation scheme (3). If F (·, ·) in (3) is replaced by co F (·, ·) then denoting the
solution set by R3co one has DH(R3co, R6) = O(h) where R6 is the solution
set of

ẋ(t) ∈ F (ti, x(ti)) on [ti, ti+1), i = 0, 1, . . . , N − 1; x(0) = x0. (6)

Recall the definition of the averaged modulus of continuity (see [6, 8] for
instance).

Let ∆ = {t0, t1, · · · , tn} be a partition of I. Denote Ik = [tk−1, tk], k =
1, · · · ,m. Consider the vectors ~y = (y1, y2, · · · , yn) ∈ Hn. If there exist
A ⊂ H such that yi ∈ A ⊂ H for i = 1, · · · , n, we write ~y ∈ A.

Given partition ∆, h ∈ (0, 1) and x ∈ H we denote

ω(F, ∆, x, h, t) = sup{DH(F (s, x), F (r, x)) : s, r ∈ [t− h

2
, t +

h

2
] ∩ Ik}

Let 1 ≤ p < ∞, h ∈ (0, 1), the partition ∆ and the vector ~y = (y1, y2, · · · , yn)
be fixed. We denote

ρ(F, ∆, ~y, h)p =
{ m∑

k=1

∫

Ik

ω(F, ∆, yk, h, t)p dt
} 1

p

.

The global Lp-averaged modulus of continuity of F with the step h is

ρ(F,A, h)p = sup
∆

sup
~y∈A

ρ(F, ∆, ~y, h)p

Here we have denoted A = KU . The following theorem holds true:

Theorem 3 If all the assumptions of theorem 1 hold, then

DH(R4, R6) ≤ C
(
h1/2 + ρ(co F, h)2

)
.

The proof is omitted since it is very similar to the proof of Theorem 3 of
[6] (see also lemma 4 of [8]).

Lemma 2 If all the assumptions of theorem 1 hold, then there exists a con-
stant C such that DH(R3, R3co) ≤ Ch1/2.
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Proof. (Compare with theorem 6 of [6]) Consider the interval [ti, ti+1]. Let
y(·) ∈ R3co and let y(t) = yi + fi(t− ti), where fi ∈ co F (ti, yi). Let x(·) ∈ R3

on [0, ti]. Since F (t, ·) is OSL one has that for every ε > 0 there exists gi ∈
F (ti, xi) such that

〈
xi−yi, fi−gi

〉 ≤ L|xi−yi|2+ε. We let x(t) = xi+(t−ti)gi

on [ti, ti+1]. Consequently

〈
x(t)− y(t), ẋ(t)− ẏ(t)

〉 ≤ L|x(t)− y(t)|2 + |L|
∣∣∣|xi − yi|2 − |x(t)− y(t)|2

∣∣∣

+
[
|xi − x(t)|+ |yi − y(t)|

]
|ẋ(t)− ẏ(t)|. However,

[
|xi − x(t)|+ |yi − y(t)|

]
|ẋ(t)− ẏ(t)| ≤ 2K(t− ti)2K = 4K2(t− ti)

∣∣∣|xi − yi|2 − |x(t)− y(t)|2
∣∣∣ ≤

|(xi + x(t))− (yi − y(t))||(xi − x(t)|+ |yi − y(t)|
≤ 2K(ti − t)4M = 8KM(t− ti).

Hence
〈
x(t)− y(t), ẋ(t)− ẏ(t)

〉 ≤ L|x(t)− y(t)|2 + 8K(K + 2M |L|)h.

Obviously one can determine x(·) ∈ R3 such that the inequality above holds
on the whole interval I. Thus

d

dt
|x(t)− y(t)|2 ≤ 2L|x(t)− y(t)|2 + 8K(K + 2M |L|)(h + ε). Consequently

|x(t)− y(t)|2 ≤ exp (2Lt)
( ∫ t

0

exp (−2Lτ) dτ
)
8K(K + 2M |L|)(h + ε).

Since ε > 0 is arbitrary one has that DH(R3, R3co) ≤ Ch1/2.

From Theorem 2 and Lemma 2 one obtains:

Theorem 4 If all the assumptions of theorem 1 hold, then there exists a con-
stant C > 0 such that DH(R3, R4) ≤ C(h1/2 + ρ(co F, h)2).

Corollary 3 Consider the system:

ẋ(t) ∈ F (t, x, u(t)), x(0) = x0; u(t) ∈ V - metric compact. (7)

Let F (·, x, u) be (strongly) measurable, F (t, ·, u) be UHC with convex weakly
compact values, F (t, x, ·) be continuous. If F is OSL with a constant L non-
depending on u, then the solution set of (7) is dense in the solution set of

ẋ(t) ∈ co F (t, x, V ), x(0) = x0.
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Remark 1 It seems strange but due to Theorem 3 the accuracy of the ap-
proximation scheme (3) is the same no matter F (·, ·) or co F (·, ·) is used. For
example replace F (·, ·) by extF (·, ·). The last multimap is neither USC nor
LSC on the state variable. The solution set of

ẋ ∈ ext F (t, x), x(0) = x0

will be empty in general case. However the approximation scheme (2) applied
to the last differential inclusion approximate with O(h1/2) accuracy R4.

2 Concluding remarks.

In this section we discuss briefly some applications of the previous results. In
some cases the stile will be extremely concise, because we give only overview
of the problems. The detail investigation of the examples below is not the
topic of the paper.

Proximal cones and strong invariance. First we consider the problem
(1) and the corresponding differential inclusion (4). We are looking for the
solutions of (4), belonging to a given closed set D. We will follow closedly [3]
(see also [4] for more details in case H = Rn).

The (possibly empty) set af all closest points to x in D is denoted projD(x) =
{s ∈ D : |x− s| = dist(x,D)}. Given δ > 0 we let projδ

D = {s ∈ D : |x− s|2 <
dist2(x,D) + δ2}. Obviously the last set is always nonempty. If x /∈ D and
s ∈ projD(x) we call the vector x− s a perpendicular to D at s. The set of all
nonnegative multipliers of such perpendiculars is called proximal normal cone
to D at s and is denoted by NP

D (s). If s ∈ int(D) or no perpendicular to D
at s exists, then we set NP

D (s) = {0}. We will use the following

Proposition 1 (Proposition 2.2 of [3]) Let x ∈ H \ D, δ > 0 and sδ ∈
projδ

D(x). Then there exists yδ ∈ H\D and s̄δ ∈ D such that yδ−s̄δ ∈ NP
D (s̄δ),

|(yδ − s̄δ)− (x− sδ)| ≤ 2δ and |sδ − s̄δ| ≤ δ.

The AC function x(·) is said to be ε-solution of (1) when ẋ(t) ∈ F (t, x(t)+εU)
for a.a. t ∈ I. Given the closed set D ⊂ H we let x0 ∈ D.

Definition 3 (c.f. [3, 4]) The system (1) is said to be approximately weakly
invariant (with respect to D) when for any ε > 0 and any x0 ∈ D there exists a
ε-solution x(·) of (1) on [0, 1] such that dist(x(t), D) ≤ ε ∀t ∈ I. The system
(1) is said to be weakly invariant if there exists a solution x(·) of (1) such
that x(t) ∈ D. The system (1) is said to be approximately strongly invariant
if for every λ > 0 and any x0 ∈ D there exists ε(x0, λ) > 0 such that every
ε-solution x(·) remains in D when ε < ε(x0, δ). Analogously (1) is called
strongly invariant when every solution x(·) of (1) satisfies x(t) ∈ D.
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Theorem 5 Let all the assumptions of Theorem 1 hold. Given a closed set
D ⊂ H, the system (4) is strongly invariant if there exits a null set A ⊂ I
such that σ(p, F (t, x)) ≤ 0 ∀p ∈ NP

D (x) ∀x ∈ D, ∀t ∈ I \A.

Proof. Let δ ∈ (0,
1
4
) be given. For x ∈ H we choose sδ ∈ projδ

D(x).

Since |F (t, x)| ≤ K, one has that every strongly measurable Fδ(·, x) with
fδ(t, x) ∈ F (t, x) satisfies |fδ(t, x)| ≤ K. Due to proposition 1 there exist
(sδ(x), s̄δ(x)) and strongly measurable fδ(t, x) ∈ F (t, s̄δ(x) + δU) satisfying〈
fδ(t, x), x − s̄δ(x)

〉 ≤ 2Kδ and |fδ(t, x)| ≤ K. Thus
〈
fδ(t, x), x − sδ(x)

〉 ≤
4Kδ.

Given a subdivision {0 = t0 < t1 < · · · < tN = 1} we define y(t) =

y(ti) +
∫ t

ti

fδ(s, yi) ds, where y(ti) = lim
t↑ti

y(t). Obviously:

d2
D(yi+1) ≤ |yi+1 − si|2 = |yi+1 − yi|2 + |yi − si|2 + 2

〈
yi+1 − yi, yi − si

〉

≤ K2|ti+1 − ti|2 + d2
D(yi) + δ2 + 2

∫ ti+1

ti

〈
fδ(t, yi), yi − si

〉
dt. Here

yi = y(ti), si = sδ(yi). Therefore
d2

D(yi+1)− d2
D(yi) ≤

(
K2d(∆) + d(∆) + 8Kd(∆)

)
(ti+1 − ti) ≤ ε̃(ti+1 − ti),

where dD(yi) = dist(yi, D) and d(∆) = max
i
|ti+1 − ti|. Consequently

dD(yi+1) ≤ ε̃

2
for i = 0, 1, 2, . . . , N − 1.

We have proved that the system (4) is approximately weakly invariant. Con-
sider the sequence {εi}∞i=1 with εi > εi+1 → 0+. From the proof of Theorem
1 we know that there exists a constant C such that for every εi-solution xi(·)
of (4) there exists a εi+1-solution xi+1(·) with |xi(t)− xi+1(t)| ≤ C

√
εi + εi+1

on I. Thus xi(·) → x(·) uniformly on I (for appropriately chosen εi). Further-
more x(·) is obviously a solution of (4) and x(t) ∈ D. Consequently the system
(4) is weakly invariant. Evidently there exists a sequence {εi}∞i=1 such that
|xi(t) − x(t)| ≤ 2C

√
εi. Suppose y(·) is a solution of (4) such that y(t) /∈ D

for some t ∈ I. Denote ε = max
t∈I

dD(y(t)) > 0. Obviously for every δ > 0 there

exists a δ -solution xδ(·) such that |xδ(t)− y(t)| ≤ C
√

δ <
ε

3
. As it was shown

there exists a solution x(·) of (4) such that |xδ(t) − x(t)| ≤ 2C
√

δ <
2ε

3
, i.e.

|x(t)− y(t)| < ε - contradiction. The theorem has been proved.

Remark 2 In [3, 4] the conditions of Theorem 5 are given under the Hamil-
tonians.
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Namely for p ∈ H define the upper Hamiltonian H(t, x, p) = sup{〈p, v
〉

:
v ∈ F (t, x)} and assume H(t, x, p) ≤ 0. Obviously H(t, x, p) = σ(p, F (t, x)).
Furthermore one can consider the case when F (t, ·) is defined only on D.
The existence of solutions of (4) can be proved also under the conditions
of theorem 4 since no compactness conditions are required. However, when
F (t, ·) is defined on the whole H and S(t, ·) is USC with compact values one
can prove the existence of a (viable) solution of (4) when h(t, x, p) ≤ 0, where
h(t, x, p) = min{〈v, p

〉
, v ∈ S(t, x)}.

When F (·, ·) is almost continuous one can replace if in theorem 5 by if and
only if.

Averaging of differential inclusions. The averaging technique is com-
prehensively studied in [17] (see also [18]).

ẋ ∈ F (t, x) + εG(t, x) on [0,∞), x(0) = x0. (8)

Denote

R(x) = lim
T→∞

cl
1
T

∫ T

0

G(t, x) dt. (9)

Let the limit (9) exist in sufficiently large neighborhood of x0. According to
(8) we obtain the averaged differential inclusion:

ẋ ∈ F (t, x) + εR(x(t)) on [0,∞), x(0) = x0. (10)

Suppose the limit (9) exists uniformly on a domain B.
Let A1, A2 hold. Assume F (·, ·) satisfies A1 and A2 with constant LF ≤ 0.
Let G(·, ·) satisfies A1 and A2 (LG may be positive). A typical averaging
theorem is the following:

Theorem 6 Let F and G be UHC convex and weakly compact values. Suppose
there exist a subset B′ ⊂ B and µ > 0, such that for every ε > 0 and every
solution x(·) of (10) with x0 ∈ B one has x(t) + l ∈ ∆ ∀t ∈ [0, ε−1] and
∀l ∈ µU .

Then for every η > 0 there exists ε(η) > 0 such that DH(S1, S2) ≤ η on
[0, ε−1] for ε < ε(η), where S1 and S2 are the solution sets of (8) and (10)
respectively.

Proof. Fix ε > 0. Taking into account the uniform convergence in (9) one
can choose mε →∞ with εmε → 0 as ε → 0+ such that

lim
ε→0+

DH

(
R(x),

1
q

∫ t+q

t

G(s, x) ds
)

= 0, [0, ε−1]×B,
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here q =
1

εmε
. It is easy to see that R(·) is also OSL with a constant

LG. Furthermore ∀δ > 0 – ∃mε such that DH(S̃(ε,G), S(ε,G)) ≤ δ(ε) and
DH(S̃(ε,R), S(ε,R)) ≤ δ(ε). Here S̃(ε,G) is a solution set of

ẋ(t) ∈ F (t, x) + εG(t, xi), xi = x(ti), ti = iq.

Using standard computations one can show that δ2(ε) ≤ 2rε(t), where ṙε(t) =
LF rε(t) + 4ε(|LG| + 1)MNq, rε(0) = 0. The constants N ≥ |F (t, x(t))| for
every solution x(·) of (8) and M ≥ max {S̃(ε,G), S̃(ε, R), S(ε,G), S(ε,R)}
exist thanks to lemma 1. Since LF ≤ 0, one has that rε(t) ≤ 4(|LG|+ 1)MN

mε
.

Hence δ(ε) ≤
√

8(|LG|+ 1)MN

mε
. One can finish the proof following closedly

the proof of theorem 1 of [18].

Singularly perturbed differential inclusions. The averaging proce-
dure of singularly perturbed differential inclusions and contron systems has
been investigated in large number of papers. We note [9, 11, 12] and the
refences therein. The following Cauchy problem is a typical singularly per-
turbed system.

ẋ(t) ∈ F (x, y, u), x(0) = x0, u ∈ V - metric compact
εẏ(t) ∈ G(x, y, u), y(0) = x0, t ∈ I = [0, 1]. (11)

Here F : H1 × H2 × V → Pc(H1) and G : H1 × H2 × V → Pc(H2). Notice
that H1 and H2 are infinite dimensional and F, G are not necessarily compact
valued. So we can not obtain a result similar to theorem 4 of [9].

The following assumption is crucial.

B1. There exist positive constants A,B, D, µ such that

σ(x1 − x2, F (x1, y1, u))− σ(x1 − x2, F (x2, y2, u)) ≤ A|x1 − x2|2 + B|y1 − y2|2,
σ(y1 − y2, G(x1, y1, u))− σ(y1 − y2, G(x2, y2, u)) ≤ D|x1 − x2|2 − µ|y1 − y2|2,

uniformly on u ∈ V . Furthermore F and G are UHC. They have nonempty,
convex and weakly compact values and are bounded on bounded sets.

Given x the associated system is:

ẏ(τ) ∈ G(x, y(τ), u(τ)), y(0) ∈ Q ⊂ H2, u ∈ V. (12)

Denote W̄ (x, S, Q) =
{ 1

S

∫ S

0

F (x, Y (τ, x, S,Q), u(τ)) dτ : u(τ) ∈ V
}

, where

Y (τ, x, S,Q) is the solution set of (12) on the interval [0, S]. Assume there
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exists a ROSL (with closed bounded values) multifunction W̄ (x) such that
graph(W̄ (x)) = lim

S→∞
graph(W̄ (x, S, Q)). Then under certain conditions on F

and G one can prove that the ”slow” part of the solution set of (11) converges
to the solution set of

ẋ(t) ∈ W̄ (x), x(0) = x0, t ∈ I. (13)

With the help of corollary 3 one can easily prove that the solution set of (13)
is dense in the solution set of:

ẋ(t) ∈ co W̄ (x), x(0) = x0.

Now following (with essential modifications) the proofs of Lemmas 3.5 and 3.6
of [9] one would be able to prove:

Theorem 7 Under the assumptions above lim
ε→0+

DH(X(ε), X(0)) = 0, where

X(ε) is the slow part of the solution set of (11) and X(0) is the solution set
of (13).

Here we have described briefly the problem. The comprehensive investigation
will be subject to other paper.
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