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Extremal orders of some functions connected
to regular integers modulo n

Brăduţ Apostol

Abstract

Let V (n) denote the number of positive regular integers (mod n) less

than or equal to n. We give extremal orders of
V (n)σ(n)

n2
,
V (n)ψ(n)

n2
,

σ(n)

V (n)
,
ψ(n)

V (n)
, where σ(n), ψ(n) are the sum-of-divisors function and

the Dedekind function, respectively. We also give extremal orders for
σ∗(n)

V (n)
and

φ∗(n)

V (n)
, where σ∗(n) and φ∗(n) represent the sum of the

unitary divisors of n and the unitary function corresponding to φ(n), the
Euler’s function. Finally, we study some extremal orders of compositions
f(g(n)), involving the functions from above.

1 Introduction

Let n > 1 be a positive integer. An integer a is called regular (mod n) if there
exists an integer x such that a2x ≡ a (mod n).

Properties of regular integers have been investigated by several authors. In
a recent paper O.Alkam and E.A. Osba [1], using ring theoretic considerations,
rediscovered some of the statements proved elementary by J.Morgado [3], [4].
It was proved in [3], [4] that a > 1 is regular (mod n) if and only if gcd (a, n)
is a unitary divisor of n. In [11] L.Tóth gives direct proofs of some properties,
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because the proofs of [3], [4] are lenghty and those of [1] are ring theoretical.
Let Regn = {a : 1 ≤ a ≤ n and a is regular (mod n)}, and V (n) = #Regn.
The function V is multiplicative and V (pα) = φ(pα) + 1 = pα − pα−1 + 1,

where φ is the Euler function. Consequently, V (n) =
∑
d‖n

φ(d), for every n ≥ 1,

where d ‖ n means unitary divisor (defined later). Also φ(n) < V (n) ≤ n, for
every n > 1, and V (n) = n if and only if n is a squarefree, see [4], [11], [1].
L.Tóth [11] proved results concerning the minimal and maximal orders of the
functions V (n) and V (n)/φ(n). The minimal order of V (n) was investigated
by O.Alkam and E.A.Osba in [1]. J. Sándor and L. Tóth [7] studied the
extremal orders of compositions of certain functions. In the present paper we
investigate the extremal orders of the function V (n) in connection with the
functions σ(n), ψ(n), σ∗(n), φ∗(n). We also study extremal orders of certain
composite functions involving V (n), φ(n), σ(n), ψ(n), φ∗(n), σ∗(n) and pose
some open problems.
For other arithmetic functions defined by regular integers modulo n we refer
to the papers [2] and [10].
In what follows let n = pα1

1 · · · p
αk
k > 1 be a positive integer. We will use

throughout the paper the following notation:
• p1, p2, ... - the sequence of the primes;

• d ‖ n - d is a unitary divisor of n, that is d | n and (d,
n

d
) = 1;

• σ(n) - the sum of the divisors of the natural number n;

• ψ(n) - the Dedekind function, ψ(n) = n
∏
p|n

(
1 +

1

p

)
;

• ζ(n) - the Riemann zeta function, ζ(s) =
∏

p prime

(
1− 1

ps

)−1
, s = σ+it ∈

C and σ > 1;

• φ(n) - the Euler function, φ(n) = n
∏
p|n

(
1− 1

p

)
;

• γ - the Euler constant, γ = lim
n→∞

(1 +
1

2
+ ...+

1

n
− log n);

• φ∗(n) - the unitary function corresponding to φ(n), φ∗(n) =

k∏
i=1

(pαii −1);

• σ∗(n) - the unitary function corresponding to σ(n), σ∗(n) =

k∏
i=1

(pαii +1).
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2 Extremal orders concerning classical arithmetic func-
tions

We know that φ(n) < n < σ(n) for every n > 1. It is easy to see that
6

π2
<
φ(n)σ(n)

n2
< 1, n > 1, lim inf

n→∞

φ(n)σ(n)

n2
=

6

π2
and lim sup

n→∞

φ(n)σ(n)

n2
= 1.

In [5] it was proved that lim inf
n→∞

φ(n)ψ(n)

n2
=

6

π2
and lim sup

n→∞

φ(n)ψ(n)

n2
= 1.

We recall that an integer n > 1 is called powerful if it is divisible by the square
of each of its prime factors. A powerful integer is also called a squarefull
integer.

The investigation of the minimal and maximal order of V (n)σ(n) led us to

Proposition 1.
V (n)σ(n)

n2
> 1, (i)

for every n > 1.

lim inf
n→∞

V (n)σ(n)

n2
= 1, (ii)

V (n)σ(n)

n2
≤ ζ(2)

ζ(6)
, (iii)

for every powerful number n.

lim sup
n→∞

n powerful

V (n)σ(n)

n2
=
ζ(2)

ζ(6)
. (iv)

Proof.

(i) Let n > 1 be an integer with the prime factorization n = pα1
1 · · · p

αk
k .

Since

(
1− 1

p
+

1

pα

)
·
p− 1

pα

p− 1
> 1, it follows that

V (n)σ(n)

n2
=

k∏
i=1

(
1− 1

pi
+

1

pαii

)
·
pi − 1

p
αi
i

pi − 1
> 1.

(ii) Since lim
p→∞
p prime

V (p)σ(p)

p2
= lim

p→∞
p prime

p2 + p

p2
= 1, taking (i) into account, we

obtain

lim inf
n→∞

V (n)σ(n)

n2
= 1.



8 Brăduţ Apostol

(iii) Let n = qα1
1 · · · q

αk
k , q1 < q2 < ... < qk, αi ≥ 2, 1 ≤ i ≤ k and p1,...,pk

the first k primes. We have
qα − qα−1 + 1

qα
· q

α+1 − 1

qα(q − 1)
≤ 1

1− 1
q2

·
(

1− 1

q6

)
for α ≥ 2 and q prime, so

V (n)σ(n)

n2
=

k∏
i=1

qαii − q
αi−1
i + 1

qαii
· q

αi+1
i − 1

qαii (qi − 1)
≤

k∏
i=1

1

1− 1
q2i

·
(

1− 1

q6i

)
.

Since qi ≥ pi for 1 ≤ i ≤ k, it follows that
1

1− 1
q2i

·
(

1− 1

q6i

)
≤ 1

1− 1
p2i

·
(

1− 1

p6i

)
for 1 ≤ i ≤ k, so

V (n)σ(n)

n2
≤

k∏
i=1

1

1− 1
p2i

·
k∏
i=1

(
1− 1

p6i

)
.

Taking k →∞, we obtain

V (n)σ(n)

n2
≤ ζ(2)

ζ(6)
.

(iv) Taking nk = p21 · · · p2k (p1, ..., pk being the first k primes),

V (nk)σ(nk)

n2k
=

k∏
i=1

1

1− 1
p2i

·
k∏
i=1

(
1− 1

p6i

)
,

so

lim
k→∞

V (nk)σ(nk)

n2k
=

∏
p prime

1

1− 1
p2

·
∏

p prime

(
1− 1

p6

)
=
ζ(2)

ζ(6)
.

In view of (iii) , we obtain

lim sup
n→∞

n powerful

V (n)σ(n)

n2
=
ζ(2)

ζ(6)
. �

Corollary 1. The minimal order of
V (n)σ(n)

n2
is 1 and the maximal order of

V (n)σ(n)

n2
for n powerful is

ζ(2)

ζ(6)
.

We now prove an analogous result for V (n)ψ(n):
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Proposition 2.

lim inf
n→∞

n squarefree

V (n)ψ(n)

n2
= 1, (i)

V (n)ψ(n)

n2
≤ ζ(3)

ζ(6)
, (ii)

for every powerful number n.

lim sup
n→∞

n powerful

V (n)ψ(n)

n2
=
ζ(3)

ζ(6)
. (iii)

Proof.

(i) Let n = p1 · · · pk, where p1,...,pk are distinct prime numbers. We have

V (n)ψ(n)

n2
=

(p1 + 1) · · · (pk + 1)

p1 · · · pk
> 1. Since lim

p→∞
p prime

V (p)ψ(p)

p2
= 1, we obtain

lim inf
n→∞

n squarefree

V (n)ψ(n)

n2
= 1.

(ii) If n = qα1
1 · · · q

αk
k , αi ≥ 2, and 1 ≤ i ≤ k, then we have

V (n)ψ(n)

n2
=

k∏
i=1

qαi+1
i − qαi−1i + qi + 1

qαi+1
i

.

It is immediate that

qα+1 − qα−1 + q + 1

qα+1
≤
(

1− 1

q2

)(
1 +

1

q2 − q

)
= 1 +

1

q3
for α ≥ 2 and q

prime, so

V (n)ψ(n)

n2
≤

k∏
i=1

(
1− 1

q2i

)(
1 +

1

q2i − qi

)
=

k∏
i=1

(
1 +

1

q3i

)
.

Let p1, ..., pk the first k primes. Since qi ≥ pi for 1 ≤ i ≤ k, we get

1+
1

q3i
≤ 1+

1

p3i
for 1 ≤ i ≤ k, hence

V (n)ψ(n)

n2
≤

k∏
i=1

(
1+

1

p3i

)
. Since the right

hand side tends increasingly to
ζ(3)

ζ(6)
as k →∞, we get

V (n)ψ(n)

n2
≤ ζ(3)

ζ(6)
, for

every powerful number n.
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(iii) Take nk = p21 · · · p2k (p1, ..., pk being the first k primes). Then

V (nk)ψ(nk)

n2k
=

k∏
i=1

(
1− 1

p2i

)
·
k∏
i=1

(
1 +

1

p2i − pi

)
=

k∏
i=1

(
1 +

1

p3i

)
→ ζ(3)

ζ(6)
,

(k →∞) so, if we take into account (ii), we deduce that

lim sup
n→∞

n powerful

V (n)ψ(n)

n2
=
ζ(3)

ζ(6)
, implying that the maximal order of

V (n)ψ(n)

n2

for n powerful is
ζ(3)

ζ(6)
. �

In order to prove the properties below we apply the following result ([12],
Corollary 1) :

Lemma 1. If f is a nonnegative real-valued multiplicative arithmetic function
such that for each prime p,

(i) ρ(p) = sup
α≥0

(f(pα)) ≤
(

1− 1

p

)−1
, and

(ii) there is an exponent ep = po(1) ∈ N satisfying f(pep) ≥ 1 +
1

p
,

then lim sup
n→∞

f(n)

log log n
= eγ

∏
p prime

(
1− 1

p

)
ρ(p).

For the quotient
σ(n)

V (n)
, we notice that

σ(n)

V (n)
≥ 1 for every n ≥ 1.

Since lim
p→∞
p prime

σ(p)

V (p)
= 1, we get lim inf

n→∞

σ(n)

V (n)
= 1, hence the minimal or-

der of
σ(n)

V (n)
is 1. Proposition 3 shows that the maximal order of

σ(n)

V (n)
is

e2γ(log log n)2:

Proposition 3.

lim sup
n→∞

σ(n)

V (n)(log log n)2
= e2γ .

Proof. Take f(n) =

√
σ(n)

V (n)
. Then

f(pα) =

√
pα+1 − 1

(p− 1)(pα − pα−1 + 1)
≤
(

1− 1

p

)−1
= ρ(p),
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and

f(p2) =

√
p2 + p+ 1

p2 − p+ 1
≥ 1 +

1

p

for every prime p, so (ii) in the above Lemma is satisfied. We obtain

lim sup
n→∞

√
σ(n)√

V (n) log log n
= eγ ,

so

lim sup
n→∞

σ(n)

V (n)(log log n)2
= e2γ . �

Consider now the quotient
ψ(n)

V (n)
. Since

ψ(n)

V (n)
≥ 1 for every n ≥ 1 and

ψ(p)

V (p)
=
p+ 1

p
for every prime p, it is immediate that lim inf

n→∞

ψ(n)

V (n)
= 1.

Thus, the minimal order of
ψ(n)

V (n)
is 1.

Proposition 4.

lim sup
n→∞

ψ(n)

V (n)(log logn)2
=

6

π2
e2γ .

Proof. Let f(n) =

√
ψ(n)

V (n)
in Lemma 1. Here

f(pα) =

√
pα + pα−1

pα − pα−1 + 1
≤
√
p+ 1

p− 1
= ρ(p) <

(
1− 1

p

)−1
,

and

f(p4) =

√
p4 + p3

p4 − p3 + 1
≥ 1 +

1

p
,

so (ii) is fulfilled in the cited Lemma, for every prime p. We obtain

lim sup
n→∞

√
ψ(n)√

V (n) log log n
= eγ

∏
p prime

√
1− 1

p2
= eγ

√
6

π2
,

so

lim sup
n→∞

ψ(n)

V (n)(log log n)2
=

6

π2
e2γ . �
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3 Extremal orders concerning unitary analogues

In what follows we consider the functions σ∗(n) and φ∗(n), representing the
sum of the unitary divisors of n and the unitary Euler function, respectively.
The functions σ∗(n) and φ∗(n) are multiplicative. If n = pα1

1 · · · p
αk
k is the

prime factorisation of n > 1, then

φ∗(n) = (pα1
1 − 1) · · · (pαkk − 1), σ∗(n) = (pα1

1 + 1) · · · (pαkk + 1)

Note that σ∗(n) = σ(n), φ∗(n) = φ(n) for all squarefree n, and for every n ≥ 1

φ(n) ≤ φ∗(n) ≤ n ≤ σ∗(n) ≤ σ(n).

We give extremal orders for the quotients
σ∗(n)

V (n)
and

φ∗(n)

V (n)
, the minimal order

of
φ∗(n)

V (n)
being studied for powerful numbers. Since

σ∗(n)

V (n)
≥ 1 and for prime

numbers p, lim
p→∞

σ∗(p)

V (p)
= lim
p→∞

p+ 1

p
= 1, it follows that lim inf

n→∞

σ∗(n)

V (n)
= 1.

If n is powerful, it is easy to see that
φ∗(n)

V (n)
≥ 1, taking into account that

φ∗(pα)

V (pα)
≥ 1 for α ≥ 2. For prime numbers p, we notice that lim

p→∞

φ∗(p2)

V (p2)
=

lim
p→∞

p2 − 1

p2 − p+ 1
= 1, which implies that lim inf

n→∞

φ∗(n)

V (n)
= 1, so the minimal

order of
φ∗(n)

V (n)
is 1. For the maximal orders of these quotients we give:

Proposition 5.

lim sup
n→∞

σ∗(n)

V (n) log log n
= eγ , (i)

lim sup
n→∞

φ∗(n)

V (n) log log n
= eγ . (ii)

Proof.

(i) Take f(n) =
σ∗(n)

V (n)
, which is a nonnegative real-valued multiplicative

arithmetic function. We have f(pα) =
pα + 1

pα − pα−1 + 1
≤
(

1− 1

p

)−1
= ρ(p),

and
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f(p) = 1 +
1

p
≥ 1 +

1

p
for every prime p. Applying Lemma 1, we get

lim sup
n→∞

σ∗(n)

V (n) log log n
= eγ .

(ii) Now let f(n) =
φ∗(n)

V (n)
. Here

f(pα) =
pα − 1

pα − pα−1 + 1
≤
(

1− 1

p

)−1
= ρ(p), and

f(p4) =
p4 − 1

p4 − p3 + 1
≥ 1 +

1

p
, for every prime p. According to Lemma 1,

lim sup
n→∞

φ∗(n)

V (n) log log n
= eγ . �

Corollary 2. The maximal order of both
σ∗(n)

V (n)
and

φ∗(n)

V (n)
is eγ log log n.

4 Extremal orders regarding compositions of functions

We now move to the study of extremal orders of some composite arithmetic
functions. We start with V (V (n)) and φ(V (n)).

We know that V (n) ≤ n for every n ≥ 1, so
V (V (n))

n
≤ V (n)

n
≤ 1 and

lim
p→∞
p prime

V (V (p))

p
= lim

p→∞
p prime

V (p)

p
= 1, so the maximal order of V (V (n)) is n.

Since φ(n) ≤ n and V (n) ≤ n for any n ≥ 1, we have
φ(V (n))

n
≤ V (n)

n
≤ 1.

But lim
p→∞
p prime

φ(V (p))

p
= lim
p→∞

p− 1

p
= 1, so the maximal order of φ(V (n)) is n.

In [7] was investigated the maximal order of φ∗(φ(n)). Using the general idea
of that proof, we show:

Proposition 6. The maximal order of V (φ(n)) is n.

Proof. We will use Linnik’s theorem which states that if (k, `) = 1, then
there exists a prime p such that p ≡ ` (mod k) and p� kc, where c is a
constant (one can take c ≤ 11).

Let A =
∏
p≤x

p prime

p. Since (A2, A+ 1) = 1, by Linnik’s theorem there is a prime

number q such that q ≡ A+ 1 (mod A2) and q � (A2)c = A2c, where c
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satisfies c ≤ 11. Let q be the least prime satisfying the above condition. So,
q −A− 1 = kA2, for some k. We have
φ(q) = q − 1 = A+ kA2 = A(1 + kA) = AB, where B = 1 + kA. Thus
(A,B) = 1, so B is free of prime factors ≤ x. We have q − 1 = AB, so
q = AB + 1.
Since V (n) is multiplicative, we have

V (φ(q))

q
=
V (AB)

AB + 1
=
V (A)

A
· V (B)

B
· AB

AB + 1
. (1)

Here
AB

AB + 1
→ 1 as x→∞, so it is sufficient to study

V (A)

A
and

V (B)

B
.

Clearly,

V (A)

A
=

V
(∏
p≤x

p
)

∏
p≤x

p
=

∏
p≤x

V (p)∏
p≤x

p
= 1. (2)

It is well-known that A =
∏
p≤x

p = eO(x). Since q � A2c and A = eO(x), from

B � A10 we have B �
(
eO(x)

)10
= eO(x), so

logB � x. (3)

If B =

k∏
i=1

qbii is the prime factorization of B, we obtain

logB =

k∑
i=1

bi log qi > (log x)

k∑
i=1

bi, as qi > x for all i ∈ {1, 2, ..., k}. But

k∑
i=1

bi ≥ k, so logB > k log x, implying that k <
logB

log x
� x

log x
(by(3)). We

get:

V (B)

B
=

V

( k∏
i=1

qbii

)
k∏
i=1

qbii

=

k∏
i=1

(qbii − q
bi−1
i + 1)

k∏
i=1

qbii

>

k∏
i=1

(qbii − q
bi−1
i )

k∏
i=1

qbii

=

=

k∏
i=1

(
1− 1

qi

)
>

(
1− 1

x

)k
≥
(

1− 1

x

)O( x
log x )

> 1 +O

(
1

log x

)
,
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because 1− 1

qi
> 1− 1

x
. So,

V (B)

B
> 1 +O

(
1

log x

)
. (4)

By (1), (2), (4) and
AB

AB + 1
→ 1 as x→∞, we obtain

V (φ(q))

q
> 1 +O

(
1

log x

)
. (5)

By relation (5), and since
V (φ(n))

n
≤ φ(n)

n
≤ 1, it follows that

lim sup
n→∞

V (φ(n))

n
= 1. �

Proposition 7. The maximal order of V (φ∗(n)) is n.

Proof. We apply the following result:
If a is an integer, a > 1, p is a prime number and f(n) is an arithmetical
function satisfying φ(n) ≤ f(n) ≤ σ(n), one has

lim
p→∞

f(N(a, p))

N(a, p)
= 1, (6)

where N(a, p) =
ap − 1

a− 1
(see e.g. D.Suryanarayana [9]).

Since φ∗(n) ≤ n, it follows that V (φ∗(n)) ≤ φ∗(n) ≤ n, so

V (φ∗(n))

n
≤ 1. (7)

Let n = 2p, p prime number. Then we have

V (φ∗(2p))

2p
=
V (2p − 1)

2p − 1
· 2p − 1

2p
. (8)

Since φ(n) ≤ V (n) ≤ σ(n) and N(2, p) = 2p − 1, it follows that

lim
p→∞

V (2p − 1)

2p − 1
= 1,

taking into account (6). By (8), taking p→∞, we obtain

lim
p→∞

V (φ∗(2p))

2p
= 1. (9)
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Now (7) and (9) imply lim sup
n→∞

V (φ∗(n))

n
= 1. �

For the maximal orders of
σ(φ∗(n))

V (φ∗(n))
,
ψ(φ∗(n))

V (φ∗(n))
we give

Proposition 8.

(i) lim sup
n→∞

σ(φ∗(n))

V (φ∗(n))(log log n)2
= lim sup

n→∞

σ(φ∗(n))

V (φ∗(n))(log log φ∗(n))2
= e2γ ,

(ii) lim sup
n→∞

ψ(φ∗(n))

V (φ∗(n))(log log n)2
= lim sup

n→∞

ψ(φ∗(n))

V (φ∗(n))(log log φ∗(n))2
=

6

π2
eγ .

Proof.
(i) Let

l1 := lim sup
n→∞

σ(φ∗(n))

V (φ∗(n))(log log n)2

and

l2 := lim sup
n→∞

σ(φ∗(n))

V (φ∗(n))(log log φ∗(n))2
.

Since φ∗(n) ≤ n for every n ≥ 1,

l1 = lim sup
n→∞

σ(φ∗(n))

V (φ∗(n))(log log n)2
≤ l2 = lim sup

n→∞

σ(φ∗(n))

V (φ∗(n))(log log φ∗(n))2
≤

lim sup
m→∞

σ(m)

V (m)(log logm)2
= e2γ , by Proposition 3.

Since (n, 1) = 1, by Linnik’s theorem, there exists a prime number p such
that p ≡ 1 (mod n) and p � nc. Let pn be the least prime such that pn ≡ 1
(mod n), for every n. Then n | pn − 1 and pn � nc, so log log pn ∼ log log n.

Observe that a | b implies
σ(a)

V (a)
≤ σ(b)

V (b)
. If pβ | pα (β ≤ α), it is easy to

see that
σ(pβ)

V (pβ)
≤ σ(pα)

V (pα)
. The general case follows, taking into account that

σ(n)

V (n)
is multiplicative. So,

σ(φ∗(pn))

V (φ∗(pn))(log log pn)2
=

σ(pn − 1)

V (pn − 1)(log log pn)2
∼ σ(pn − 1)

V (pn − 1)(log log n)2
≥ σ(n)

V (n)(log log n)2
.

But

lim sup
n→∞

σ(φ∗(n))

V (φ∗(n))(log log n)2
≥ lim sup

n→∞

σ(φ∗(pn))

V (φ∗(pn))(log log pn)2
≥
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lim sup
n→∞

σ(n)

V (n)(log log n)2
= e2γ .

We obtain e2γ ≤ l1 ≤ l2 ≤ e2γ , hence l1 = l2 = e2γ .

(ii) The proof is similar to the proof of (i), taking into account that a | b

impies
ψ(a)

V (a)
≤ ψ(b)

V (b)
and lim sup

n→∞

ψ(n)

V (n)(log log n)2
=

6

π2
e2γ , by Proposition 4.

�

So, the maximal orders of
σ(φ∗(n))

V (φ∗(n))
,
ψ(φ∗(n))

V (φ∗(n))
are e2γ(log log n)2 and

6

π2
e2γ(log log n)2, respectively. In a similar manner, since

lim sup
n→∞

σ∗(n)

V (n) log log n
= lim sup

n→∞

φ∗(n)

V (n) log log n
= eγ (Proposition 5), a | b

implies
σ∗(a)

V (a)
≤ σ∗(b)

V (b)
and

φ∗(a)

V (a)
≤ φ∗(b)

V (b)
, respectively, it can be shown that

lim sup
n→∞

σ∗(φ∗(n))

V (φ∗(n)) log log n
= lim sup

n→∞

σ∗(φ∗(n))

V (φ∗(n)) log log φ∗(n)
= eγ and

lim sup
n→∞

φ∗(φ∗(n))

V (φ∗(n)) log log n
= lim sup

n→∞

φ∗(φ∗(n))

V (φ∗(n)) log log φ∗(n)
= eγ .

5 Open Problems

Problem 1. Note that

lim sup
n→∞

V (n)σ(n)

n2
= lim sup

n→∞

V (n)ψ(n)

n2
=∞,

since for nk = p1 · · · pk (the product of the first k primes),

V (nk)σ(nk)

n2k
=

(p1 + 1) · · · (pk + 1)

p1 · · · pk
=

k∏
i=1

(
1 +

1

pi

)
→∞, k →∞;

the other relation follows in a similar manner. What are the maximal orders

for
V (n)σ(n)

n2
and

V (n)ψ(n)

n2
?

Problem 2. Note that

lim inf
n→∞

V (φ(n))

n
= lim inf

n→∞

V (φ∗(n))

n
= lim inf

n→∞

φ∗(V (n))

n
= 0.
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For nk = p1 · · · pk (the product of the first k primes),

V (φ(nk))

nk
=
V ((p1 − 1) · · · (pk − 1))

p1 · · · pk
≤ (p1 − 1) · · · (pk − 1)

p1 · · · pk

=

(
1− 1

p1

)
· · ·
(

1− 1

pk

)
,

so

lim
k→∞

V (φ(nk))

nk
= lim
k→∞

(
1− 1

p1

)
· · ·
(

1− 1

pk

)
= 0,

similarly the other relations. What are the minimal orders for the V (φ(n)),
V (φ∗(n)), φ∗(V (n)) ?

Problem 3. Taking nk = p1 · · · pk (the product of the first k primes),

σ∗(V (nk))

nk
=
σ∗(p1 · · · pk)

p1 · · · pk
=

(p1 + 1) · · · (pk + 1)

p1 · · · pk

=

(
1 +

1

p1

)
· · ·
(

1 +
1

pk

)
→∞

as k → ∞, so lim sup
n→∞

σ∗(V (n))

n
= ∞. What is the maximal order for

σ∗(V (n)) ?
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Brăduţ APOSTOL,
”Spiru Haret” Pedagogical High School,
1 Timotei Cipariu St. , RO - 620004 Focşani, ROMANIA,
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