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Extremal orders of some functions connected
to regular integers modulo n

Bradut Apostol

Abstract

Let V(n) denote the number of positive regular integers (mod n) less

V(n)a(n) V(n)y(n)

n2 ’ n2 ’

than or equal to n. We give extremal orders of

o(m) ¥(n)
V(n)" V(n)
the Dedekind function, respectively. We also give extremal orders for
() & (n)
V(n) V(n)
unitary divisors of n and the unitary function corresponding to ¢(n), the
Euler’s function. Finally, we study some extremal orders of compositions

f(g(n)), involving the functions from above.

, where o(n), ¥(n) are the sum-of-divisors function and

, where o*(n) and ¢*(n) represent the sum of the

1 Introduction

Let n > 1 be a positive integer. An integer a is called regular (mod n) if there
exists an integer x such that a?z = a (mod n).

Properties of regular integers have been investigated by several authors. In
arecent paper O.Alkam and E.A. Osba [1], using ring theoretic considerations,
rediscovered some of the statements proved elementary by J.Morgado [3], [4].
It was proved in [3], [4] that a > 1 is regular (mod n) if and only if ged (a,n)
is a unitary divisor of n. In [11] L.Téth gives direct proofs of some properties,
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because the proofs of [3], [4] are lenghty and those of [1] are ring theoretical.
Let Reg,, = {a:1<a<nand ais regular (mod n)}, and V(n) = #Reg,.
The function V is multiplicative and V(p®) = ¢(p*) + 1 = p® — p*~1 + 1,
where ¢ is the Euler function. Consequently, V' (n) = Z ¢(d), for every n > 1,
d|ln
where d || n means unitary divisor (defined later). Also ¢(n) < V(n) < mn, for
every n > 1, and V(n) = n if and only if n is a squarefree, see [4], [11], [1].
L.Téth [11] proved results concerning the minimal and maximal orders of the
functions V(n) and V(n)/¢(n). The minimal order of V(n) was investigated
by O.Alkam and E.A.Osba in [1]. J. Sdndor and L. T6th [7] studied the
extremal orders of compositions of certain functions. In the present paper we
investigate the extremal orders of the function V(n) in connection with the
functions o(n), ¥(n), o*(n), ¢$*(n). We also study extremal orders of certain
composite functions involving V(n), ¢(n), o(n), ¥(n), ¢*(n), c*(n) and pose
some open problems.
For other arithmetic functions defined by regular integers modulo n we refer
to the papers [2] and [10].
In what follows let n = p{" ---pi* > 1 be a positive integer. We will use
throughout the paper the following notation:
° p1, P2, ... - the sequence of the primes;

o d || n - dis a unitary divisor of n, that is d | n and (d, g) =1;

. o(n) - the sum of the divisors of the natural number n;
1

. 1(n) - the Dedekind function, ¥ (n) = nH (1 + );

pln P

1\ !

o ¢(n) - the Riemann zeta function, {(s) = H (1— S) , s =o0+it €

p prime p
C and o > 1;

1
) @(n) - the Euler function, ¢(n) = nH(l - );
Pl P
1 1
. v - the Euler constant, v = lim (1+ = + ... + — — logn);
n—00 2 n

. @*(n) - the unitary function corresponding to ¢(n), ¢*(n) = H( > —1);

o o*(n) - the unitary function corresponding to o(n), o*(n) = H(pf" +1).
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2 Extremal orders concerning classical arithmetic func-
tions

We know that ¢(n) < n < o(n) for every n > 1. It is easy to see that
6 _ o)o(n) p(n)o(n) _ 6 ¢(n)o(n)

<1,n>1, liminf = — and limsup =1.
w2 n2 n—00 n w2 00 n?
In [5] it was proved that lim inf ¢n)v(n) -6 and lim sup $n)v(n) =1.
n—o0 n? w2 n— oo n?

We recall that an integer n > 1 is called powerful if it is divisible by the square
of each of its prime factors. A powerful integer is also called a squarefull
integer.

The investigation of the minimal and maximal order of V(n)o(n) led us to

Proposition 1.

V(n)o(n
) ., (i)
for every n > 1.
lim inf % =1, (i)
Vin)a(n) _ ¢(2)
S ((6) (i)
for every powerful number n.
. Wo(n) <) |
hyrbnﬁsotép 2 =6 (iv)

n powerful

Proof.

(i) Let n > 1 be an integer with the prime factorization n = p{* ---pp*.

1

1 1 pP— s

Since (1 ——+ ) . P_ > 1, it follows that
p p* p—1

k o1
1 bi G
V(n)a(n) _ H (1 —_ =4 pi1> . p; > 1.

n? Pl pi  D; pi—1
V(p)o 2
(#4) Since lim M = lim 2 —L—p = 1, taking (¢) into account, we
p—00 P p—00 P
p prime p prime
obtain
lim inf o(n) =1
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(it7) Letn=¢{" - qp*, ¢1 < g2 < ... < @i, & > 2,1 <i<Fkandpi,....pi
a _ a—1 1 a+1l 1 1 1
the first k primes. We have 4 4 + 4 < T <1 — 6)
q* ¢*(g=1) " 1- 5 q
for a > 2 and ¢ prime, so
¢ g+ q:““ : 1
H H 1 1- 46
ql i=1 1= re 4i
Smce q > p; for 1 < , it follows that
1 1
1——6 1—— for 1 <i<k,so
1-— q; 7 p;
k k
V( ) H H ( 1 )
1- —
6
i=1 1- T" i=1 Pi
Taking k — oo, we obtain
Vino(n) _ ¢(2)
n? 7 ((6)
(iv) Taking ny = p?---p% (p1,..., Pk being the first k primes)
k k
Vink)o(ng) _ 11 1 (1 _ 1)
n% i:ll_% i=1 p? ’
SO
_ Vi(ng)o(ng) 1 ( 1 ) ¢(2)
lim ——%—+~ = H . H 1— — | =222
0o 2 _ 1 6
= "k p prime 1 p? p prime p <(6)
In view of (i7i) , we obtain
2
lim sup (n);f(n) = C(6). (]
n ol ¢(6)
( T)Lg(n) 1s 1 and the maximal order of

Corollary 1. The minimal order of

¢(2)

V(n)o(n) .
—z for n powerful is c(6)

We now prove an analogous result for V(n)i(n)
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Proposition 2.

gt 0
n squarefree n
V{n)p(n) _ ¢(3) g
for every powerful number n.
lim sup Vin)e(n) = 4(3). (4i1)

n— o0 n?2 C(G)

n powerful
Proof.

(i) Let n=p;---pk, where p,...,p are distinct prime numbers. We have

VO _ D) | o V)
n2 P1c P ’ P50 p2

V(n)p(n)

n2

= 1, we obtain

p prime

lim inf =1.
n— oo

n squarefree

(1) Ifn=q" --q", o >2,and 1 <i <k, then we have

k i _

Vin)vn) e —a T e+ 1

n2 - a;+1 :
i=1 4;

It is immediate that

a+1 a—1
q —q +q+1 1
got1 S(l_z L+

1 1
>:1+3f0ra22andq
—q q

prime, SO

V("ﬁ(n)ﬁﬁ(l‘12)(“q%1qi):ﬁ<”q13>'

7 i=1 7

Let p1, ..., px the first k primes. Since g; > p; for 1 <1 < k, we get

k
1 1 1
1+q—3 < 1—1—}? for 1 <i < k, hence M < | I (1—|—3>. Since the right
@ ' i=1 i

n2
¢3) ¢3)

hand side tends increasingly to =—= as k — oo, we get <(6)

¢(6)

7 (3

V()¢ (n)

<
n? -

, for

every powerful number n.
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1) Take ng =p?---p2 (p1,..., pr being the first k primes). Then
1 k
k k k
V(n )¢ (nr) ( 1 ) < 1 ) < 1 ) ¢(3)
—_— = 1-—= - 14+ 1+ — =
i 1;[1 ; 1;[1 p; —pi 1_[1 ¢(6)
(k — 00) so, if we take into account (i), we deduce that

lim sup V(n);/)(n) = §(3)’ implying that the maximal order of M;/}(n)
n gc;}vgl?ful " C(6) "
. ¢(3)
for n powerful is .
¢(6)

In order to prove the properties below we apply the following result ([12],
Corollary 1) :

Lemma 1. If f is a nonnegative real-valued multiplicative arithmetic function
such that for each prime p,

-1
(1) p(p) = sup(f(p*)) < (1 - 1) , and

a>0 p

1
(i) there is an exponent e, = p°Y) € N satisfying f(p°) > 1+ =,
p

f(n
th li e 1—- .
en 17131_>solip log log n H P(p)

p prime
For the quotient o(n) e notice that o(n) > 1 for every n > 1
W v .
d V(n) Vin) = yn=
Since lim @ = 1, we get liminf o(n) = 1, hence the minimal or-
pp;iﬁe V(p) n—so00 V(n)
der of o(n) is 1. Proposition 3 shows that the maximal order of o(n) is
V(n) V(n)
2 (loglogn)?:
Proposition 3.
lim sup % =e?,

nooo V(n)(loglogn)?

Proof. Take f(n) = M. Then

e pett -1 _y L
I >\/(p_1)(pa_pa_1+1) <(1-2) =ow.
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and

2 P +p+1
1/7>1+7
f7) = pP—p+1 P

for every prime p, so (i) in the above Lemma is satisfied. We obtain

a(n) y

limsup ————"——=e¢

n—oo /V(n)loglogn

SO (n)
o(n
li — =" 0
o Vin)(loglogn)? ~ ©
Consider now the quotient ¥(n) . Since M > 1 for every n > 1 and
V(n) V(n)
1
M bt for every prime p, it is immediate that lim inf ¥(n) =1.
Vip)  »p n—oe V(n)
Thus, the minimal order of ¥(n) is 1.
V(n)
Proposition 4.
6
lim sup & = —e?.

n—oo V(n)(loglogn)? w2

Tl

Proof. Let f(n in Lemma 1. Here

TL

—1
o P +pot [p+1 1
= < = < 1—— s
f®*) e H p(p) ’
4 3
4 p*+Dp 1
= 7>1+7,
P) Vpi=p*+17" " p

so (i) is fulfilled in the cited Lemma, for every prime p. We obtain

: 1/1( [ _ /| 6
lim su e ,
n—)oop V'V (n)log logn H 72

p prime

and

S0
¥(n) 6

li = —¢e7, ]
lfff;ip V(n)(loglogn)? m2°
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3 Extremal orders concerning unitary analogues

In what follows we consider the functions ¢*(n) and ¢*(n), representing the
sum of the unitary divisors of n and the unitary FEuler function, respectively.
The functions o*(n) and ¢*(n) are multiplicative. If n = p{" ---pp* is the
prime factorisation of n > 1, then

¢*(n) = (p* —1)--(p* —1),  o"(n) =@ +1)- - (pp* +1)
Note that ¢*(n) = o(n), ¢*(n) = ¢(n) for all squarefree n, and for every n > 1
6(n) < 6"(n) <n < o*(n) < o(n).
o*(n) 4 @)

We give extremal orders for the quotients , the minimal order

* v Vi)
of o (n) being studied for powerful numbers. Since () > 1 and for prime
V(n) Vi(n)
* 1 *
numbers p, lim o (p) _ = lim prl_ 1, it follows that lim inf o (n) =1.
p—ro0 V( ) p—oo P n— 00 V(n)
If n is powerful, it is easy to see that gi)/((n)) > 1, taking into account that
n
* « * 2
o (") > 1 for a > 2. For prime numbers p, we notice that lim o () =
V(p*) p—oo V(p?)
-1 *
lim pi = 1, which implies that lim inf " (n) = 1, so the minimal
p—00 p —p+ 1 n— 00 V(n)
order of (f/((n)) is 1. For the maximal orders of these quotients we give:
n
Proposition 5.
o*(n) .
li — = =¢"
lisolip V(n)loglogn €5 (@)
lim sup A =e’. (i)

n—oo V(n)loglogn

Proof.
. o*(n) L ) L
(i) Take f(n) = Vin)’ which is a nonnegative real-valued multiplicative
n
¢ 41 1\
arithmetic function. We have f(p®) = ]#4:14'1 < (1 - p) = p(p),

and
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1 1
f(p) =14+ = > 1+ — for every prime p. Applying Lemma 1, we get
p

p
| o (n)
1 — L =¢".
i V(n)loglogn ©
(i) Now let f(n) = ?/((Z)) Here
-1
p*—1 1
) = <({1--= = , and
F") =3 i ( p) p(p), an
-1
) = p4p_ S > 1+ —, for every prime p. According to Lemma 1,
: ¢*(n)
limsup ————— =¢". O
oy V(n)loglogn €
Corollary 2. The maximal order of both o (n) and ¢ (n) is €7 loglogn.
V(n) V(n)

4 Extremal orders regarding compositions of functions
We now move to the study of extremal orders of some composite arithmetic
functions. We start with V(V(n)) and ¢(V(n)).
We know that V(n) < n for every n > 1, so Vin)) < Vin)
n
\%4 14
im YV@) o Vi)

p—00 p—0o0
p prime p p prime p

< 1 and
n

= 1, so the maximal order of V(V(n)) is n.

GV (n) _ Vin)

n n

<1

Since ¢(n) < n and V(n) < n for any n > 1, we have

14 -1
But lim ¢V (p) = lim 27" = 1, so the maximal order of ¢(V'(n)) is n.
p—00 p p—oo P
p prime
In [7] was investigated the maximal order of ¢*(¢(n)). Using the general idea
of that proof, we show:

Proposition 6. The mazimal order of V(p(n)) is n.

Proof. We will use Linnik’s theorem which states that if (k,¢) = 1, then
there exists a prime p such that p = ¢ (mod k) and p < k¢, where c is a
constant (one can take ¢ < 11).

Let A= H p. Since (A%, A+ 1) = 1, by Linnik’s theorem there is a prime

p<w
p prime

number ¢ such that ¢ = A+ 1 (mod A2) and q < (A42%)¢ = A%¢, where ¢
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satisfies ¢ < 11. Let ¢ be the least prime satisfying the above condition. So,
g—A—1=FkA?2, for some k. We have

é(q) =q—1=A+kA? = A(1 + kA) = AB, where B = 1 + kA. Thus

(A, B) =1, so B is free of prime factors < 2. We have ¢ — 1 = AB, so
q=AB+1.

Since V(n) is multiplicative, we have

Viele)) _ V(AB) _V(A) V(B) _AB

g  AB+1 A B AB+1 (1)
e . V(A) V(B)
Here AB 11 — 1 as x — 00, so it is sufficient to study 1 and 5
Clearly,
v(IT» I]vw
V(A) o p<z _ p<w -1 (2)
A II» I
p<z p<z

It is well-known that A = H p=¢e2® Since ¢ < A% and A = ¢©®) | from
p<z
10 O(@)\10 _ ,0(2)
B« A WehaveB<<(e ) =e , SO

log B < z. (3)
k
If B= H qf" is the prime factorization of B, we obtain
i=1
Tk k

log B = Zbi log g; > (log x) Zbi’ as ¢; > x for all i € {1,2,...,k}. But

i=1 i=1

k
log B
Zbi >k, so log B > klog z, implying that k < 82 o ° (by(3)). We
P log z log x
get:
k k k
v(ITd) Tar-den Tl -d
V(B) _ i=1 _ =1 S =1 _
B - k k -
I1¢ [Ta" [Ta
=1 =1 =1
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1 1
because 1 — — > 1 — —. So,
; x

di
V(B) 1
——>1 — .
B JrO<logac>

By (1), (2), (4) and — 1 as & — 0o, we obtain

B
AB+1
Visa) .y o L),

q
V(on) _ o(m)

By relation (5), and since <1, it follows that

—~

n
lim sup M =1. O
n— oo n

Proposition 7. The mazimal order of V(¢*(n)) is n.

Proof. We apply the following result:

If a is an integer, a > 1, p is a prime number and f(n) is an arithmetical

function satisfying ¢(n) < f(n) < o(n), one has

. f(N(a,p)) _
A N

— (see e.g. D.Suryanarayana [9]).
Since ¢*(n) < n, it follows that V(¢*(n)) < ¢*(n) < n, so

V@)

where N(a,p) = ¢
a

Let n = 2P, p prime number. Then we have

Vigren) _ V-1 -1

2r 2r —1 2p
Since ¢(n) < V(n) < o(n) and N(2,p) = 2P — 1, it follows that

Ve -1
A Gl Y

p—oo 2P — 1

taking into account (6). By (8), taking p — oo, we obtain
V(¢*(27))

lim ———% =
p—00 2p
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Now (7) and (9) imply lim sup

n—oQ

For the maximal orders of o

V(¢*(n))’

we give

Proposition 8.

o o) o(6*(n) iy
() i s ) log log )2 52 V(g () (log log ()2 ©

. Ve L @) 6
0) 1 S0 3 ) o log ) st V(g () (log log & ()2~ 72
Proof.
() Let
et
b= ln—>socp V(¢*(n))(loglogn)?
and

A o (" (n))
b= 0 SUp ) log log 6 (m)2

Since ¢*(n) < n for every n > 1,

= limsu o(@"(n) = limsu o(¢”(n))
b = limsup Vot loglog ° =2 = ISP 76+ ) log log & ()7 =

lim su = ¢?7, by Proposition 3.
e V(m)(loglogm)? y P
Since (n,1) = 1, by Linnik’s theorem, there exists a prime number p such
that p =1 (mod n) and p < n¢. Let p, be the least prime such that p, =1

(mod n), for every n. Then n | p, — 1 and p,, < n¢, so loglogp,, ~ loglogn.
b
o(a) < @. If p | p* (B < a), it is easy to

Observe that a | b implies Vi) S V)

op’) _ o(p)

see that < . The general case follows, taking into account that
V(pf) = V(p*)
;((Z)) is multiplicative. So,
o)
V(¢*(pn))(log log pr,)?
o(pn —1) o(pn —1) S o(n)

V(pn — D(loglogpn)? ~ V(pn — 1(loglogn)? = V(n)(loglogn)?
but (& () (& ()

. g n . g DPn

WS (5 () loglog m)? = oo V(6 () (log log p)? ~
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. o(n) 2
limsup ——————— =¢".
ey V(n)(loglogn)?

We obtain e?¥ < [; <y < €27, hence 1 = Iy = 7.
(#4) The proof is similar to the proof of (i), taking into account that a | b

¢(a) w(b) . w(n) 6 2 .
< sup -7 Y . ]
V(a) V(b) and 117131 sup V(n)(log log n)2 se s by Proposition 4

impies

o(¢™(n))  ¥(¢"(n))
6 V(g*(n)) V(¢*(n))
ﬁe% (loglogn)?, respectively. In  a  similar  manner, since

lim sup L(n) = limsup L(n)
n—oo V(n)loglogn n—soo V(n)loglogn

(@) o (b) 9 a) _ & (b)
V(o) = V) ™ Ve = V)

o*(¢"(n))

So, the maximal orders of are €2 (loglogn)? and

= ¢ (Proposition 5), a | b

implies , respectively, it can be shown that

a*(¢*(n))

lifgsogp V(¢*(n))log logn 1iTIlIi>Solip V(¢*(n))loglog ¢*(n) = ¢’ and
lim sup " (¢"(n) = lim sup ¢*(¢"(n)) —

n—oo V(¢*(n))loglogn  nooee V(#*(n))loglog ¢*(n)
5 Open Problems

Problem 1. Note that

\%
lim sup w = lim sup
n—00 n n—00

since for ny = py -+ px (the product of the first k primes),

k

Vi)o(ne) _ (pr+1)--(pr+1) H(

1
5 1+)%oo,k%oo;
ni P1- Pk

i=1 pi

the other relation follows in a similar manner. What are the maximal orders

for Vo) V)
n
Problem 2. Note that
lim inf M = lim inf M = lim inf “(V{n)) =0.

n—oo n n—oo n n—oo n
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For ny = p1 - - - pr (the product of the first & primes),

View) _ V(1 =1D---(pr=1) _ (=1 (pr =1
Nk P1- Pk N D1 Pk

(=5) - (-50)
=(1-—=)--(1=-=),

b1 Pk

lim YO0 _ <11>-..(11>0,
k—o0 Nk k—o00 b1 Pk

similarly the other relations. What are the minimal orders for the V(¢(n)),
V(¢*(n)), ¢*(V(n)) ?

SO

Problem 3. Taking ny = p; - - - pr (the product of the first k primes),

o*(V(ng)) o (pr--pr)  (p1+1)--(pr+1)

Nk P1-- Pk P1-Pk
1 1
= <1+>~~-(1+> — 00
P1 Pk
vV
as k — o0, so limsupM = o00. What is the maximal order for
n— 00 n

o*(V(n)) ?
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