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EXISTENCE PROBLEMS FOR ω−CLOSED
ORBITS

Cezar Avramescu

Abstract

Hereafter we denote by ω (x) the ω−limit set associated to a solution
x of a differential system. The orbit corresponding to this solution is
called ω−closed if ω (x) = {x (0)} . In this paper, the existence problem
for such orbits is considered.

1 Introduction

Let us consider the differential system

ẋ = f (t, x) , (1.1)

where f : IR+ × IRn → IRn is a continuous function and IR+ = [0,+∞). We
suppose that every solution of this system exists on IR+.

For x a solution of system (1.1), ω (x) denotes the set

ω (x) := {ξ ∈ IRn, (∃) tm ∈ IR+, tm →∞, x (tm) → ξ} .

When studying a differential system, one would like to get an information
as rich as possible about the asymptotic behavior of its trajectories. In partic-
ular, it is natural to study the structure and the properties of the limit points
of a given solution, i.e. for the ω−limit sets.

For planar dynamical systems, the interest in this problem goes back to
Poincaré, but surprisingly enough, a complete characterization of their limit
set has not been given yet (for details see [2] and its references).

The present paper intends to bring a contribution in this field; more pre-
cisely, we intend to obtain some existence results for a special class of orbits,
the so-called ω−closed ones.
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Definition 1. Let x be a solution of the system (1.1) and let ω (x) be its
ω−limit set. We say that the correspondent orbit of x is ω−closed if

ω (x) = {x (0)} . (1.2)

The condition (1.2) is equivalent to following two:

(∃) lim
t→∞

x (t) := x (+∞) ∈ IRn, (1.3)

x (0) = x (∞) . (1.4)

A solution which satisfies (1.3) is called a convergent solution; existence
problems for such convergent solutions have been treated by many authors
(see e.g. [1] , [3] , [4] , [6] , [7] , [8] , [9], [15] , [16] , [17] , [18]).

The condition (1.4) can be regarded as a generalization of the boundary
condition

x (0) = x (T ) , 0 < T < ∞. (1.5)

The problem (1.1)+(1.5) plays a central role in the theory of periodic solu-
tions; important results in this field were obtained by J. Mawhin(see [5] , [11] ,
[12] , [13]) and rely on the topological degree theory. Some of the techniques
used by J. Mawhin will be adjusted for the problem (1.1) + (1.2) in this work.
The main idea consists in reducing of the problem (1.1) + (1.2) up to a fixed
point problem for some operator working in an adequate space.

We end this section with some necessary notations and preliminary results.
The n−dimensional space IRn is endowed with the usual inner product

〈· | ·〉 and with the euclidean norm |·| .
Cc = Cc (IR+, IRn) is the space of the continuous applications x : IR+ →

IRn endowed with the topology of uniform convergence on every compact in-
terval of IR+.

CR denotes the space

CR = CR (IR+, IRn) :=

{
x ∈ Cc, (∃)

∫ ∞

0

x (t) dt := lim
A→∞

∫ A

0

x (t) dt ∈ IRn

}

and becomes a Fréchet space, but its topology is complicated enough. Also,
let us consider

Cl : =
{

x ∈ Cc, (∃) x (∞) := lim
t→∞

x (t)
}

,

C0l : = {x ∈ Cl, x (0) = x (∞)} ,

endowed with the norm ‖x‖∞ := sup
t∈IR+

|x (t)| .
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Another space is

Cθ := {x ∈ Cc, (∃) k = k (x) , |x (t)| ≤ kθ (t) , t ∈ IR+} ,

where θ : IR+ → (0,∞), θ ∈ CR, with the norm

‖x‖θ := sup
t∈IR+

|x (t)|
θ (t)

.

Clearly, Cl, C0l, Cθ are Banach space having stronger topologies than the
topology of Cc. Moreover,

(x ∈ Cθ) =⇒ (|x (t)| ≤ ‖x‖θ θ (t) , t ≥ 0) .

By C1
l , C1

c and so on we denote the subsets of Cl, Cc and so on with the
derivative ẋ in Cl and Cc, respectively.

It is easy to see that
(
x ∈ C1

l

) ⇐⇒ (ẋ ∈ CR) .

Moreover,
(x ∈ Cl and ẋ ∈ Cl) =⇒ lim

t→∞
ẋ (t) = 0.

This last remark has an important consequence: if the equation (1.1) is au-
tonomous, i.e. f (t, x) ≡ f (x) and the Cauchy problem for t = 0 has a unique
solution, then the orbit is ω−closed if and only if it is a rest point (equilib-
rium). However, simple examples show that for nonautonomous equations the
existence of nonconstant ω−closed orbits is possible.

The space Cl has an important compactness property.

Definition 2. A set A is called equiconvergent if

(∀) ε > 0, (∃) T = T (ε) > 0, (∀) t > T, (∀) x ∈ A,
|x (t)− x (∞)| < ε.

Proposition 3 (see [1]). A set A ⊂ Cl is relatively compact if and only if
it is uniformly bounded in Cl, equicontinuous in Cc and equiconvergent.

Indeed, the second and the third conditions imply that A is equicontinuous
in Cl. On the other hand, the mapping x → y, with x ∈ Cl and y given by

y (t) =

{
x

(
t

1−t

)
, t ∈ [0, 1)

x (∞) , t = 1
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is a linear homeomorphism between Cl and C0, where

C0 := {x : [0, T ] → IRn, x continuous} ,

with the usual norm.
Now, the range of A under this mapping is uniformly bounded and equicon-

tinuous in C0.
Another result we will use later is due to J. Mawhin (see [1]).

Proposition 4. Let X, Y be two linear spaces, L : D (L) ⊂ X → Y be a
linear operator and G : X → Y be an arbitrary operator.

Assume that:
a) there is a projector P : X → X, such that R (P ) = N (L) ;
b) there is a projector Q : Y → Y , such that N (Q) = R (L) ;
c) there is an injective mapping J : R (Q) → N (L).
Then
i) there is a linear operator K : R (L) → D (L) ∩N (P ), such that

LKu = u, (∀) u ∈ R (L) ;

ii) the equation
Lx = Gx (1.6)

is equivalent with the equation

x = Mx, (1.7)

where
M := P + JQG + K (I −Q)G. (1.8)

Throughout this paper, N (T ) signifies the kernel of T, R (T ) is the range
of T and D (T ) denotes the domain of T.

Let Ω be an open bounded set in a normed space X and M : Ω → X be
a compact operator such that x 6= Mx, for every x ∈ ∂Ω (herein, ∂Ω is the
boundary of Ω). The Schauder topological degree on M will be referred to
be the usual deg (I −M, Ω, 0) . We presume that this notion along with its
main properties are known. In particular, if deg (I −M, Ω, 0) 6= 0, then M
has at least one fixed point. Of course, for a finite dimensional space X, the
Schauder degree is replaced by the Brouwer degree and will be denoted by
degB (I −M, Ω, 0) .
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Now, let A be a continuous on IR+, n × n matrix; we denote by |A| the
spectral norm of A and we adopt the following notations:

X : =
{
x ∈ C1

c , ẋ = A (t) x
}

,

X∗ : =
{
x ∈ C1

c , ẋ = A∗ (t) x
}

,

Xl : = X ∩ Cl, X0l := X ∩ C0l,

X∗
l : = X∗ ∩ Cl, X∗

0l := X∗ ∩ C0l.

(A∗ is the adjoint of A).
By X (t) we denote the fundamental matrix of ẋ = A (t)x, with X (0) = I

(the identity).

2 Linear equations

2.1 Preliminaries

The aim of this section is to obtain some information about the ω−closed
orbits for the linear case.

2.2 Homogenous equations

Let us consider the equation

ẋ = A (t) x. (2.1)

This equation has the degenerate ω−closed orbit x ≡ 0. Clearly, a solution
x of the equation (2.1) is ω−closed if and only if x ∈ X0l; therefore we can
formulate the existence of ω−closed orbits as

ẋ = A (t) x, x ∈ C0l.

Denote by X0 the range of Xl under the mapping x → x (0) and let U :
IRn → IRn be a projector onto X0.

Y (t) := X (t)U,

then the limit below
Y (∞) := lim

t→∞
Y (t)

does exist and is finite.
Now, it is easy to remark that

Xl = {Y (t) c, c ∈ IRn} ,

X0l = {Y (t) c, c ∈ IRn, [U − Y (∞)] c = 0} .
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Consequently, the equation (2.1) has nondegenerate ω−closed orbits if and
only if

rank [U − Y (∞)] < n.

An important particular case is when

U = I,

i.e. when
X (∞) := lim

t→∞
X (t)

exists and is finite. In this case,

X0l = {X (t) c, [I −X (∞)] c = 0} .

If X (∞) is nondegenerate, then

rank [X (∞)− I] = rank [X∗ (∞)− I]

and so
X = Xl, X∗ = X∗

l , dim X0l = dim X∗
0l.

2.3 Nonhomogeneous equations

We shall consider the existence problem of ω−closed orbits for the system

ẋ = A (t)x + b (t) , (2.2)

where b ∈ Cc.

Theorem 5. Suppose that:
a) A (t) is bounded on ; IRn;
b) the limit from below is finite:

L := lim
t→∞

∫ t

0

X (t)X−1 (s) ds;

c) there exists a constant k > 0, such that
∫ t

0

∣∣X (t)X−1 (s)
∣∣ ds ≤ k, 0 ≤ s ≤ t < ∞.

Then, for every b ∈ Cl, the equation (2.2) has one and only one ω−closed
orbit.
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Proof. From hypotheses a), b), it follows that
∣∣X (t)X−1 (s)

∣∣ ≤ αe−β(t−s), α, β > 0, 0 ≤ s ≤ t

and hence
X (∞) := lim

t→∞
X (t) = 0.

Therefore, we have
Xl = X, X0l = {0} .

Moreover, if x is a solution of (2.2), with b ∈ Cl, then

x (∞) := lim
t→∞

x (t) = Lb (∞) .

(For details see [1] .)
Because of

x (t) = X (t) c +
∫ t

0

X (t) X−1 (s) b (s) ds, (2.3)

we have x ∈ C0l if and only if c = Lb (∞) . 2

Theorem 6. Suppose that
∫ ∞

0

|A (t)| dt < ∞. (2.4)

Then:
i) Xl = X∗

l = X;
ii) dim X0l = dim X∗

0l;
iii) for every b ∈ Cθ and ξ ∈ IRn, the equation (2.2) has a unique solution

in Cl, such that x (∞) = ξ;
iv) for every b ∈ Cθ with

∫ ∞

0

〈
b (t) | ψj (t)

〉
dt = 0, j ∈ 1,m,

where
{
ψj

}
j∈1,m

form an orthonormal base in X∗
0l, the system (2.2) has at

least one ω−closed orbit.

Proof. Consider x ∈ X; then

x (t) ≤ |x (0)| e
R t
0 |A(s)|ds

and, consequently, x is bounded on IR+; since ẋ (t) = A (t)x (t), it follows that
ẋ ∈ CR and hence x ∈ Cl. Therefore, X (∞) exists; moreover, we have

det X (∞) = e
R∞
0 Tr A(s)ds 6= 0.
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Consequently, conclusions i), ii) hold.
Let x be a solution for (2.2); from (2.3) it follows

x (∞) = X (∞) c + X (∞)
∫ ∞

0

X−1 (s) b (s) ds

and hence the equation x (∞) = ξ has the unique solution

c = X−1 (∞) ξ −
∫ ∞

0

X−1 (s) b (s) ds.

Similarly, the equation x (0) = x (∞) has solutions if and only if c satisfies

[
X−1 (∞)− I

]
c =

∫ ∞

0

X−1 (s) b (s) ds. (2.5)

Nevertheless, (2.5) has solutions if and only if
〈∫ ∞

0

X−1 (s) b (s) ds | e
〉

= 0, (2.6)

for all e satisfying [
X−1 (∞)− I

]∗
e = 0. (2.7)

Clearly, the solutions of (2.7) are exactly the values in t = 0 of the functions
of X∗

0l.
Now, we have

〈∫ ∞

0

X−1 (s) b (s) ds | e
〉

=
∫ ∞

0

〈
X−1 (s) b (s) | e〉 ds =

=
∫ ∞

0

〈
b (s) | (X−1 (s)

)∗
e
〉

ds =

=
∫ ∞

0

〈b (s) | ψ (s)〉 ds,

where ψ ∈ X∗
0l. 2

Theorem 7. Assume that there exists a mapping ϕ ∈ C1
c (IR+, IR) such

that ϕ̇ (t) > 0, ϕ (0) = 0, ϕ (∞) = 1, while the limit from below is finite:

Λ := lim
t→∞

1
ϕ̇ (t)

A (t) .

Then, the conclusions of the previous theorem are true.
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Proof. Let us denote ψ (t) := ϕ−1 (t) and

B (s) =
{

ψ̇ (s) [Aψ (s)] , if s ∈ [0, 1)]
Λ, if s = 1

.

Obviously, B is continuous in [0, 1]. Now, if x satisfies (2.1), then y (s) :=
x (ϕ (s)) is solution of the equation

ẏ = B (s) y, s ∈ [0, 1] . (2.8)

Furthermore, x (0) = y (0). If Y (t) is the fundamental matrix of (2.8) with
Y (0) = I, then

X (t) = Y [ϕ (t)] , t ≥ 0

and
X (∞) = Y (1) ,

so that the proof can continue as in the previous theorem. 2

Proposition 8. Suppose that:
a) the condition (2.4) holds;
b) 1 /∈ σ (X (∞)) .
Let K denote the mapping which associates to each b ∈ Cθ the unique

solution in C0l of (2.2) .
Then,
i) there exists a positive constant k such that

‖Kb‖∞ ≤ k ‖b‖∞ , b ∈ Cθ; (2.9)

ii) the operator K : Cθ → Cl is compact.

Proof. The assumption b) implies that

rank [I −X (∞)] = n

and, consequently,
X0l = {0} .

This implies that (2.2) has a unique solution in C0l for every b ∈ CR and
so the operator K is well defined on CR.

A well-known result shows that this operator, while working in Cc, is closed.
Furthermore, since the topologies of Cl and Cθ are stronger than the topology
of Cc and by the use of the Closed Graph Theorem, we can conclude that
K : Cθ → Cl is continuous and so (2.9) holds true.
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Let Ω ⊂ Cθ be a bounded set. Then, there exists a positive constant m
such that

((∀) b ∈ Ω) =⇒ (‖b‖θ ≤ m)

or, equivalently,
|b (t)| ≤ m · θ (t) , (∀) t ≥ 0.

The inequality (2.9) shows that KΩ is bounded in C0l. So, from

|ẋ (t)| ≤ |A (t)| · |x (t)|+ |b (t)| , (2.10)

we conclude that KΩ is equicontinuous in Cc.
Now, from (2.10) again, we have

|x (t1)− x (t2)| =
∣∣∣∣
∫ t2

t1

ẋ (t) dt

∣∣∣∣ ≤

≤ ‖x‖∞ ·
∫ t2

t1

|A (s)| ds + m

∫ t2

t1

θ (s) ds, t2 > t1.

Since the hypothesis |A| ∈ CR, θ ∈ CR implies that the set KΩ is equicon-
vergent and by use of Proposition 3, the conclusion of the compactness of KΩ
holds.

3 The Poincaré operator

3.1 Preliminaries

In this section, the Cauchy problem

ẋ = f (t, x) , (3.1)

x (0) = y, y ∈ IRn (3.2)

is supposed to have one and only one solution in Cl; we shall denote this
solution by x (t, y) .

Now, we define an operator U : IRn → IRn, by setting

Uy := x (∞, y) .

We also suppose that the operator U is continuous; for example, this is
true if f (t, x) is locally Lipschitz in x and satisfies an inequality of the type

|f (t, x)| ≤ θ (t) g (|x|) ,

for some continuous function g : IRn → IRn.
Clearly, the orbit of the solution x (t, y) is ω−closed if and only if y is a

fixed point for U.
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3.2 An existence result

Using the Poincaré operator, we can prove the following theorem.

Theorem 9. Assume that there exists an open bounded set G ⊂ IRn such
that:

a) for each t ∈ IR+ and y ∈ ∂G one has x (t, y) 6= 0;
b) for each y ∈ ∂G one has f (0, y) 6= 0;
c) degB [f (0, ·) , G, 0] 6= 0.
Then the equation (3.1) has at least one ω−closed orbit.

Proof. We start by defining the mapping h : G× [0, 1] → IRn by

h (t, y) =





1−λ
λ

[
y − x

(
λ

1−λ , y
)]

, if λ ∈ (01)
−f (0, y) , if λ = 0
y − Uy, if λ = 1

.

Clearly,
lim
λ↗1

h (y, λ) = y − Uy

and, by L’Hôspital rule,

lim
t↘0

h (y, λ) = −f (0, y) .

Thus, h is continuous on G × [0, 1]. Moreover, by assumptions a), b),
h (y, λ) 6= 0, on ∂G × [0, 1] . The homotopy invariance of the Brouwer degree
along with the assumption c) implies that

debB [h (·, 0) , G, 0] = degB [h (·, 1) , G, 0] = degB [I − 0, G, 0] =
= (−1)n degB [h (0, ·) , G, 0] 6= 0.

2

3.3 Some auxiliary results

Let f : IR+× IRn → IRn be a continuous function; let us define the Niemı̂tzky
operator F : Cc → Cc, by

(Fx) (t) := f (t, x (t)) .

Consider also the operator H : Cc → Cc, defined by

Hx :=
∫ (·)

0

(Fx) (s) ds.
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Proposition 10. Assume that there are a bounded set Ω ⊂ Cc and a
function θ such that F (Ω) is a bounded set of Cθ. Then, the operator H :
Ω ∩ Cl → Cl is compact.

Proof. Since F (Ω) is bounded in Cθ, there exists a k > 0, such that

|(Fx) (t)| ≤ k · θ (t) , (∀) x ∈ Ω, t ≥ 0. (3.3)

Next, let ε > 0 be given; because of θ ∈ CR and of θ (t) > 0, there exists
also a constant A > 0 such that

∫ ∞

A

θ (t) dt <
ε

3k
. (3.4)

We consider x, xm ∈ Ω such that xm → x in Cl; we choose a positive
number r such that

r ≥ max {‖x‖∞ , ‖xm‖∞ , m ≥ 1}

and denote
B (r) := {x ∈ IRn, |x| ≤ r} .

Since f : [0, A]×B (r) → IRn is uniformly continuous, it follows that

|f (t, xm (t))− f (t, x (t))| < ε

3
, (∀) t ∈ [0, A] , m ≥ m0 (ε) . (3.5)

Now, from

|(Hxm) (t)− (Hx) (t)| ≤
∫ A

0

|f (s, xm (s))− f (s, x (s))| ds +

+
∫ ∞

A

|Fxm (s)| ds +
∫ ∞

A

|Fx (s)| ds,

according to (3.4) and (3.5), one has ‖Hxm −Hx‖∞ < ε, (∀) m ≥ m0 (ε) .
It remains to show that HΩ is compact. The inequality (3.3) implies that

HΩ is bounded in Cl; from the same (3.3) we can deduce that

|(Hx) (t2)− (Hx) (t1)| ≤ k ·
∫ t1

t2

θ (s) ds, 0 ≤ t1 ≤ t2. (3.6)

Let us consider an interval [0, A]; then, from (3.6) it results that

|(Hx) (t2)− (Hx) (t1)| ≤ kA sup
t∈[0,A]

· |t1 − t2|
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and so HΩ is equicontinuous. From (3.6) it follows that

|(Hx) (t2)− (Hx) (t1)| < ε, (∀) t > T (ε)

and, consequently, HΩ is equiconvergent. Now, the compactness of HΩ is
assured by Proposition 8. 2

Corollary 11. Assume that

|f (t, x)| ≤ θ (t) · g (x) , (∀) t ≥ 0, x ∈ IRn

for some continuous mapping g : IR+ → IR+. Then, H : Cl → Cl is compact.

Now, we consider the operator

S := I −H.

One can see straightaway that S is injective when f is locally Lipschitz
with respect to x; consequently, for every closed set B ⊂ Cl, the mapping
S : B → S (B) is a homeomorphism. Clearly,

(y ∈ IRn ∩ S (b)) =⇒ (
S−1y = x (·, y)

)
.

If we consider
Px := x (∞) , P : Cl → Cl,

then P is a projector in Cl and the Poincaré operator U has the formula:

U = PS−1.

Next we introduce the operator

Mx := Px +
∫ (·)

0

(Fx) (s) ds. (3.7)

It can be easily seen that x ∈ Cl is a solution for (3.1) in C0l if and only if
it is a fixed point of M.

Theorem 12. Assume that:
a) Ω ⊂ Cl is a bounded open and connected set;
b) f is locally Lipschitz;
c) FΩ is bounded in Cθ;
d) the equation (3.1) has no solution in ∂Ω ∩ C0l.
Then

deg (I −M, Ω, 0) = ± degB (I − U, S (Ω) ∩ IRn, 0) . (3.8)
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Proof. From the identity below

I −M =
(
I − PS−1

)
S

and from Leray’s theorem on the topological degree of a product, we have

deg (I −M, Ω, 0) = deg (S, Ω, y) · deg
(
I − PS−1, S (Ω) , 0

)
.

Notice that the value of this degree is independent of y, because Ω is
connected. Since S : Ω → S (Ω) is one-to-one, it follows that

deg (S, Ω, y) = ±1.

From R (P ) = IRn, it comes to

deg
(
I − PS−1, S (Ω) , 0

)
= degB

(
I − PS−1, S (Ω) ∩ IRn, 0

)
.

2

Corollary 13. Assume that:
a) there exists an r > 0 such that, if x ∈ C0l is a solution for (3.1) , then

‖x‖∞ < r;
b) f (0, y) 6= 0, (∀) y ∈ IRn, |y| = r;
c) there is also a k > 0 such that

|f (t, x)| ≤ k · θ (t) , (∀) t ≥ 0, |x| ≤ r.

Then,
deg (I −M, Σ(r) , 0) = ± degB (f (0, ·) , B (r) , 0) ,

where
Σ (r) = {x ∈ Cl, ‖x‖∞ ≤ r} .

4 Compact operators whose fixed points are ω−clo sed
solutions

4.1 Preliminaries

Literature offers various examples of compact operators whose fixed points are
solutions of the problem (1.1) + (1.5) . A general method for the construction
of such operators based on Proposition 4 can be adjusted to the problem
(1.1) + (1.2) .

We start by considering X = Cl; later on C0l will be used as X.
Only some choices for F, L, P, Q, Q will be taken into account.
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4.2 The case X = Cl

Let us consider D (L) = C1
l . For

Lx := (ẋ, 0) , (4.1)

it follows that

N (L) = IRn, Y = CR × IRn, R (L) = CR × {0} ,

Q (y, c) : = (0, c) , Gx := (Fx, x (0)− x (∞))

and, consequently,

R (Q) = {0} × IRn, N (Q) = CR × {0} ,

J = a · c, a ∈ IR, c ∈ IRn, a 6= 0.

A first candidate for P can be

Px := x (b) , b ∈ [0,∞] . (4.2)

An easy but tedious calculation shows that, in this case,

M1x = x (b) + a [x (∞)− x (0)] +
∫ (·)

b

(Fx) (s) ds. (4.3)

Another choice of P is the following

Px :=
∫ ∞

0

e−tx (t) dt. (4.4)

Because of PLx = Px, the operator corresponding to M has the formula:

M2x = a [x (∞)− x (0)] +
∫ ∞

0

e−s [x (s)− (Fx) (s)] ds + (4.5)

+
∫ (·)

0

(Fx) (s) ds.

Now, let L be
Lx := (ẋ, x (0)− x (∞)) . (4.6)

This choice implies that

N (L) = IRn, Y = CR × IRn, Gx := (Fx, 0) ,

R (L) =
{

(y, c) ∈ Y, c +
∫ ∞

0

y (s) ds = 0
}

.
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The structure of R (L) suggests to choose a Q like below

Q (y, c) :=
(

0, c +
∫ ∞

0

y (s) ds

)
.

Consequently,

R (Q) = {0} × IRn, N (Q) = R (L) ,

J = a · c, a ∈ IR, c ∈ IRn, a 6= 0.

Using (4.2) for projector, we deduce for M the formula:

M3x = x (b) +
∫ ∞

0

(Fx) (s) ds +
∫ (·)

b

(Fx) (s) ds. (4.7)

As for (4.4) as a projector, it comes to

M4x =
∫ ∞

0

e−s [x (s)− (Fx) (s)] ds + a

∫ ∞

0

(Fx) (s) ds + (4.8)

+
∫ (·)

0

(Fx) (s) ds.

Finally, we consider

Lx := (ẋ, x (0)) . (4.9)

Now,

N (L) = {0, } , P = Q = 0,

M = L−1, Gx := (Fx, x (∞)) .

In this case, for M we can obtain the operators

M5x = x (∞) +
∫ (·)

0

(Fx) (s) ds (4.10)

or

M6x = x (0) +
∫ (·)

∞
(Fx) (s) ds. (4.11)
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4.3 The case X = C0l

It is necessary to consider

Lx = ẋ, D (L) = C1
0l, Gx = Fx, Y = CR

and, consequently,

N (L) = IRn, R (L) =
{

y ∈ Y,

∫ ∞

0

y (s) ds = 0
}

.

The first option for Q is

(Qy) (t) = e−t

∫ ∞

0

y (s) ds.

With J = ac and (4.2) as projector, we conclude that

(M7x) (t) = x (b) +
(
a + e−t − e−b

) ∫ ∞

0

(Fx) (s) ds + (4.12)

+
∫ (·)

b

(Fx) (s) ds.

With (4.4) as projector,

(M8x) (t) =
∫ ∞

0

e−sx (s) ds +
∫ ∞

0

(
a + e−t − e−b

)
(Fx) (s) ds +

+
∫ (·)

0

(Fx) (s) ds. (4.13)

Another way to construct operators M is to find some linear operators
Φ : C0l → CR, for which the operator L := ẋ + Φ becomes invertible; thus
M = L−1 (F + Φ) .

Foe example, one can set by Φ the mapping

(Φx) (t) = e−tx (0) .

It follows that

(
L−1y

)
(t) = e−t

∫ ∞

0

y (s) ds +
∫ t

0

y (s) ds

and so

(M9x) (t) = e−t

∫ ∞

0

(Fx) (s) ds +
∫ t

0

(Fx) (s) ds. (4.14)
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Generally, if we take

Φx = h (·)x

for a continuous mapping h : IR+ → IR+ such that

0 <

∫ ∞

0

h (s) ds < ∞,

then

M10x =
1
a
e
R (·)
0 h(s)ds ·

∫ ∞

0

e
R∞

s
h(s)ds [(Fx) (s) + h (s)x (s)] ds +

+
∫ (·)

0

e
R (·)

s
h(u)du [(Fx) (s) + h (s)x (s)] ds, (4.15)

where

a := 1− e
R∞
0 h(s)ds.

4.4 Comments

If FΩ is bounded in Cθ, where Ω ⊂ Cl is a bounded set, we can prove in the
same manner as in Proposition 11 the compactness of the operator Mi.

Now, if for some i we have

x 6= Mix, (∀) x ∈ ∂Ω (4.16)

and

deg (I −Mi, Ω, 0) 6= 0, (4.17)

then the equation ẋ = f (t, x) admits ω−closed orbits.
Finally, notice that there are operators M which can be used equally in Cl

and C0l; an example is the following

(Mx) (t) = x (0) +
1 + t

1 + t2

∫ ∞

0

(Fx) (s) ds +
∫ t

0

(Fx) (s) ds. (4.18)



Existence problems for ω−closed orbits 19

5 The continuation method

5.1 Introduction

In many cases it is extremely difficult to verify for one of the Mi operators the
condition (4.17) . Moreover, in the autonomous case only a negative answer
can be obtained for the operators Mi, i ∈ 7, 10. The result is the following: if
the Cauchy problem for t = 0 has a unique solution and if

Ω ∩ {x, f (x) = 0} = ∅,

then
deg (I −Mi, Ω, 0) = 0, i ∈ 7, 10.

Indeed, if the above is not true, then Mi has a fixed point in Ω. This point
is a solution of the problem ẋ = f (x), x ∈ C0l and so x is a rest point. Clearly,
Ω ∩ {x, f (x) = 0} 6= ∅, contradiction.

By the continuation method which is based on the homotopy invariance of
the topological degree, we may replace the condition (4.17) with a similar one
which will work for another operator, if possible a better one.

Consider again the Cauchy problem

ẋ = f (t, x) , (5.1)

x (0) = x (∞) , (5.2)

where f : IR+ × IRn → IRn is a continuous function, satisfying the condition

|f (t, x)| ≤ θ (t) · g (|x|) , (5.3)

where θ : IR+ → IR+, g : IR+ → IR+ are continuous functions and
∫ ∞

0

θ (t) dt < ∞. (5.4)

X denote, as above, the space Cl or Cll and Ω ⊂ X is a bounded and open
set.

As we have seen in the previous section, we can associate to the problem
(5.1) + (5.2) a compact operator

U : Ω → X,

whose fixed points coincide with the solutions of the problem (5.1)+(5.2) . This
operator will be called the associated operator to the problem (5.1) + (5.2)
on Ω.
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If for an associated operator U we have

x 6= Ux, (∀) x ∈ ∂Ω, (5.5)

then the relation (5.5) is true for every another associated operator U .
In the case when (5.5) holds, we can define the topological degree of U,

denoted by
deg (I − U, Ω, 0) ,

where I denotes the identity operator in X.
It is known that if the compact operator U satisfies (5.5) and

deg (I − U, Ω, 0) 6= 0, (5.6)

then U admits fixed points and consequently the problem (5.1)+ (5.2) admits
solutions.

Theoretically the problem of the existence of solutions for (5.1) + (5.2) is
solved; practically the effective computation of the degree (and implicitly the
verifications of (5.6)) is a very difficult problem and effectively possible only
in some particular cases.

The essence of the continuation method consists in the following.
By using the invariance property of the topological degree with respect to

a homotopy, we can replace the condition (5.6) with a similar condition

deg (I − V, Ω, 0) 6= 0, (5.7)

where V is homotopic with U , such that the condition (5.7) is easier than (5.6)
(this happens in particular if V is a finite rank operator since in this case the
degree appearing in (5.7) is a Brouwer one).

We state below the continuation principle in the particular case of the
problem (5.1) + (5.2) .

Let h : IR+ × IRn × [0, 1] → IRn be a continuous function; consider the
problem

ẋ = h (t, x, λ) , x (0) = x (∞) (5.8)

and denote by Uλ the associated operator to the problem (5.8), supposing that
it exists.

Proposition 16. Assume that:
i) there exists α : IR+ → IR+, α continuous,

∫ +∞
0

α (t) dt < ∞, such that

|h (t, x (t) , λ)| ≤ α (t) ,

(∀) x ∈ Ω, (∀) λ ∈ [0, 1] and (∀) t ∈ IR+;
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ii) for every λ ∈ [0, 1] the problem (5.8) does not admit solutions x (·) with
x ∈ ∂Ω;

Then:
a) there exists Uλ, λ ∈ [0, 1] , the associated operators to the problem (5.8) ,

which are, in addition, compact.
b) the following equality holds:

deg (I − U0, Ω, 0) = deg (I − U1, Ω, 0) . (5.9)

In particular, if
h (t, x, 0) ≡ f (t, x) (5.10)

and
deg (I − U1, Ω, 0) 6= 0, (5.11)

then the problem (5.1) + (5.2) admits solutions.

By choosing conveniently the function h, one can obtain concrete exis-
tence results. Obviously, hypothesis ii) is more difficult to be checked; this
hypothesis can be formulated under the following forms.

“A priori estimates”: for every possible solution x (·) of the problem (5.8)
with x ∈ Ω we have x ∈ Ω.

Another form of the same condition is the next.
“A priori bound”: there exists a number r > 0 such that the problem (5.8)

does not admit solutions x (·) with ‖x‖∞ = r.
In this case we set Ω := {x ∈ X, ‖x‖ < r} .
Finally, let D ⊂ IRn be a bounded and open set. Another variant of the

same condition is the following.
“Bounded set condition”: for every λ ∈ [0, 1] for which (1.11) has solutions

x (·) with x (t) ∈ D, t ∈ IR+, we have x (t) ∈ D, (∀) t ∈ [0,∞] .

5.2 Some remarks on the problem (5.1) + (5.2)

Let f : IR+ × IRn → IRn, g : [0, T ] × IRn → IRn be two continuous functions.
Consider the problems (5.1) + (5.2) and

ẏ = g (t, y) (5.12)

y (T ) = y (0) . (5.13)

We try to find the link between the existence of solutions of these two
problems in hypothesis of a relation between the functions f and g.

Let θ : IR+ → IR∗+ be a continuous and strictly positive function, such that

T :=
∫ +∞

0

θ (t) dt < +∞. (5.14)
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Set

ψ (t) :=
∫ t

0

θ (s) ds, ϕ := ψ−1.

Theorem 17. Assume that there exists the limit

lim
t→+∞

1
θ (t)

f (t, y) := γ (y) , y ∈ IRn,

the convergence being uniform with respect to y on every compact of IRn. Let

g (t, y) :=
{

ϕ̇ (t) f (ϕ (t) , y) , if t ∈ [0, T ), y ∈ IRn

γ (y) , if t = T, y ∈ IRn .

Then one can establish a one-to-one link between the solutions of the problems
(5.1) + (5.2) and (5.12) + (5.13).

Proof. Indeed, if x (·) is a solution for the problem (5.1) + (5.2) , then
y := x (ϕ (·)) will be a solution for (5.12) + (5.13) and conversely.

If we define the operator Φ : Cl → C ([0, T ] , IRn) by the equality

(Φx) (t) :=
{

x (ϕ (t)) , t ∈ [0, T )
x (+∞) , t = T,

this represents an isomorphism from Cl to C ([0, T ] , IRn) , which in addition
transforms the solutions of the problem (5.1) + (5.2) into solutions of the
problem (5.12)+(5.13); Φ−1 will give the link between the solutions of (5.12)+
(5.13) and the solutions of (5.1) + (5.2) . Hence, (5.1) + (5.2) admits solutions
if and only if (5.12) + (5.13) admits solutions. 2

Let us prove that we can construct, for the problem (5.1) + (5.2) , the
associated operators; for this aim we should show that

(∀) x ∈ D,

∫ +∞

0

(Fx) (t) dt < +∞, (5.15)

where D ⊂ Cl is a bounded set.
Since D is a bounded set, it results

(∃) ε > 0, (∀) x ∈ D, |x (t)| ≤ A.

Let ε0 > 0 be fixed; there exists B such that (2.6) implies

|f (t, x)| ≤ (ε0 + |γ (x)|) · θ (t) , t ≥ B, x ∈ IRn.
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Setting
c := sup {|γ (x)| , |x| ≤ A} ,

one obtains for every x ∈ D,

|f (t, x (t))| ≤ (ε0 + c) · θ (t) , (5.16)

which assures the relation (5.15) .
Consider in Cl the associated operator to the problem (5.1) + (5.2) of the

easiest type,

Ux := x (+∞) +
∫ (·)

0

(Fx) (s) ds. (5.17)

One easily deduces that (5.16) assures the compactness of U ; therefore,
by using the isomorphism Φ defined above, to U one corresponds an operator
defined on Φ (D) ⊂ C ([0, T ] , IRn) , which is compact, too.

Let Ω ⊂ Cl be a bounded open set; the set ΩΦ := Φ (Ω) will be bounded
and open, too; furthermore,

∂ΩΦ = Φ (∂Ω) .

To operator U : Ω → Cl given by (5.17) one corresponds the operator
UΦ : ΩΦ → C ([0, T ] , IRn) given by

UΦ := ΦUΦ−1.

An easy computation shows us that

UΦy = y (T ) +
∫ (·)

0

g (s, y (s)) ds.

But UΦ is the associated operator to the problem (5.12)+(5.13) . Therefore,
one can say that

{
x ∈ Ω, Ux = x

} ' {
y ∈ ΩΦ, UΦy = y

}
.

In particular, suppose that

x 6= Ux, x ∈ ∂Ω.

Then,
y 6= UΦy, y ∈ ∂ΩΦ

and since Φ is an isomorphism, one gets

deg (I − U, Ω, 0) = deg (I − UΦ, ΩΦ, 0) .
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Hence we obtain:

Corollary 18. Assuming that the mentioned hypotheses are fulfilled and

deg (I − UΦ, ΩΦ, 0) 6= 0,

then the problem (5.1) + (5.2) admits solutions.

An important particular case is the one when

f (t, x) = θ (t) · g (x) , (5.18)

where g : IRn → IRn is a continuous function; in this case the problem (5.12)+
(5.13) becomes

ẏ = g (y) , y (0) = y (T ) . (5.19)

But in [5] one shows that for the operator UΦ the following equality is true

deg (I − UΦ, ΩΦ, 0) = ±degB (g, ΩΦ ∩ IRn, 0) .

Since

ΩΦ ∩ IRn = Ω ∩ IRn,

we obtain the following

Theorem 19. Assume that
i) the problem

ẋ = θ (t) · g (x) , x (0) = x (+∞) (5.20)

does not admit solutions x (·) with x ∈ ∂Ω;
ii) the following relation is fulfilled

degB (g, Ω ∩ IRn, 0) 6= 0. (5.21)

Then the problem (5.20) admits solutions.
2

Remark that the topological degree appearing in (5.21) is a Brouwer degree,
which simplifies the problem in a certain way.
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5.3 Homotopy with a linear equation

Consider throughout this section X = Cl.
Let A : IR+ → Mn (IR) be a continuous matrix; denote by X (t) a funda-

mental matrix of the system
ẋ = A (t) x.

Consider the problems

ẋ = f (t, x) , x (+∞) = x (0) , (5.22)

ẋ = (1− λ)A (t) x + λf (t, x) , x (+∞) = x (0) , λ ∈ [0, 1] . (5.23)

Theorem 20. Assume that:
i) the following condition holds

∫ +∞

0

|A (t)| dt < +∞; (5.24)

ii) the following equality holds

rank [X (+∞)−X (0)] = n; (5.25)

iii) f : IR+ × IRn → IRn is a continuous function fulfilling the condition

|f (t, x)| ≤ θ (t) · ω (|x|) , (5.26)

where θ, ω : IR+ → IR+ are continuous functions and
∫ +∞

0

θ (t) dt < +∞; (5.27)

iv) there exists r > 0 such that for every λ ∈ [0, 1] the problem (5.23) has
no solution x (·) such that ‖x‖∞ = r.

Then the problem (5.22) admits solutions.

Proof. Set
h (t, x, λ) := (1− λ)A (t)x + λf (t, x)

and
Ω := {x ∈ Cll, ‖x‖∞ < r} .

Since
|h (t, x, λ)| ≤ r |A (t)|+ ρθ (t) ,
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it results that hypothesis i) of Proposition 16 is fulfilled with

α (t) = r |A (t)|+ ρθ (t) ,

where
ρ := sup

|u|≤r

ω (u) .

The second hypothesis of Proposition 16 results by hypothesis iv) of our
theorem.

Consequently, the equality (5.9) holds; but U0 is an associated operator to
the problem

ẋ = A (t)x, x (+∞) = x (0) . (5.28)

As it has been showed in Proposition 8, the problem (5.6) admits only
the zero solution, which allows us to conclude that U0 : Ω → Cll is a linear,
compact and injective operator; since 0 ∈ Ω, a known result leads us to the
equality

deg (I − U0, Ω, 0) = ±1,

which ends the proof. 2

Consider now the problem

ẋ = A (t)x + g (t, x) + p (t) , x (+∞) = x (0) , (5.29)

where g : IR+ × IRn → IRn, p : IRn → IRn are continuous functions.

Theorem 21. Assume that:
i) the conditions (5.24) , (5.25) are fulfilled;
ii) the following condition holds

∫ +∞

0

|p (t)| dt < +∞; (5.30)

iii) there exists β ∈ (0, 1) such that

g (t, kx) = kβg (t, x) , (∀) k > 0, (∀) t ∈ IR+, (∀) x ∈ IRn; (5.31)

iv) the following inequality holds

|g (t, x)| ≤ θ (t) , (∀) t ∈ IR+, (∀) x ∈ IRn, |x| ≤ 1, (5.32)

where θ : IR+ → IR+ satisfies condition (5.27) .
Then the problem (5.29) admits solutions.
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Proof. Apply Proposition 16 by taking

h (t, x, λ) := (1− λ)A (t)x + λ (A (t)x + p (t) + h (t, x))
Ω := {x ∈ Cll, ‖x‖∞ < r} . (5.33)

The conditions (5.31) , (5.32) leads us to the inequality

|g (t, x)| ≤ rβθ (t) , |x| ≤ r,

which implies
|h (t, x, λ)| ≤ 2r |A (t)|+ rβθ (t) + |p (t)| .

Hence the first hypothesis of Proposition 16 is fulfilled. It rests to check that
the hypothesis ii) of this proposition is satisfied for a certain Ω. For this aim
we show that there exists r0 > 0 such that for every r > r0 and for every
λ ∈ [0, 1] , the problem

ẋ = h (t, x, λ) , x (+∞) = x (0) , (5.34)

with h given by (5.33) does not admit solutions x (·) with ‖x‖∞ = r.
Indeed, if this is not true, then one can find two sequences λk ∈ [0, 1],

rk ∈ IR+, rk → +∞, such that the problem (5.34) has solutions xk (·) with
‖xk‖∞ = rk; by setting

uk :=
1
rk
· xk,

we have
‖uk‖∞ = 1.

Therefore, the sequence uk (·) is uniformly bounded on IR+. But

u̇k (t) = (1− λk) A (t)uk (t) + (5.35)

+λk

[
A (t)uk (t) + rβ−1

k g (t, uk) + r−1
k p (t)

]

and
uk (+∞) = uk (0) . (5.36)

Since rk → +∞ there exists γ > 0 such that r−1
k < γ, rβ−1

k < γ; hence

|uk (t)| ≤ 2 |A (t)|+ γ (θ (t) + |p (t)|) (5.37)

and so by Proposition 3, the sequence uk is relatively compact.
One can suppose, without loss of generality, that

u = lim
k→∞

uk.
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By (5.35) , it results that the sequence u̇k is uniformly convergent on IR+.
Now, from (5.35) and (5.36) one gets

u̇ (t) = A (t)u (t) , u (+∞) = u (0) ,

which leads us to ‖u‖∞ = 0.
By other hand, from ‖uk‖∞ = 1 it results ‖u‖∞ = 1. The proof is now

complete. 2

5.4 Nonlinear perturbations

In this section we consider the problem

ẋ = f (t, x) + p (t) , x (+∞) = x (0) . (5.38)

Suppose the following hypotheses:
a1) f : IR+ × IRn → IRn is a continuous function such that

∫ +∞

0

ϕ (t) dt < +∞, (5.39)

where
ϕ (t) := sup {|f (t, x)| , |x| ≤ 1} ;

a2) there exists β ∈ (0, 1) such that f (t, kx) = kβf (t, x), (∀) k > 0,
t ∈ IR+, λ ∈ IRn;

a3) p : IR+ → IRn is a continuous function such that
∫ +∞

0

|p (t)| dt < +∞. (5.40)

Let in addition θ : IR+ → IRn be a continuous function such that

∫ +∞

0

θ (t) dt = 1. (5.41)

Set

g (x) :=
∫ +∞

0

f (s, x) ds. (5.42)

Theorem 22. Suppose that hypotheses a1), a2) and a3) are fulfilled. Con-
sider for λ ∈ [0, 1] the problem

ẋ = (1− λ) θ (t) g (x) + λ [f (t, x) + p (t)] , x (+∞) = x (0) . (5.43)
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Then:
1) if

g (y) 6= 0, y ∈ IRn, ‖y‖ = 1, (5.44)

it results that there exists r0 > 0 such that for every λ ∈ [0, 1] the problem
(5.43) does not admit solutions x (·) with ‖x‖∞ = r0;

2) if for this r0 we have

degB (g, Σ(r0) , 0) 6= 0,

where Σ (r0) := {x ∈ IRn, |x| < r0} , then the problem (5.43) admits solutions.

Proof. Suppose by means of contradiction that the first conclusion is not
true; then one can construct three sequences rk ∈ IR+, xk ∈ X, λk ∈ [0, 1]
such that

ẋk = (1− λk) θ (t) g (xk) + λk [f (t, xk) + p (t)] , (5.45)
xk (+∞) = xk (0) , ‖xk‖∞ = rk, rk →∞.

Setting again

uk :=
1
rk
· xk,

we have

u̇k = rβ−1
k [(1− λk) θ (t) g (uk) + λkf (t, uk)] + r−1

k λkp (t) , (5.46)

‖uk‖ = 1, uk (+∞) = uk (0) . (5.47)

By using the conclusion of Proposition 3, we can establish that (uk)k is
relatively compact in Cl. By passing to sequences, one can suppose that

uk → u, in Cl (5.48)

and
λk → λ ∈ [0, 1] . (5.49)

By (5.46) it results that the sequence u̇k is uniformly convergent in IR+;
more precisely,

u̇k → 0, (5.50)

hence u is constant on IR+.
On the other hand,

(uk (0) = uk (+∞)) =⇒
(∫ +∞

0

u̇k (t) dt = 0
)

(5.51)
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and so, by (5.42) , we obtain

0 = (1− λk)
∫ +∞

0

θ (t) g (uk (t)) dt + λk

∫ +∞

0

f (s, uk (s)) ds +

+r−1
k λkp (t) . (5.52)

Therefore, as k →∞,

g (u) = 0, u ∈ IRn, ‖u‖ = 1, (5.53)

which contradicts (5.44) .
The second conclusion of theorem follows by Proposition 16 for Ω :={x ∈

Cl, ‖x‖∞ < r0}. 2

5.5 Small perturbations

Consider the problem

ẋ = θ (t) g (x) + e (t, x) , x (0) = x (+∞) , (5.54)

where g : IRn → IRn, θ : IR+ → IR∗+, e : IR+ × IRn → IRn are continuous
functions and ∫ +∞

0

θ (t) dt < +∞.

Attach to problem (5.54) the problem

ẋ = θ (t) g (x) , x (0) = x (+∞) . (5.55)

Let D ⊂ IRn be a bounded open set and take

Ω := {x ∈ Cl, x (t) ∈ D, t ∈ IR+} .

We state now the following hypotheses:
b1) for every x (·) solution of (5.55) for which x (t) ∈ D, (∀) t ∈ IR+, it

results x (t) ∈ D, (∀) t ∈ IR+;
b2) there exists a continuous function α : IR+ → IR+ satisfying∫ +∞

0
α (t) dt < +∞ such that, for every x ∈ Ω, we have |e (t, x (t))| ≤ α (t) ,

(∀) t ∈ IR+.
Consider in addition the problem

ẋ = θ (t) g (x) + λe (t, x) , x (0) = x (+∞) , λ ∈ [0, 1] . (5.56)
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Theorem 23. If the hypotheses b1) and b2) are fulfilled, there exists ε0 > 0
such that, if

‖e (·, y)‖∞ < ε0, (∀) y ∈ ∂D, (5.57)

then, for every solution x (·) of the problem (5.56) for which x (t) ∈ D, (∀)
t ∈ IR+, it results x (t) ∈ D, (∀) t ∈ IR+.

If in addition
degB (g, D, 0) 6= 0, (5.58)

then for every e (·, ·) satisfying (5.57), the problem (5.54) admits solutions.

Proof. The first part of the theorem is proved as above. If the conclu-
sion is not true, then for every k ∈ IN∗ there exists a function ek (·, ·) with
‖ek (·, y)‖∞ < 1

k , (∀) y ∈ D and a function xk : IR+ → IRn such that

ẋk = θ (t) g (xk) + λke (t, xk) , xk (0) = xk (+∞) , λk ∈ [0, 1] ,

with xk (t) ∈ D, (∀) t ∈ IR+ and xk (tk) /∈ ∂D, for an tk ∈ IR+.
As above, we can show that (xk)k is compact in Cl; if xk → x in Cl and

λk → λ, then one contradicts the hypothesis b1).
The second part follows by Proposition 16 for Ω :={x ∈ Cl, x (t) ∈

D, (∀) t ∈ IR+}. 2

5.6 Asymptotically homogenous perturbations

Consider again the problems

ẋ = θ (t) g (x) + e (t, x) , x (0) = x (+∞) , (5.59)

ẋ = θ (t) g (x) , x (0) = x (+∞) , (5.60)

ẋ = θ (t) g (x) + λe (t, x) , x (0) = x (+∞) , λ ∈ [0, 1] . (5.61)

Assume the following hypotheses:
c1) g : IRn → IRn is a continuous function such that

g (kx) = g (x) , x ∈ IRn, k > 0; (5.62)

c2) the following equality holds

lim
|x|→∞

e (t, x)
|x| = 0, uniformly with respect to t ∈ IR+; (5.63)

c3) (∀) ρ > 0, sup|x|≤ρ {|e (t, x)|} ∈ L1 (IR+) ;
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c4) θ : IR+ → IR∗+, θ ∈ L1 (IR+);
c5) the problem

ẋ = θ (t) g (x) , x (0) = x (+∞) (5.64)

admits only the zero solution.

Theorem 24. Assume that the hypotheses c1), c2), c3), c4) and c5) are
fulfilled.

Then there exists r0 > 0, such that for every solution x (·) of the problem
(5.61) and for every λ ∈ [0, 1] we have

‖x‖∞ < r0. (5.65)

If in addition
degB (g, Σ(r0) , 0) 6= 0, (5.66)

then the problem (5.59) admits solutions.

Proof. The proof is analogous with those from the previous theorems. If
the first conclusion is not true, then one finds λk ∈ [0, 1] and xk ∈ X satisfying

ẋk = θ (t) g (xk) + λke (t, xk) , xk (0) = xk (+∞) ,

‖xk‖∞ →∞.

Setting again uk = 1
‖xk‖∞ · xk, we deduce that (uk)k is compact in X

and it contains an uniformly convergent subsequence on IR+ to a function u
satisfying (5.64) and so u = 0; on the other hand, since ‖uk‖∞ = 1, it results
‖u‖∞ = 1.

The second part is an immediate consequence of Proposition 16 and of
condition (5.66) . 2
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