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Linear operators on Köthe spaces of vector
fields

Ion Chiţescu and Liliana Sireţchi

Abstract

The study of Köthe spaces of vector fields was initiated by the present
authors. In this paper linear operators on these spaces are studied.
An integral representation theorem is given and special types of linear
operators are introduced and studied.

1. INTRODUCTION

The theory of Köthe spaces is a generalization of the theory of the Lebesgue
spaces Lp, being more general than the theory of Orlicz spaces which generalize
the Lp spaces too. The theory of vector fields grew up from considerations
inspired by differential geometry and mechanics, being by far more general
that the generic theories.

In his seminal papers [4], [5], [6] and [7], N. Dinculeanu introduced and
studied the Orlicz spaces of vector fields and the linear operations on them.
A systematic exposure of this theory is contained in the monograph [8] by the
same author.

Being inspired by the work of N. Dinculeanu (see also the fundamental
monograph [9]), the present authors initiated in [2] a more general theory :
the theory of Köthe spaces of vector fields.
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The present paper is a continuation of [2], studying the linear (and contin-
uous) operations on the Köthe spaces of vector fields.

We present the integral representation of such operations, in the spirit of a
theory initiated by the first of the present authors in [1]. The paper continues
with the study of some special types of linear operators on Köthe spaces of
vector fields, the dominated operators being among them. In the final part
we consider vector fields of linear operators, Köthe spaces of such vector fields
and we construct a special type of linear operators generated by these Köthe
spaces. A special example of such an operator is extensively studied at the
end of the paper, including the exhibition of its representing measure.

2. PRELIMINARY FACTS.

I. Throughout the paper, K will be the scalar field (either K = R or
K = C) and the vector spaces will be considered over K. We shall write

R+
def
= [0,∞) and R+

def
= [0,∞]. As usual, N = {0, 1, ...} = the natural

numbers and N∗ = N \ {0}.
If (xn)n is a sequence such that xn ∈ X for any n, we shall write (xn)n ⊂ X.

A topological space X is called separable (or of countable type) if there exists
a sequence (xn)n ⊂ X such that the set {xn | n ∈ N} is dense in X. If
X is a topological space and a ∈ X, we shall denote by V(a) the set of all
neighborhoods of a.

Assuming that (X, d) is a semimetric space, A ⊂ X is a dense set, (Y, ρ)
is a complete metric space and f : A→ Y is a uniformly continuous function,
one knows that there exists an unique uniformly continuous F : X → Y such
that f = F |A = the restriction of F to A.

II. Let (X, p) be a seminormed space. The null space of p is

Ker(p) = {x ∈ X | p(x) = 0}.

The quotient vector space

X̃
def
= X/Ker(p)

becomes a normed space when equipped with the norm

||x̃|| def= p(x)

for any representative x ∈ x̃. We call (X̃, || · ||) the associate normed space of
(X, p).
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The space (X̃, || · ||) is Banach if and only if (X, p) if a complete semimetric
space (i.e. for any Cauchy sequence (xn)n ⊂ X there exists at least one
element x ∈ X such that xn → x).

Now let us consider a seminormed space (X, p) and a normed space (Y, ||| ·
|||).

As usual, we write

L(X,Y ) = {V : X → Y | V is linear}

L(X,Y ) = {V : X → Y | V is linear and continuous}.

An element V ∈ L(X,Y ) is in L(X,Y ) if and only if there exists M ∈ R+

such that

|||V (x)||| ≤Mp(x)

for any x ∈ X.
The space L(X,Y ) is a normed space, when equipped with the usual op-

erator norm

||V ||o = sup{ ||| V (x) ||| | x ∈ X, p(x) ≤ 1}.

With this norm, L(X,Y ) becomes a Banach space whenever (Y, ||| · |||)
is Banach. Considering the above defined normed space (X̃, || · ||), we can

identify the spaces L(X,Y ) and L(X̃, Y ) as follows :

For any V ∈ L(X,Y ), let us define Ṽ : X̃ → Y , via Ṽ (x̃)
def
= V (x) for

any representative x ∈ x̃. The definition is coherent. We got the linear and
continuous operator Ṽ : X̃ → Y , acting as above.

It is seen that the map Ω : L(X,Y ) → L(X̃, Y ), given via Ω(V ) = Ṽ is

a linear and isometric (||V ||o = ||Ṽ ||o) isomorphism. So, in almost all cases,

instead of studying L(X̃, Y ), one studies L(X,Y ).
The reader can consult [10] for this part.

III. Assume (S,Σ, µ) is a measure space (i.e. S is a non empty set, Σ is a
σ-algebra of subsets of S and µ : Σ→ R+ is a non null and complete measure.

Write
M+(µ) = {u : S → R+ | u is µ - measurable}.
A function norm on (S,Σ, µ) is a function ρ : M+(µ) → R+ having the

following properties (here u, v are in M+(µ) and α ∈ R+) :
(i) ρ(u) = 0 if and only if u(t) = 0 µ - a.e. ;
(ii) u ≤ v ⇒ ρ(u) ≤ ρ(v) ;
(iii) ρ(u+ v) ≤ ρ(u) + ρ(v) ;
(iv) ρ(α u) = α ρ(u),

with the convention 0 · ∞ = 0.
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One knows that ρ(u) < ∞ ⇒ u(t) < ∞ µ - a.e. and u(t) ≤ v(t) µ - a.e.
⇒ ρ(u) ≤ ρ(v) (hence u(t) = v(t) µ - a.e. ⇒ ρ(u) = ρ(v)).

We say that ρ has the Riesz - Fischer property (and write ρ R−F ) in case

ρ(

∞∑
n=0

un) ≤
∞∑
n=0

ρ(un)

for any sequence (un)n ⊂M+(µ).
We say that ρ has the Fatou property (and write ρ F ) in case

ρ(sup
n
un) = sup

n
ρ(un)

for any increasing sequence (un)n ⊂M+(µ).
It is known that ρ F ⇒ ρ R− F , the converse implication not being true.
For any A ⊂ S the characteristic (indicator) function of A is ϕA. For any

A ∈ Σ, we shall write

ρ(A)
def
= ρ(ϕA).

Now write

M(µ) = {f : S → K | f is µ− measurable}

Lρ = {f ∈M(µ) | ρ|f | <∞}

(we write ρ|f | def= ρ(|f |)).
Then Lρ is a vector seminormed space, equipped with the seminorm

f 7→ ρ|f |.

The null space of this seminorm is

N(µ) = {f ∈ Lρ| ρ|f | = 0} = {f ∈M(µ)|f(t) = 0 µ − a.e.}
= {f : S → K|f(t) = 0 µ− a.e.}

The associate normed space is

Lρ
def
= Lρ/N(µ)

(the equivalence involved is given via f ∼ g ⇔ ρ|f − g| = 0⇔ f(t) = g(t)
µ - a.e.) and Lρ is normed with the norm

f̃ 7→ ||f̃ || def= ρ|f |

for any representative f ∈ f̃ .
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One knows that Lρ is Banach if and only if ρ R − F . The spaces Lρ
generalize the Lebesgue spaces Lp(µ) = Lp, 1 ≤ p ≤ ∞. Namely, for these
spaces the generating function norm is ρ = || · ||p, 1 ≤ p ≤ ∞ and one knows
that ρ F . At the same time, the spaces Lρ generalize the Orlicz spaces.

The spaces Lρ are called Köthe spaces. For their theory, see [1] and [11].

IV. Let T be a separated locally compact topological space. We consider
a family E = (Et)t∈T of Banach spaces. On each Et, the norm will be denoted
by ||z||, z ∈ Et (no confusion will occur).

A vector field (with respect to E) is a function x : T →
⋃
t∈T

Et such that

x(t) ∈ Et

for any t ∈ T . The set of all vector fields will be denoted by C(E).
Clearly, C(E) is a vector space with respect to the pointwise defined oper-

ations :

(x, y) 7→ x+ y where (x+ y)(t)
def
= x(t) + y(t)

(α, x) 7→ αx where (αx)(t)
def
= αx(t)

for any x, y ∈ C(E) and α ∈ K.
For any x ∈ C(E) one can define the function |x| : T → R+ given via

|x|(t) = ||x(t)||.

A fundamental family of continuous vector fields is a vector subspace A of
C(E), satisfying the following axioms :

(A1) For any x ∈ A, the function |x| is continuous.
(A2) For any t ∈ T , the set {x(t) | x ∈ A} is dense in Et.

Particular Case : The Unicity Case.
Assume E is a fixed Banach space and Et = E for any t ∈ T . Then, we

shall say that we are in the unicity case C(E).
In this case :
- A vector field x ∈ C(E) is a function x : T → E.
- One can take as a fundamental family of continuous vector fields A = all

the constant functions x : T → E. We shall write A = E, identifying each
function x ∈ A with the constant value x(t) ∈ E, t ∈ T .

Now, let us return to the general situation and let A be a fundamental fam-
ily of continuous vector fields. We shall say that x ∈ C(E) is
continuous at t0 ∈ T with respect to A if, for any ε > 0, there exists V ∈ V(t0)
and y ∈ A such that

||x(t)− y(t)|| < ε
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for any t ∈ V .

If ∅ 6= A ⊂ T we say that x is continuous on A if x is continuous at any
a ∈ A. In case A = T , we say that A is continuous. It is seen that any x ∈ A

is continuous (with respect to A).

For x ∈ C(E) and t0 ∈ T :

- If x is continuous at t0 (with respect to A), it follows that the function
|x| : T → R is continuous at t0.

- The vector field x is continuous at t0 (with respect to A) if and only if
the vector field x + αy is continuous at t0 (with respect to A) for any y ∈ A

and any α ∈ K.

In the unicity case C(E), a vector field x ∈ C(E) (i.e. a function x : T → E)
is continuous at t0 with respect to E (see above) if and only if x is continuous
at t0 in the usual sense.

V. In order to establish our working framework, we shall again consider
that T is a separated locally compact space with Borel sets B. Let T be a σ
- algebra of subsets of T such that B ⊂ T and let µ : T → R+ be a non null
complete measure, which is regular and such that µ(A) <∞ for any compact
A ⊂ T (some people say that µ is a Radon measure). So, we have the measure
space (T,T, µ). We denote by K the class of all compact sets H ⊂ T .

We consider a family E = (Et)t∈T of Banach spaces, generating the space
of vector fields C(E) and a fundamental family of continuous vector fields
A ⊂ C(E).

A vector field x ∈ C(E) is called µ - measurable with respect to A (we say
that x is (A, µ) - measurable) if, for any A ∈ K and any ε > 0, there exists
K 3 Aε ⊂ A such that µ(A \ Aε) < ε and x is continuous on Aε with respect
to A.

Write :

M(A, µ) = {x ∈ C(E) | x is (A, µ)− measurable}

and notice that M(A, µ) is a vector subspace of C(E) having the following
properties :

- If CA(E) = {x ∈ C(E) | x is continuous with respect to A}, one has
CA(E) ⊂M(A, µ).

- If x, y are in C(E), such that x ∈ M(A, µ) and y(t) = x(t) µ - a.e., then
y ∈M(A, µ).

- If x ∈M(A,E), it follows that the function |x| : T → R is µ - measurable
(i.e. |x| ∈M+(µ)).

- If (xn)n ⊂M(A,E) and x ∈ C(E) is such that xn(t)
n−→ x(t) µ - a.e., then

x ∈ M(A,E). Moreover (analogue of Egorov’s theorem), it follows that, for
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any A ∈ K and any ε > 0, there exists K 3 Aε ⊂ A such that µ(A\Aε) < ε
and (xn)n converges uniformly to x on Aε.

In the unicity case, one can prove (analogue of Lusin’s theorem) that a
vector field x ∈ C(E), i.e. a function x : T → E, is (E,µ) - measurable if and
only if x is µ - measurable. In this case we write

ME(µ)
def
= M(E,µ).

We are prepared to introduce the framework which will be used in the
sequel.

Framework
Assume T is a separated locally compact space, with Borel sets B, and

(T,T, µ) is a measure space, with T ⊃ B and µ non null, complete, regular
and such that µ(A) < ∞ for any A ∈ K. We shall also consider a function
norm ρ on (T,T, µ).

Let E = (Et)t∈T a family of Banach spaces, thus obtaining C(E) and let
A ⊂ C(E) be a fundamental family of continuous vector fields.

The seminormed Köthe space of vector fields Lρ(E,A) is defined as follows
:

Lρ(E,A)
def
= {x ∈M(A, µ) | ρ|x| <∞}.

Clearly, Lρ(E,A) is a vector subspace of M(A, µ), seminormed with the
seminorm given via x 7→ ρ|x|. The null space of this seminorm is

Nρ(E,A) = {x ∈M(A, µ) | ρ|x| = 0} = {x ∈ C(E) | x(t) = 0 µ− a.e.}.

The quotient space

Lρ(E,A)
def
= Lρ(E,A)/Nρ(E,A)

(the equivalence relation is given via x ∼ y ⇔ x(t) = y(t) µ -a.e.) is normed
with the norm x̃ 7→ ||x̃|| = ρ|x| for any representative x ∈ x̃.

We call the normed space (Lρ(E,A), || · ||) Köthe space of vector fields.
One can prove that, in case ρ R−F , the space Lρ(E,A) is Banach (Theo-

rem 3 in [2]).

Two particular cases are of special interest :
1. Assume we are in the unicity case C(E). We shall write in this case

Lρ(E,µ)
def
= Lρ(E, E).

It is seen that

Lρ(E,µ) = {x ∈ME(µ) | ρ|x| <∞}
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seminormed with the seminorm x 7→ ρ|x|.
The associated normed space in this case will be denoted as follows :

Lρ(E,µ)
def
= Lρ(E, E)

normed with x̃ 7→ ||x̃|| = ρ|x|, x ∈ x̃, which is Banach in case ρ R− F .
Of course :

Lρ(K,µ) = Lρ and Lρ(K,µ) = Lρ.

2. Assume we have, for any t ∈ T , a measure space (St,Σt, µt) and a

function norm ρt on (St,Σt, µt). We shall take, Et
def
= Lρt , for any t ∈ T . We

shall also assume ρt R− F for any t ∈ T (consequently, all Et are Banach, as
stipulated in the definition). Taking E = (Et)t∈T , we can construct C(E) and
let us consider a fundamental family of continuous vector fields A ∈ C(E).

In this case we shall write :

Lρ ((ρt)t ,A)
def
= Lρ(E,A)

Lρ ((ρt)t ,A)
def
= Lρ(E,A).

The most ”normal” situation is that one when all the measure spaces
(St,Σt, µt) are equal to the same (S,Σ, µ). In this case, the variability is
furnished by ρt, t ∈ T .

Finally, we finish the presentation of this framework by mentioning the
fact that, from now on, F will be a fixed Banach space.

For vector fields, see [8], [2] and the seminal papers [4], [5], [6], [7].

3. INTEGRAL REPRESENTATIONS

Assume the Framework described at the end of paragraph 2. We want to
describe L(Lρ(E,A), F ), or, which is the same, L(Lρ(E,A), F ).

In order to obtain an integral representation of the operators in
L(Lρ(E,A), F ), we shall use the ”simple fields” (see infra) under supplemen-
tary assumptions.

Write first
C(ρ) = {A ∈ T | ρ(A) <∞}

and notice that C(ρ) is a T - ring.
Definition 1. The simple fields are vector fields x ∈ C(E) of the form

x =

n∑
i=1

ϕAixi hence

x(t) =

n∑
i=1

ϕAi(t)xi(t) ∈ Et
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for t ∈ T , where Ai ∈ C(ρ) and xi ∈ A. One can assume that the sets Ai
are mutually disjoint, hence x(t) = xi(t) for any t ∈ Ai and x(t) = 0 for any

t /∈
n⋃
i=1

Ai.

The set of all simple fields will be denoted by Eρ(A). Obviously, Eρ(A) is
a vector subspace of C(E). In the unicity case C(E) with A ≡ E, the elements

in Eρ(A)
def
= Eρ(E) have the form x =

n∑
i=1

ϕAixi with Ai ∈ C(ρ) and xi ∈ E.

In case E = K, we write Eρ(K)
def
= Eρ.

Because A ∈M(A, µ), one has Eρ(A) ⊂M(A, µ). Practically, all the time
we shall assume more, namely

(P1) Eρ(A) ⊂ Lρ(E,A).

Assumption (P1) is automatically verified in the unicity case C(E) or in
case A ⊂ Lρ(E,A).

Caution : Throughout this paragraph we shall assume (P1).
In order to obtain a satisfactory integral representation, we shall use an

assumption which is stronger that (P1), namely

(P2) Eρ(A) is dense in Lρ(E,A).

Assumption (P2) is automatically verified in the unicity case C(K), if the
function norm ρ is of absolutely continuous type, i.e. : for any decreasing se-
quence (un)n in M+(µ), such that ρ(u1) < ∞ and un ↓ 0 (which means
lim
n
un = 0 pointwise), one has lim

n
ρ(un) = inf

n
ρ(un) = 0 (see [1]). For in-

stance, if 1 ≤ p < ∞, the function norms || · ||p are of absolutely continuous
type, whereas || · ||∞ does not have this property in most cases (see [1]).

Write

L(A, F ) = {H : A→ F | H is linear}

and consider an additive measure m : C(ρ) → L(A, F ) (i.e. m(A ∪ B) =
m(A) +m(B), for any A,B ∈ C(ρ) such that A ∩B = ∅).

Definition 2. The integral of f =

n∑
i=1

ϕAixi ∈ Eρ(A) with respect to m is

∫
fdm

def
=

m∑
i=1

m(Ai)(xi).
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The definition does not depend on the representation of f . The integral
furnishes the linear application∫

: Eρ(A)→ F

given via ∫
(f)

def
=

∫
fdm.

We shall consider those additive measures m : C(ρ)→ L(A, F ) which make

the above defined application

∫
continuous, i.e. those m having the property

|||m||| = sup{||
∫
fdm|| | f ∈ Eρ(A), ρ|f | ≤ 1} <∞.

Namely, Eρ(A) is equipped with the topology induced by the topology of
Lρ(E,A). So, we shall consider the vector space

MF (A, ρ) = {m : C(ρ)→ L(A, F ) | m is additive and |||m||| <∞}

normed with m 7→ |||m|||. It follows that, for any f ∈ Eρ(A) and any
m ∈MF (A, ρ), one has

||
∫
fdm|| ≤ |||m|||ρ|f |.

Now, we are prepared for
Theorem 3. (Integral Representation Theorem) Assume (P2).

Then, the Banach spaces : L(Lρ(E,A), F ) with operator norm ||V ||0 and
MF (A, ρ) with norm |||m||| are linearly and isometrically isomorphic, via the
isomorphisms :{

a : L (Lρ(E,A), F )→MF (A, ρ)

a(V ) = m, where m(A)(x) = V (ϕAx) , A ∈ C(ρ), x ∈ Ab : MF (A, ρ)→ L(Lρ(E,A), F )

b(m) = V, where V (f) = lim
n

∫
fndm, f ∈ Lρ(E,A).

Here, (fn)n ⊂ Eρ(A) is a sequence having the property that fn
n→ f in

Lρ(E,A). (the definition does not depend on the approximant sequence (fn)n
).
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The isomorphisms a and b are mutually inverse. We shall say that m
represents V (or that m is a representing measure for V ).

Proof : 1) We show that a is well defined. Let V ∈ L(Lρ(E,A), F ).
a) Let A ∈ C(ρ). We can define m(A) : A→ F , via

m(A)(x)
def
= V (ϕAx)

and m(A) ∈ L(A, F ). One sees immediately that m is additive, because
ϕA∪Bx = ϕAx+ ϕBx whenever A ∩B = ∅, x ∈ A.

b) For any f =

n∑
i=1

ϕAixi ∈ Eρ(A), one has

V (f) =

n∑
i=1

V (ϕAixi) =

n∑
i=1

m(Ai)(xi) =

∫
fdm

hence

||
∫
fdm|| = ||V (f)|| ≤ ||V ||0ρ|f |

which implies a(V ) ∈MF (A, ρ).
2) We show that b is well defined. Let m ∈MF (A, ρ).
a) One can define U : Eρ(A)→ F , via

U(f) =

∫
fdm

and U is linear and continuous, because

||U(f)|| = ||
∫
fdm|| ≤ ||m||ρ|f |.

b) Because F is a complete metric space and Eρ(A) is dense in Lρ(E,A),
one can extend uniquely the linear and continuous operator U , obtaining the
linear and continuous operator b(m) = V : Lρ(E,A) → F , according to the
enunciation (use the extension theory for uniformly continuous maps).

3) We show that the linear applications a and b are mutually inverse.
a) Let us start with V ∈ L(Lρ(E,A), F ) and get a(V ) = m. We must show

that W = V , where W = b(m). (and thus we show that (b ◦ a)(V ) = V ).

For any f =

n∑
i=1

ϕAixi ∈ Eρ(A), we can take the approximant sequence

(fn)n from the enunciation to be constant : fn = f for any n. According to
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the definition :

W (f) =

∫
fdm =

n∑
i=1

m(Ai)(xi) =

n∑
i=1

V (ϕAixi) = V (f).

The linear and continuous maps W and V coincide on Eρ(A), which is
dense in Lρ(E,A), hence W = V .

b) Now, let us start with m ∈MF (A, ρ) and get b(m) = V . We must show
that u = m, where u = a(V ). (and thus we show that (a ◦ b)(m) = m).

According to the definition, for any A ∈ C(ρ) and any x ∈ A, one has

u(A)(x) = V (ϕAx) =

∫
ϕAxdm = m(A)(x)

(approximating ϕAx with the constant sequence fn = ϕAx). Due to the fact
that x is arbitrary, we get m(A) = u(A), hence u = m. (A is arbitrary too.)

4) It remains to prove that a and b are isometries. Because they are
mutually inverse, it suffices to prove that a is an isometry.

Let V ∈ L(Lρ(E,A), F ) and m = a(V ). Then

||V ||0 = sup {||V (f)|| |f ∈ Lρ(E,A) , ρ|f | ≤ 1} !
=

!
= sup {||V (f)|| |f ∈ Eρ(A) , ρ|f | ≤ 1} =

= sup

{
||
∫
fdm|| |f ∈ Eρ(A) , ρ|f | ≤ 1

}
= |||m|||.

The critical equality
!
= is explained as follows. Let us write

B = {f ∈ Lρ(E,A) | ρ|f | ≤ 1}

and use a sequential justification to see that (closure in Lρ(E,A))

B ∩ Eρ(A) = B ∩ Eρ(A).

(The reader can check that for any f ∈ Lρ(E,A), with ρ|f | = 1, it is possible

to find a sequence (fn)n ⊂ Eρ(A) such that fn
n−→ f and ρ|fn| = 1).

The last set equals B ∩ Lρ(E,A) = B.
We have the real continuous function f 7→ ||V (f)|| whose supremum on

B ∩ Eρ(A) coincides with the supremum on B ∩ Eρ(A) a.s.o.. �

Remark. There is an important situation when assumption (P2) holds,
namely when the following two conditions are fulfilled :

(i) For any A ∈ K, one has ρ(A) <∞.



LINEAR OPERATORS ON KÖTHE SPACES OF VECTOR FIELDS 65

(ii) The function norm ρ = || · ||p, 1 ≤ p ≤ ∞.
Indeed, from (i) if follows that B0 ⊂ C(ρ), where B0 = the relatively

compact Borel sets of T . We use property (9), pag. 549 of [8], asserting that

the space U of all vector fields off the form f =

n∑
i=1

ϕAixi with Ai ∈ B0 and

xi ∈ A is dense in L||·||p(E,A).

Because of (ii), we have, for any B ∈ B0, ρ(B) = µ(B)1/p < µ(A)1/p <∞
for any K 3 A ⊃ B, hence C(ρ) ⊃ B0, and this implies U ⊂ Eρ(A) and the
last space must be also dense in L||·||p(E,A).
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4. OPERATORS WITH SPECIAL PROPERTIES

Again we are within the Framework described at the end of paragraph 2.
Definition 4. A linear functional H : Lρ → K will be called positive if

H(f) ≥ 0 for any f ≥ 0 in Lρ.
It is clear that, for positive H, one has H(f) ≥ H(g), whenever f ≥ g in Lρ.

Proposition 5. Assume ρ R−F . Then any positive functional H : Lρ →
K is continuous.

Proof : Let us accept the existence of a positive functional H : Lρ → K
which is not continuous. We shall arrive at a contradiction.

One can find a sequence (fn)n ⊂ Lρ, such that ρ|fn| ≤ 1 and |H(fn)| >
n · 2n for any n. Let us define f : T → R+, via

f(t) =

∞∑
n=1

1

2n
|fn(t)|.

Because ρ R− F one has

ρ|f | = ρ(f) ≤
∞∑
n=1

1

2n
ρ|fn| ≤

∞∑
n=1

1

2n
= 1

and this implies f(t) <∞ µ - a.e.. This enables us to define u : T → R+ via

u(t) =

{
f(t), if f(t) <∞
0, if f(t) =∞

hence Lρ 3 u = f µ - a.e. and ρ(u) ≤ 1. Because, for any n ∈ N∗, one has µ-
a.e. u ≥ 1

2n |fn| it follows that

H(u) ≥ H
(

1

2n
|fn|

)
=

1

2n
H(|fn|) ≥ n

i.e. H(u) =∞, contradiction. See also Proposition 8, pag. 259 in [9]. �

Definition 6. A linear operator V : Lρ(E,A) → F will be called
dominated if there exists a positive functional H : Lρ → K such that ||V (f)|| ≤
H(|f |) for any f ∈ Lρ(E,A). In this case we shall say that
V is dominated by H (or H dominates V ).
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Proposition 7. Assume ρ R− F . Then any dominated operator
V : Lρ(E,A)→ F is continuous.

Proof: If V is dominated by H, let (fn)n ⊂ Lρ(E,A) be a sequence such

that fn
n→ 0, i.e. |fn|

n→ 0 in Lρ. Because H is continuous (Proposition 5), it

follows that ||V (fn)|| ≤ H(|fn|)
n→ 0. �

Caution : From now on, we shall assume (P1) throughout this paragraph.
Let V : Lρ(E,A)→ F be linear and continuous. We define :

||V ||1
def
= sup {||V (f)|| |f ∈ Eρ(A) , ρ|f | ≤ 1}

|||V ||| def
= sup

{
n∑
i=1

||V (ϕAixi)|| |f =

n∑
i=1

ϕAixi ∈ Eρ(A), ρ|f | ≤ 1

}
.

See also [9], pag. 256-257 (definitions of ‖U‖A, |||U |||A), [8], pag. 572 and
[3], Theorem 4.8, pag. 110, together with the comment at pag. 119.

Here we use the disjoint representation

f =

n∑
i=1

ϕAixi

with Ai ∈ C(ρ) mutually disjoint. Because, for such representation, one has

||V (f)|| = ||
n∑
i=1

V (ϕAixi)|| ≤
n∑
i=1

||V (ϕAixi)||

it follows that {
‖V ‖1 ≤ ‖V ‖0
‖V ‖1 ≤ |||V |||

(1)

and, for any such f =

n∑
i=1

ϕAixi :
||

n∑
i=1

V (ϕAixi) || = ||V (f)|| ≤ ||V ||1ρ|f |

||
n∑
i=1

V (ϕAixi) || ≤ |||V |||ρ|f |
(1’)

There exist linear and continuous operators V with |||V ||| = ∞, as the
following example shows.
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Example 8 (see [9], pag. 256-257). An operator V with |||V ||| =∞
We shall work in the unicity case C(K), hence we have the space Lρ =

Lρ(K,µ). We consider 1 < p <∞ and let us take ρ = ||·||p, hence Lρ = Lp(µ),
where µ is the Lebesgue measure on T = [0, 1]. At the same time, let us take
F = Lp(µ).

Finally, V : Lp(µ)→ Lp(µ) will be given via V (f) = f̃ which is continuous
(||V (f)|| = ρ|f |).

For any n ∈ N∗, let Ai = [ i−1n , in ), i = 1, 2, ..., n−1; An = [n−1n , nn = 1] and
xi = 1, i = 1, 2, ..., n. Hence, we consider f ≡ 1 on [0, 1] with ρ|f | = ||f ||p = 1.

For any i = 1, 2, ..., n, V (ϕAixi) = V (ϕAi) = ϕ̃Ai , hence

||V (ϕAixi)||p = ||ϕ̃Ai ||p = µ(Ai)
1
p = n−1/p

n∑
i=n

||V (ϕAixi)||p = n · n−1/p = n1−
1
p

n→∞

hence |||V ||| =∞. �

For linear and continuous functionals, the situation is totally different,
namely the inequality ||V ||1 ≤ |||V ||| in (1) becomes equality.

Theorem 9. Let V : Lρ(E,A)→ K be a linear and continuous functional.
Then

||V ||1 = |||V |||.

Proof : Let f =

n∑
i=1

ϕAixi ∈ Eρ(A) with ρ|f | ≤ 1 (disjoint representation).

For any i = 1, 2, ..., n, let θi ∈ K with |θi| = 1 such that

|V (ϕAixi)| = θiV (ϕAixi) = V (ϕAiθixi)

(we have θixi ∈ A = vector space).

For g =

n∑
i=1

ϕAiθixi ∈ Eρ(A) one has |g| = |f |, hence ρ|g| ≤ 1 and

∑
i=1

|V (ϕAixi)| =
n∑
i=1

V (ϕAiθixi) = |V (g)| ≤ ||V ||1.

Because f is arbitrary, we obtain |||V ||| ≤ ||V ||1, hence |||V ||| = ||V ||1. See
also Proposition 5, pag. 256 in [9], and Proposition 28.36, pag. 252 in [8]. �
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Accepting (P2), the set B∩Eρ(A) is dense in B = {f ∈ Lρ(E,A) | ρ|f | ≤ 1}
as we have seen and taking the supremum of ||V (f)|| on B ∩ Eρ(A) we get
another case of equality in (1), namely

Theorem 10. Assume (P2).
1. Let V : Lρ(E,A)→ F be a linear and continuous operator. Then

||V ||0 = ||V ||1 ≤ |||V |||

2. Let V : Lρ(E,A)→ K be a linear and continuous functional. Then

||V ||0 = ||V ||1 = |||V |||.

Our next goal is to study the connection between ||| · ||| and domination.
Theorem 11. Assume ρ R − F . Let V : Lρ(E,A) → F be a dominated

operator. Then |||V ||| <∞.

Proof : Let V be dominated by H.

For any f =

n∑
i=1

ϕAixi with ρ|f | ≤ 1 (disjoint representation), one has

n∑
i=1

||V (ϕAixi)|| ≤
n∑
i=1

H (|ϕAixi|) (2)

Because Ai are disjoint, one has |f | =
n∑
i=1

ϕAi |xi|, hence

n∑
i=1

H (|ϕAixi|) =

n∑
i=1

H (ϕAi |xi|) = H

(
n∑
i=1

ϕAi |xi|

)
=

= H(|f |) ≤ ‖H‖0 ρ|f | ≤ ‖H‖0

(3)

(H is continuous, because ρ R− F , Proposition 5). Using (2) and (3) and
taking supremum (f is arbitrary), one gets

|||V ||| ≤ ||H||0 <∞. �

It is natural to ask whether the converse of Theorem 11 is true. A partial
converse is true, in the unicity case C(E). We shall write |x| instead of ||x||
for x ∈ E and |y| instead of ||y|| for y ∈ F .

Theorem 12. Assume (P2), ρ is of absolutely continuous type and we are
in the unicity case C(E). Let V : Lρ(E,µ)→ F be linear and continuous and
such that |||V ||| <∞. Then V is dominated.



70 Ion Chiţescu and Liliana Sireţchi

Proof : 1) According to the integral Representation Theorem 3, let
m ∈MF (A, ρ) represent V . Here we are in the unicity case C(E) with A ≡ E,
so, for any A ∈ C(ρ), one has m(A) : E → F , given via m(A)(x) = V (ϕAx).

It is seen that m(A) ∈ L(E,F ) for any A ∈ C(ρ), because

|m(A)(x)| = |V (ϕAx)| ≤ ||V ||0ρ|ϕAx| ≤ ||V ||0 · ρ(A)|x|

hence (Theorem 10)

||m(A)||0 ≤ ||V ||0ρ(A) ≤ |||V |||ρ(A).

For the additive measure m : C(ρ) → L(E,F ), one can construct
the variation, of m which is the additive measure ν : C(ρ)→ R+, given via

ν(A) = sup{
∑
i∈I
||m(Ai)||0}

where the supremum is computed for all possible finite partitions of A. More
precisely, one consider all finite families (Ai)i∈I of mutually disjoint Ai ∈
C(ρ) such that

⋃
i∈I

Ai = A and one computes the supremum of all sums∑
i∈I
||m(Ai)||0 (see [1]).

We shall see that ν is finite, more precisely, we have, for any A ∈ C(ρ) :

ν(A) ≤ |||V |||ρ(A) (4)

Indeed, let A ∈ C(ρ) and ε > 0. For any mutually disjoint A1, A2, ..., An ∈

C(ρ) with

n⋃
i=1

Ai = A , let x1, x2, ...xn in E such that |xi| ≤ 1 and

‖m (Ai)‖0 ≤ |m (Ai) (xi)|+
ε

n
, i = 1, 2, ..., n (5)

We have x =

n∑
i=1

ϕAixi ∈ Eρ(E). Because x(t) = 0 for t /∈ A and x(t) = xi

for t ∈ Ai, we have |x| ≤ ϕA, hence ρ|x| ≤ ρ(A).
In view of (5), one has (see (1′))

n∑
i=1

||m (Ai)||0 ≤
n∑
i=1

|m (Ai) (xi)|+ ε =

n∑
i=1

|V (ϕAixi)|+ ε ≤

≤ |||V |||ρ|x|+ ε ≤ |||V |||ρ(A) + ε.
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Taking the supremum according to all partitions (Ai)i we obtain

ν(A) ≤ |||V |||ρ(A) + ε

and ε being arbitrary, we obtain (4).
2) Let Eρ be the vector subspace of Lρ consisting in all simple functions of

the form

ϕ =

n∑
i=1

ϕAici

with Ai ∈ C(ρ) and ci ∈ K (one can consider Ai to be mutually disjoint).
We can define the linear map P : Eρ → K via

P (ϕ) =

n∑
i=1

ν(Ai)ci

where ϕ is as above (the definition is coherent, not depending upon the rep-
resentation of f , general theory). It is clear that, for ϕ ∈ Eρ, one has |ϕ| ∈ Ep
and we shall show that

P (|ϕ|) =

n∑
i=1

ν (Ai) |ci| ≤ ‖|V |‖ ρ|ϕ| (6)

thus showing that P is continuous on Eρ with the topology of Lρ. One can
see that P (ϕ) ≥ 0 if ϕ ≥ 0.

In order to show (6) in the non trivial case, we shall assume all ci 6= 0. Let
ε > 0. For any i = 1, 2, ..., n, one can find a finite partition (Bij)j ⊂ C(ρ) of
Ai, with pi elements such that

ν (Ai) ≤
∑
j

‖m (Bij )‖0 +
ε

2n |ci|
(7)

For any pair (i, j), let xij ∈ E with |xij | ≤ 1 such that

||m (Bij )||0 ≤ |m (Bij) (xij)|+
ε

2npi |ci|
. (8)

Hence, for any i = 1, 2, ...n (see (7) and (8)) :

ν (Ai) |ci| ≤
∑
j

‖m (Bij)‖0 |ci|+
ε

2n
≤

≤
∑
j

|m (Bij) (xij)| |ci|+
ε

2n
+

ε

2n
=
∑
j

|m (Bij) (xij)| |ci|+
ε

n
.
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Consequently

n∑
i=1

ν (Ai) |ci| ≤
∑
ij

|m (Bij) (xij)| |ci|+ ε (9)

We are led to consider the function

x =
∑
ij

ϕBijcixij ∈ Eρ(E)

for which∑
ij

|m (Bij) (xij)| |ci| =
∑
ij

|m (Bij) (cijxij)| =
∑
ij

∣∣V (ϕBijcixij
)∣∣ ≤ |||V |||ρ|x|

(10)

One has

|x| ≤ |ϕ| (11)

Indeed, if t /∈
n⋃
i=1

Ai =
⋃
ij

Bij , one has x(t) = 0, and if t ∈
⋃
ij

Bij , one finds

an unique t ∈ Bij , hence t ∈ Ai and

|x(t)| = |cixij| ≤ |ci| .

Using (9), (10) and (11), one has

n∑
i=1

ν (Ai) |ci| ≤ ‖V ‖ ρ|ϕ|

and (6) is proved.

Because ρ is of absolutely continuous type, Eρ is dense in Lρ (see [1]) and
we can extend the linear and continuous P : Eρ → K to an unique linear and
continuous H : Lρ → K.

We show that H is positive. Indeed, if 0 ≤ ϕ ∈ Lρ, one can find an
increasing sequence (ϕn)n ⊂ Eρ such that 0 ≤ ϕn ↑ ρ pointwise (general

theory). Consequently , ϕ−ϕn ↓ 0 pointwise and, ρ(ϕ−ϕn)
n→ 0 because ρ is

of absolutely continuous type. So ρ|ϕ− ϕn|
n→ 0, hence ϕn

n→ ϕ in Lρ, hence
H(ϕn)→ H(ϕ). But H(ϕn) = P (ϕn) ≥ 0, hence H(ϕ) ≥ 0.

3) We end the proof by showing that V is dominated by H.
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Let f =

n∑
i=1

ϕAixi ∈ Eρ(E), Ai disjoint. We have

|V (f)| =

∣∣∣∣∣
n∑
i=1

V (ϕAixi)

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

m (Ai) (xi)

∣∣∣∣∣ ≤
≤

n∑
i=1

|m (Ai) (xi)| ≤
n∑
i=1

‖m (Ai)‖0 |xi| ≤
n∑
i=1

ν (Ai) |xi| .

We made use of the fact that ||m(A)||0 ≤ ν(A) for any A ∈ C(ρ), (see [1]).

Because |f | =
n∑
i=1

ϕAi(xi), we have

n∑
i=1

ν (Ai) (xi) = P (|f |) = H(|f |)

and we get
|V (f)| ≤ H(|f |) (12)

All it remains to be proved is that (12) remains valid for any f ∈ Lρ(E,µ).

For such f , we use (P2) to find a sequence (fn)n ⊂ Eρ(E) such that fn
n→ f

in Lρ(E,µ). One has pointwise

||fn| − |f || ≤ |fn − f | and ρ ||fn| − |f || ≤ ρ |fn − f |
n→ 0,

hence |fn|
n→ |f | in Lρ.

For any n one has (see (12))

|V (fn)| ≤ H(|fn|)

and continuity reasons show that |V (f)| ≤ H(|f |) a.s.o. �

The reader can notice that ν = the variation of m is finite. So, the proof
can be viewed as part of the theory of integration with respect to a measure
with finite variation, but we did not use this idea.
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5. OPERATORS GENERATED BY FIELDS OF OPERATORS

Again we are within the Framework described at the end of paragraph 2.

For any t ∈ T , put Gt
def
= L(Et, F ). In case F = K, we have Gt = E

′

t.
Let us write GF = (Gt)t∈T . In case F = K, we shall write E

′
insted of

GK = (E
′

t)t∈T .
Consequently, we can consider the space of operator fields:

C (GF ) =

{
U : T →

⋃
t∈T

Gt|U(t) ∈ Gt for any t ∈ T

}
.

In case F = K, we have the space

C(E′) =

{
U : T →

⋃
t∈T

E′t|U(t) ∈ E′t for any t ∈ T

}
.

For any U ∈ C(GF ) and for any x ∈ C(E) one defines

Ux : T → F, (Ux)(t)
def
= U(t)(x(t)).

For any y′ ∈ F ′ and any x ∈ C(E), we shall write y′(Ux) instead of y′ ◦Ux.
(we have y′(Ux) : T → K).

Definition 13. Let U ∈ C(GF ).
We shall say that U is simply µ - measurable in case, for any x ∈ A, the

function Ux is µ- measurable.
We shall say that U is weakly µ - measurable in case, for any x ∈ A and

any y′ ∈ F ′, the function y′(Ux) is µ- measurable.

The definition given above, transfers from A to the whole M(A, µ) as the
following result (see [8]) shows :

Theorem 14. Let U ∈ GF .
1. U is simply µ - measurable if and only if Ux is µ - measurable, for any

x ∈M(A, µ).
2. U is weakly µ - measurable if and only if y′(Ux) is µ - measurable, for

any x ∈M(A, µ) and any y′ ∈ F ′.

It is clear that the following implication holds :
U simply µ - measurable ⇒ U weakly µ - measurable. (∗)
Of course, in case F = K, simply µ - measurable means weakly µ -

measurable, but, generally speaking, the converse implication of (∗) is not
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true. We have the following result, showing a case when the converse of (∗) is
true (the case F = K is included), see [8].

Theorem 15. Assume F is separable. Then an element U ∈ GF is simply
µ -measurable if and only if it is weakly µ - measurable.

In the sequel we shall consider an operator field U ∈ C(GF ) and we shall
assume that U is simply µ - measurable and bounded, i.e.

M = sup
t∈T
||U(t)||0 <∞.

As concerns ρ, we shall assume that ρ R−F , hence Lρ(F, µ) is Banach (in
case F = K, Lρ is Banach, see [1] and [2]). Accepting these assumptions, we
shall construct a linear and continuous operator

HU : Lρ(E,A)→ Lρ(F, µ).

a) Because U is simply µ - measurable, for any x ∈M(A, µ), one has

Ux ∈MF (µ) = {f : T → F | f is µ− measurable}.

Assuming, supplementarily, that x ∈ Lρ(E,A), we have, for any t ∈ T :

||Ux(t)|| = ||U(t)(x(t))|| ≤ ||U(t)||0||x(t)|| ≤M ||x(t)||

i.e. |Ux| ≤M |x|.
Because |Ux| ∈M+(µ), one gets

ρ|Ux| ≤Mρ|x| <∞ (13)

and (13) shows that Ux ∈ Lρ(F, µ).
Using again (13), if x and y are in Lρ(E,A) and x(t) = y(t) µ - a.e., we get

ρ|U(x− y)| ≤M ρ|x− y| = 0

hence Ux(t) = Uy(t) µ - a.e.. Then, it follows that for any x̃ ∈ Lρ(E,A) and
any y ∈ x̃, z ∈ x̃, one has Uy = Uz µ - a.e. and one can define (without
ambiguity)

HU (x̃) = Ũx ∈ Lρ(F, µ).

So, we have the linear map HU : Lρ(E,A)→ Lρ(F, µ) which is continuous.
Indeed, if x̃ ∈ Lρ(F, µ) and x ∈ x̃, we use (13) to see that

||HU (x̃)|| = ||Ũx|| = ρ|Ux| ≤Mρ|x| = M ||x̃||.
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At this moment we proved :
Theorem 16. Let U ∈ C(GF ) which is simply µ - measurable and such

that M = sup
t∈T
||U(t)||0 <∞. Assume that ρ R − F . Then we have the linear

and continuous operator HU : Lρ(E,A) → Lρ(F, µ), given via HU (x̃) = Ũx
and ||HU ||0 ≤M .

In the particular case F = K, one has U ∈ C(E
′
) and HU : Lρ(E,A)→ Lρ.

Definition 17. We call HU the operator generated by U .

We would like to close with
Example 18. This example is based upon Example 19 in [2], which we

briefly review, in order to make the present paper self-contained.
The (locally) compact space T is [0, 1] with its usual topology. We have

(T,T, µ), where T = the Lebesgue measurable sets of [0, 1] and µ : T → R+ is
the Lebesgue measure. Take E = (Et)t∈T where

Et = L1/t(µ)
def
= L1/t, if 0 < t ≤ 1 (write also L1/t def

= L1/t(µ))

E0 = L∞(µ)
def
= L∞, if t = 0 (write also L∞

def
= L∞(µ))

and accept always the conventions 1/0 =∞, 1/∞ = 0.
So, in our schema from the Framework, paragraph 2, we have, for any

t ∈ T , the measure space (St, Σt, µt), where St = T, Σt = T, µt = µ. At the
same time, for any t ∈ T , we have the function norm ρt = || · ||1/t with ρt F ,
thus obtaining the Köthe spaces Lρt = Et, t ∈ [0, 1].

In order to complete the schema, we put into evidence the fundamental
family A of continuous vector fields for this C(E).

Write

E(T) = {f : T → K|f is T − simple} and E(T) =
{
f̃
∣∣∣ f ∈ E(T)

}
(one knows that E(T) is dense in Et for any t ∈ [0, 1]). So, we can construct,

for any f̃ ∈ E(T), the element x(f̃) ∈ C(E), acting via

x(f̃)(t) = f̃ ∈ Et = L1/t

for any t ∈ [0, 1].
Then

A = {x(f̃) | f̃ ∈ E(T)}



LINEAR OPERATORS ON KÖTHE SPACES OF VECTOR FIELDS 77

is a fundamental family of continuous vector fields for C(E), as shown in [2].
We completed the schema for obtaining

Lρ(E,A) = Lρ((ρt)t,A).

Let h : [0, 1] → K be a Lebesgue measurable and bounded function. We
shall use h to construct an operator field U ∈ C(E

′
). For any t ∈ [0, 1], one

has h ∈ L1/1−t, hence, for any f ∈ L1/t, one has fh ∈ L1.
Hölder’s inequality says that

|
∫
fhdµ| ≤ ||f ||1/t · ||h||1/1−t (14)

and taking sup
t∈T
|h(t)| = M <∞, one has ||h||1/1−t ≤M for any t ∈ [0, 1].

This is obvious for t = 1, i.e. ||h||∞ ≤M and, for 0 ≤ t < 1, one has

||h||1/1−t = (

∫
|h|1/1−t dµ)1−t ≤ (M1/1−t)1−t = M.

In view of (14) we get, for any t ∈ [0, 1] and any f ∈ L1/t

|
∫
fhdµ| ≤M ||f ||1/t (15)

It follows from (15) that, for any t ∈ [0, 1], one can define U(t) : L1/t → K,
via

U(t)(f̃) =

∫
fhdµ (16)

where f ∈ f̃ is arbitrarily taken. Also from (15), it follows that, for any t ∈ T
one has U(t) ∈ E′

t and ||U(t)||0 ≤ M . At this moment, we got the bounded
operator field U ∈ C(E

′
), given by (16).

Now, we show that U is simply µ - measurable. Namely, we must show
that for any x(f̃) ∈ A, the function X : [0, 1]→ K given via

X(t) = U(t)(x(f̃)(t))

is µ - measurable.
According to the definition, x(f̃)(t) = f̃ for any t ∈ [0, 1], hence

U(t)(x(f̃)(t)) = U(t)(f̃) =

∫
fhdµ

and the function X is constant, hence trivially µ - measurable.
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We succeeded in proving that U is bounded and simply µ - measurable.
Taking a function norm ρ on (T,T, µ) such that ρ R−F , we obtain the operator
generated by U :

HU : Lρ((ρt)t,A)→ Lρ.

We shall see the concrete action of HU in a case described in Example 19
from [2].

Let us consider 1 ≤ p ≤ ∞ and the function norm ρ on (T,T, µ) given by
ρ = || · ||p. Let also x : [0, 1]→ Et = L1/t, given by

x(t) = ϕ̃[0,t] (17)

We have seen that x ∈ Lρ((ρt)t,A), hence x̃ ∈ Lρ((ρt)t,A). We shall compute
HU (x̃). According to the definition :

HU (x̃) = Ũx

for any x ∈ x̃. Taking x as in (17), one has for any t ∈ [0, 1] (see (16)) :

Ux(t) = U(t)(x(t)) = U(t)
(
ϕ̃[0,t]

)
=

∫
hϕ[0,t]dµ =

∫
[0,t]

hdµ.

Conclusion : One has HU (x̃) = ỹ ∈ Lp where a representative y ∈ ỹ can
be y : [0, 1]→ K given by

y(t) =

∫
[0,t]

hdµ.

It will be of some interest to consider this example from the point of view
generated by the Integral Representation Theorem (Theorem 3). More pre-
cisely, we shall see the action of the representing measure m for an operator
identical to HU .

The operator HU is obtained in three steps as follows :
1) First we define MU : Lρ((ρt)t,A)→ Lρ (here ρt = || · ||1/t) via

MU (x) = Ux.

More precisely, for any t ∈ T = [0, 1] :

(Ux)(t) = U(t)(x(t)) =

∫
hftdµ

where ft is arbitrarily taken in x(t) ∈ Lρt = L1/t.
2) Next we define NU : Lρ((ρt)t,A)→ Lρ , via

NU (x) = M̃U (x) = Ũx.
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3) Finally, we obtain HU : Lρ((ρt)t,A)→ Lρ, namely

HU (x̃) = NU (x) = Ũx

for any x ∈ x̃.
It is seen that one has HU = ÑU (see Preliminary Facts) and one can

identify HU ≡ NU . Our goal is to compute the representing measure m for
NU (see Theorem 3). This can be done, of course, if assumption (P2) holds,
e.g. in case ρ = || · ||p, 1 ≤ p < ∞ (see the Remark at the end of paragraph
3).

We have m : C(ρ)→ L(A, Lρ) given via

m(A)(x) = NU (ϕAx)

for any A ∈ C(ρ) and any x ∈ A. Hence

m(A)(x) = ŨϕAx.

For any t ∈ T , one has

(UϕAx)(t) =

∫
hgt dµ

where gt ∈ ˜(ϕAx)(t) = ϕA(t)x̃(t) ∈ L1/t.

Because x ∈ A, one has x = x(f̃), for some f ∈ E(T) and x(t) = f̃ ∈ L1/t.

So gt ∈ ϕA(t)f̃ and we can take gt = ϕA(t)f which gives

(UϕAx)(t) = ϕA(t)

∫
hfdµ.

It follows that a representative of m(A) (x = x(f)) is the function U : T →
K given via

U(t) = (

∫
hfdµ) · ϕA(t).

Conclusion: For any A ∈ C(ρ) and any x = x(f̃) ∈ A, one has

m(A)(x) = (

∫
hfdµ)ϕ̃A.
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linéaires et continues. Atti Accad. Naz. Lincei. Rend. Cl. Fis. Mat. Nat.
(8) 22, (1957), 269− 275.

[6] N. Dinculeanu. Espaces d’Orlicz de champs de vecteurs III. Opérations
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