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Hereditary right Jacobson radicals of type-1(e)
and 2(e) for right near-rings

Ravi Srinivasa Rao and K. Siva Prasad

Abstract

Near-rings considered are right near-rings. In this paper two more
radicals, the right Jacobson radicals of type-1(e) and 2(e), are introduced
for near-rings. It is shown that they are Kurosh-Amitsur radicals (KA-
radicals) in the class of all near-rings and are ideal-hereditary radicals in
the class of all zero-symmetric near-rings. Different kinds of examples
are also presented.

1 Introduction

Near-rings considered are right near-rings and not necessarily zero-symmetric,
and R is a near-ring. The (left) Jacobson radicals J2(0) and J3(0) introduced
by Veldsman [14] and the (right) Jacobson radical Jr0(e) introduced by the au-

thors with T. Srinivas [13] are the only known Jacobson-type radicals which
are Kurosh-Amitsur in the class of all near-rings and ideal-hereditary in the
class of all zero-symmetric near-rings. It is also known that (Corollary 6 of
[15]) there is no non-trivial ideal-hereditary radical in the class of all near-
rings.
In [5] and [6] the first author has shown that as in rings, matrix units deter-
mined by right ideals identify matrix near-rings. The importance of the right
Jacobson radicals of type-ν, ν ∈ {0, 1, 2, s} of near-rings introduced by the
authors in [7], [8] and [9], in the extension of a form of the Wedderburn-Artin
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theorem of rings involving the matrix rings to near-rings, is established in [12].
In [10] and [11] the authors with T. Srinivas have shown that the right Ja-
cobson radicals of type-0, 1 and 2 are Kurosh-Amitsur radicals (KA-radicals)
in the class of all zero-symmetric near-rings but they are not ideal-hereditary
in that class.
In this paper right R-groups of type-ν(e), right ν(e)-primitive ideals and right
ν(e)-primitive near-rings are introduced, ν ∈ {1, 2}. Using them the right
Jacobson radical of type-ν(e) is introduced for near-rings and is denoted by
Jrν(e), ν ∈ {1, 2}. A right ν(e)-primitive ideal of R is an equiprime ideal of R.
It is shown that Jrν(e) is a Kurosh-Amitsur radical in the class of all near-rings
and is an ideal-hereditary radical in the class of all zero-symmetric near-rings,
ν ∈ {1, 2}. Moreover, for any ideal I of R, Jrν(e)(I) ⊆ Jrν(e)(R) ∩ I with equality,

if I is left invariant, ν ∈ {1, 2}.

2 Preliminaries

Near-rings considered are right near-rings and not necessarily zero-symmetric.
Unless otherwise specified R stands for a right near-ring. Near-ring notions
not defined here can be found in Pilz [4].
R0 and Rc denotes the zero-symmetric part and constant part of R respectively.
Now we give here some definitions of [7] and [8].
A group (G, +) is called a right R-group if there is a mapping ((g, r) → gr)
of G×R into G such that (1) (g + h)r = gr + hr, (2) g(rs) = (gr)s, for all g,
h ∈ G and r, s ∈ R. A subgroup (normal subgroup) H of a right R-group G is
called an R-subgroup (ideal) of G if hr ∈ H for all h ∈ H and r ∈ R.
Let G be a right R-group. An element g0 ∈ G is called a generator of G if
g0R = G and g0(r+ s) = g0r+ g0s for all r, s ∈ R. G is said to be monogenic
if G has a generator. G is said to be simple if G ̸= {0} and G, and {0} are
the only ideals of G.
A monogenic right R-group G is said to be a right R-group of type-0 if G is
simple.
The annihilator of G denoted by (0 : G) is defined as (0 : G) = {a ∈ R | Ga
= {0}}.
A right R-group G of type-0 is said to be of type-1 if G has exactly two R-
subgroups, namely {0} and G.
A right R-group G of type-0 is said to be of type-2 if gR = G for all g ∈ G\{0}.
Note that a right R-group of type-2 is of type-1 and a right R-group of type-1
is of type-0.
Let ν ∈ {0, 1, 2}. A right modular right ideal K of R is called right ν-modular
if R/K is a right R-group of type-ν.
An ideal P of R is called right ν-primitive if P is the largest ideal of R contained
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in a right ν-modular right ideal of R. R is called a right ν-primitive near-ring
if {0} is a right ν-primitive ideal of R.
Jrν(R) denotes the intersection of all right ν-primitive ideals of R. If R has
no right ν-primitive ideals, then Jrν(R) is defined as R. Jrν is called the right
Jacobson radical of type-ν.
A near-ring R is called an equiprime near-ring ([1]) if 0 ̸= a ∈ R, x, y ∈ R and
arx = ary for all r ∈ R, implies x = y. An ideal I of R is called equiprime if
R/I is an equiprime near-ring.
It is known that a near-ring R is equiprime if and only if ([1])
1. x, y ∈ R and xRy = {0} implies x = 0 or y = 0.
2. If {0} ̸= I is an invariant subnear-ring of R, x, y ∈ R and ax = ay for all a
∈ I implies x = y.
Moreover, an equiprime near-ring is zero-symmetric.
If I is an ideal of R, then we denote it by I ▹ R. A subset S of R is left invariant
if RS ⊆ S. By a radical class we mean a radical class in the sense of Kurosh-
Amitsur. Let E be a class of near-rings. E is called regular if {0} ̸= I ▹ R ∈ E

implies that {0} ̸= I/K ∈ E for some K ▹ I. A class E is called hereditary if
I ▹ R ∈ E implies I ∈ E. E is called c-hereditary if I is a left invariant ideal
of R ∈ E implies I ∈ E. It is clear that a hereditary class is a regular class.
If I ▹ R and for every non zero ideal J of R, J ∩ I ̸= {0}, then I is called an
essential ideal of R and is denoted by I ▹· R. A class of near-rings E is called
closed under essential extensions (essential left invariant extensions) if I ∈ E,
I ▹· R (I is an essential ideal of R which is left invariant) implies R ∈ E. A
class of near-rings E is said to satisfy condition (Fl) whenever K ▹ I ▹ R, and
I is left invariant in R and I/K ∈ E, it follows that K ▹ R.
In [2], G. L. Booth and N. J. Groenewald defined special radicals for near-
rings. A class E consisting of equiprime near-rings is called a special class if
it is hereditary and closed under left invariant essential extensions. If R is
the upper radical in the class of all near-rings determined by a special class of
near-rings, then R is called a special radical. If R is a radical class, then the
class SR = {R | R(R) = {0}} is called the semisimple class of R.
We also need the following Theorem:

Theorem 2.1. (Theorem 2.4 of [14]) Let E be a class of zero-symmetric
near-rings. If E is regular, closed under essential left invariant extensions and
satisfies condition (Fl), then R := UE is a c-hereditary radical class in the
variety of all near-rings, SR = E and SR is hereditary. So, R(R) = ∩ {I ▹ R
| R/I ∈ E} for any near-ring R.

Remark 2.2. Since all ideals in a zero-symmetric near-ring are left invariant,
under the hypothesis of Theorem 2.1, in the variety of zero-symmetric near-
rings both R and SR are hereditary and hence the radical is ideal-hereditary,
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that is, if I ▹ R, then R(I) = I ∩ R(R).

Proposition 2.3. (Proposition 3.3 of [1]) The class of all equiprime near-
rings is closed under essential left invariant extensions.

Proposition 2.4. (Corollary 2.4 of [1]) The class of all equiprime near-rings
satisfies condition (Fl).

We need the following results of [11].

Theorem 2.5. (Theorems 3.1 and 3.2 of [11]) Let G be a right R-group of
type-ν, ν ∈ {1, 2}. If S is an invariant subnear-ring of R and GS ̸= {0}, then
G is also a right S-group of type-ν.

Theorem 2.6. (Theorems 3.9 and 3.11 of [11]) Let S be an invariant
subnear-ring of R. If G is a right S-group of type-ν, ν ∈ {1, 2}, then G is
a right R-group of type-ν.

3 The right Jacobson radical of type-ν(e), ν ∈ {1, 2}.

Throughout this section ν ∈ {1, 2}. In this section first we introduce right
R-groups of type-ν(e) and study some of their properties. Using them we
introduce right Jacobson radical of type-ν(e) and study its properties.
We begin with some basic properties of right R-groups of type-ν.
The following Proposition is proved in [11] (Corollary 3.4).
We give here a different proof.

Proposition 3.1. Let G be a right R-group of type-ν. Then GRc = {0}.

Proof. Let g0 be a generator of G. So g0 is distributive over R, that is, g0(r +
s) = g0r + g0s for all r, s ∈ R and g0R = G. Since g0 is distributive over R
and Rc is an R-subgroup of the right R-group R, g0Rc is an R-subgroup of the
right R-group G. Also since G has no nontrivial right R-subgroups, g0Rc = {0}
or G. If g0Rc = G, then g0rc = g0 for some rc ∈ Rc. Therefore, g0x = (g0rc)x
= g0(rcx) = g0rc = g0 for all x ∈ R. So G = g0R = {g0}, a contradiction.
Hence, g0Rc = {0}. Let g ∈ G. We have g = g0s for some s ∈ R. Now grc =
(g0s)rc = g0(src) = 0, as src ∈ Rc. So, GRc = {0}.

The following Proposition follows from Proposition 3.7 of [13].

Proposition 3.2. Let G be a right R-group of type-ν. Then there is a largest
ideal of R contained in (0 : G) = {r ∈ R | Gr = {0}}.
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Definition 3.3. Let G be a right R-group of type-ν. Suppose that P is the
largest ideal of R contained in (0 : G) = {r ∈ R | Gr = {0}}. Then G is said
to be a right R-group of type-ν(e) if 0 ̸= g ∈ G, r1, r2 ∈ R and gxr1 = gxr2
for all x ∈ R implies r1 - r2 ∈ P.

Proposition 3.4. Let G be a right R-group of type-ν. Let P be the largest
ideal of R contained in (0 : G). Then the following are equivalent.

1. G is a right R-group of type-ν(e).

2. r1, r2 ∈ R and gr1 = gr2 for all g ∈ G implies r1 - r2 ∈ P.

Proof. Let g0 be a generator of the right R-group G. (1) implies (2) follows
from the definition of a right R-group of type-ν(e) as g0R = G. Assume (2).
Suppose that 0 ̸= g ∈ G, r1, r2 ∈ R and gxr1 = gxr2 for all x ∈ R. Since g
̸= 0 and G is a right R-group of type-ν, gR ̸= {0} as {h ∈ G | hR = {0}}
is an ideal of G. Let < gR >s be the subgroup of (G,+) generated by gR.
Let h ∈ < gR >s. Now h = δ1gs1 + δ2gs2 + ... + δkgsk, si ∈ R, δi ∈ {1,
-1}. hr = δ1g(s1r) + δ2g(s2r) + ... + δkg(skr) ∈ < gR >s. So < gR >s is a
non-zero R-subgroup of the right R-group G. Since G is of type-ν, < gR >s

= G. Therefore, hr1 = hr2 for all h ∈ G as gxr1 = gxr2 for all x ∈ R. So r1 -
r2 ∈ P.

We give an example of a right R-group of type-1(e) which is not of type-
2(e).

Example 3.5. Let p be an odd prime number and (G, +) be a group of order
p. Consider the near-ring M0(G). In Example 3.6 of [8], it is shown that
M0(G) is a right M0(G)-group of type-1 but not of type-2. Since M0(G) is
simple, {0} is the largest ideal of M0(G) contained in (0 : M0(G)). Suppose
that 0 ̸= s, f, h ∈ M0(G) and stf = sth for all t ∈ M0(G). Assume that s(g0) ̸=
0 and f(g) ̸= h(g) for some g0, g ∈ G. Let h(g) ̸= 0. We get t ∈ M0(G) such
that t(f(g)) = 0 and t(h(g)) = g0. So stf ̸= sth, a contradiction. Therefore, f
= h, that is, f - h ∈ {0}. Hence, M0(G) is a right M0(G)-group of type-1(e)
but not of type-2(e).

Example 3.6. Clearly, a near-field R is a right R-group of type-2(e).

The following Proposition follows from Proposition 3.12 of [13].

Proposition 3.7. Let G be right R-group of type-ν(e). Then (0 : G) is an
ideal of R.

Definition 3.8. A right modular right ideal K of R is called right ν(e)-modular
if R/K is a right R-group of type-ν(e).
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Definition 3.9. Let G be a right R-group of type-ν(e). Then (0 : G) is called
a right ν(e)-primitive ideal of R.

Definition 3.10. Let G be a right R-group of type-ν(e). Then G is called
faithful if (0 : G) = {0}.

Definition 3.11. A near-ring R is called right ν(e)-primitive if {0} is a right
ν(e)-primitive ideal of R.

Definition 3.12. The intersection of all ν(e)-primitive ideals of R is called
the right Jacobson radical of R of type-ν(e) and is denoted by Jr

ν(e)(R). If R

has no right ν(e)-primitive ideals, then Jr
ν(e)(R) is defined to be R.

Remark 3.13. It is clear that Jr
ν (R) ⊆ Jr

ν(e)(R).

Proposition 3.14. Let G be a right R-group of type-ν(e). Let g0 be a genera-
tor of G and K := (0 : g0) = {r ∈ R | g0r = 0}. Then K is right ν(e)-modular
right ideal of R.

Proof. Since g0R = G, g0 = g0e for some e ∈ R. So r − er ∈ K for all r ∈ R
and hence K is right modular by e. Since the mapping r → g0r is right R-
homomorphism of R onto G with kernel K, the right R-group G is isomorphic
to the right R-group R/K. So K is a right ν(e)-modular right ideal of R.

Remark 3.15. Let K be a right ideal of R. Then the ideal {0} of R is contained
in K. Since K is a subgroup of (R, +) if I and J are ideals of R contained in
K, then I + J ⊆ K. So there is a largest ideal of R contained in K.

The following Proposition follows from Proposition 3.19 of [13].

Proposition 3.16. Let G be right R-group of type-ν(e) and P := (0 : G) =
{r ∈ R | Gr = {0}}. Then P is the largest ideal of R contained in (0 : g0),
g0 is a generator of the right R-group G.

Corollary 3.17. Let P be an ideal of R. P is a right ν(e)-primitive ideal of
R if and only if P is the largest ideal of R contained in a right ν(e)-modular
right ideal of R.

We give some more examples of right R-groups of type-2(e).

Proposition 3.18. If G be a finite group and G has a subgroup of index two,
then M0(G) is a right 2(e)-primitive near-ring.

Proof. Let G be a finite group and H be a subgroup of G of index 2. So H
is a normal subgroup of G. Let R = M0(G). Then R/K is a right R-group of
type-2(e), where K = (H : G) = {r ∈ R | r(g) ∈ H, for all g ∈ G}. To show
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this we consider the two distinct cosets H and H + a of H in G. Now G = H
∪ H + a, H and H + a are disjoint sets. K is a right ideal of R which is right
modular by the identity element of R. So R/K is a monogenic right R-group.
Now we show that R/K is a right R-group of type-2. Let 0 ̸= r + K ∈ R/K.
(r + K)R = R/K if and only if there is an s ∈ R such that (r + K)s = 1 +
K, that is, 1 - rs ∈ K. Let P1 = {x ∈ G | r(x) ∈ H} and P2 = {x ∈ G | r(x)
∈ H + a}. Let b ∈ P2 and r(b) = h

′
+ a, h

′ ∈ H. Define s : G → G by s(g)
= b, if g ∈ H + a, and 0, if g ∈ H. We have s ∈ R. For y ∈ H, (1 - rs)(y) =
y - r(s(y)) = y - r(0) = y ∈ H and for z = h + a ∈ H + a, (1 - rs)(z) = z -
r(s(z)) = z - r(b) = (h + a) - (h

′
+ a) = h - h

′ ∈ H. Therefore, 1 - rs ∈ (H :
G) = K and hence R/K is a right R-group of type-2. Since R is simple, {0} is
the largest ideal of R contained in (0 : R/K) = (K : R) = {t ∈ R | Rt ⊆ K}.
Let u, v ∈ R and (t + K)u = (t + K)v for all t + K ∈ R/K. Now tu - tv ∈
K, for all t ∈ R. Suppose that g ∈ G and u(g) ̸= v(g). We can choose a t ∈ R
such that (tu)(g) - (tv)(g) ∈ H + a, a contradiction to the fact that tu - tv ∈
K. Therefore, u = v and hence R/K is a right R-group of type-2(e). Since R
is simple, it is a right 2(e)-primitive near-ring.

Proposition 3.19. If G is a finite group having no subgroup of index 2, then
Jr2(e)(M0(G)) = M0(G).

Proof. Let G be a finite group having no subgroup of index 2. Let R :=
M0(G). Suppose that K is a right 2-modular right ideal of R. Now K = (N :
G), where N is a normal subgroup of G. By our assumption the index of N in
G is greater than or equal to 3. Let N, N + a, N + b be three distinct right
cosets of N in G. Since R/K is a right R-group of type-2, for 0 ̸= t + K ∈
R/K, (t + K)R = R/K. Since 1 + K ∈ R/K, we get s ∈ R such that (t + K)s
= 1 + K, and hence 1 - ts ∈ K = (N : G). Define r : G → G by r(a) = b and
r(g) = 0 for all g ∈ G \ {a}. Now r ∈ R. If r ∈ K = (N : G), then r(x) ∈ N
for all x ∈ G and in particular b = r(a) ∈ N, a contradiction. So r ̸∈ K and
there is a p ∈ R such that 1 - rp ∈ K = (N : G). Now (1 - rp)(x) ∈ N for all
x ∈ G. If p(a) = a, then (1 - rp)(a) = a - b ∈ N and hence N + a = N + b, a
contradiction. If p(a) ̸= a, then (1 - rp)(a) = a - 0 = a ∈ N and N = N + a,
a contradiction. Therefore, R has no right 2-modular right ideal. So, Jr2(R) =
R and hence Jr2(e)(R) = R.

Proposition 3.20. If F is a near-field, then Mn(F) is a right 2(e)-primitive
near-ring.

Proof. Let F be a near-field. Let Mn(F) be the near-ring of n×n-matrices over
F. Let 1 ≤ i ≤ n. Now from the proof of the Theorem 3.15 of [6], we have
that f1iiMn(F) is a right Mn(F)-group of type-2. Since Mn(F) is simple, {0}
is the largest ideal of Mn(F) contained in (0 : f1iiMn(F)). We show now that
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f1iiMn(F) is a right Mn(F)-group of type-2(e). Let B, C ∈ Mn(F) and (f1iiA)B
= (f1iiA)C, for all A ∈ Mn(F). Suppose that B ̸= C. We get (x1, x2, ... , xn)
∈ Fn such that B(x1, x2, ... , xn) ̸= C(x1, x2, ... , xn). Let B(x1, x2, ... , xn)
= (y1, y2, ... , yn) and C(x1, x2, ... , xn) = (z1, z2, ... , zn). We get 1 ≤ j ≤
n such that yj ̸= zj . Now (f1iif

1
ij)B(x1, x2, ... , xn) = (f1iif

1
ij)C(x1, x2, ... , xn)

and that yj = zj , a contradiction. Therefore B = C and hence f1iiMn(F) is a
right Mn(F)-group of type-2(e). Since F is simple, Mn(F) is also simple. So,
we get that Mn(F) is a right 2(e)-primitive near-ring.

Now we give a right R-group of type-2(e), where R is a near-ring with
trivial multiplication.

Example 3.21. Let (R, +) be a group and let K be a subgroup of (R, +) of
index 2. The trivial multiplication on (R, +) determined by R - K is given by
a.b = a if b ∈ R - K and 0 if b ∈ K. Now (R, +, .) is a near-ring. It is
clear that K is a maximal right ideal of R and also R/K is a right R-group of
type-2. Now we show that R/K is a right R-group of type-2(e). K is an ideal
of R and it is the largest ideal of R contained in K and hence in (K : R) =
{r ∈ R | Rr ⊆ K}. Let x, y ∈ R and (r + K)x = (r + K)y for all r ∈ R.
Now rx - ry ∈ K for all r ∈ R. So, either both x and y are in K or both in R -
K. Therefore, x - y ∈ K as K is of index 2 in (R, +). Hence, R/K is a right
R-group of type-2(e).

Now we give an example of a right R-group of type-ν which is not of type-
ν(e).
This example was considered in [3] and [13].

Example 3.22. Consider G := Z8, the group of integers under addition mod-
ulo 8. Now T : G → G defined by T(g) = 5g, for all g ∈ G is an automorphism
of G. T fixes 0, 2, 4, 6 and maps 1 to 5, 5 to 1, 7 to 3 and 3 to 7. A := {I,
T} is an automorphism group of G. {0}, {2}, {4}, {6}, {1, 5} and {3, 7} are
the orbits. Let R be the centralizer near-ring MA(G), the near-ring of all self
maps of G which fix 0 and commute with T. An element of R is completely
determined by its action on {1, 2, 3, 4, 6}. Note that for f ∈ R we have f(2),
f(4), f(6) are arbitrary in 2G and f(1), f(3) are arbitrary in G. In [3] it is
proved that I := (0 : 2G) = {f ∈ R | f(h) = 0, for all h ∈ 2G} is the only
non-trivial ideal of R. Let K := (2G : G) = {t ∈ R | t(G) ⊆ 2G} ̸= R. Let t0
be the identity element in R. Now t0 + K is a generator of the right R-group
R/K. Let h ∈ R - K. We show now that (h + K)R = R/K. Since h ̸∈ K, there
is an a ∈ G - 2G such that b := h(a) ̸∈ 2G. We construct an element s ∈ R
such that s(1) = s(3) = a, so that s(5) = s(7) = a + 4, and s = 0 on 2G.
Since s maps G - 2G to G - 2G, we get that t0 - hs ∈ K and hence (h + K)s
= t0 + K. So (h + K)R = R/K. Therefore, R/K is a right R-group of type-ν.
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Moreover, (R/K)I ̸= {K}. Therefore, {0} is the largest ideal of R contained
in (K : R) and hence Jrν(R) = {0}. Consider s1, s1 ∈ R, where s1(1) = 1 and
0 on G - {1, 5} and s2(1) = 5 and 0 on G - {1, 5}. Clearly (h + K)s1 = (h
+ K)s2 for all h ∈ R as h(1) - h(5) ∈ 2G for all h ∈ R. But s1 - s2 ̸∈ {0}.
Therefore, by Proposition 3.4, R/K is not a right R-group of type-ν(e).

Proposition 3.23. Let R be the near-ring considered in the Example 3.22
and let Z be a right ideal of R. Then H1 := {f(g) | f ∈ Z, g ∈ G} ⊆ G and
H2 := {f(g) | f ∈ Z, g ∈ 2G} ⊆ 2G are (normal) subgroups of G and 2G
respectively.

Proof. We show that H1 is a subgroup of G. Since 0 ∈ H1, H1 is non-empty.
Let h1, h2 ∈ H1. We get f1, f2 ∈ Z and g1, g2 ∈ G such that h1 = f1(g1) and
h2 = f2(g2). Clearly, -h1 = (-f1)(g1) ∈ H1 as -f1 ∈ Z. Suppose that one of the
gi is in G - 2G. With out loss of generality, suppose that g1 ∈ G - 2G. We get
f3 ∈ R such that f3(g1) = g2. Now f1 - f2f3 ∈ Z and h1 - h2 = (f1 - f2f3)(g1) ∈
H1. Assume now that g1, g2 ∈ 2G. So, h1, h2 ∈ 2G. If g1 = 0, then h1 - h2 =
-h2 ∈ H1. Suppose that g1 ̸= 0. So, we get f4 ∈ R such that f4(g1) = g2. Now
f1 - f2f4 ∈ Z and h1 - h2 = (f1 - f2f4)(g1) ∈ H1. Therefore, H1 is a subgroup of
G. Similarly, we get that H2 is a subgroup of 2G.

Proposition 3.24. Let R, Z, H1 and H2 be as defined in Proposition 3.23.
If H1 = G and H2 = 2G, then Z = R.

Proof. Suppose that H1 = G and H2 = 2G. We have 1, 3 ∈ H1. So, for i ∈
{1, 3}, we get fi ∈ Z such that fi(gi) = i, where gi ∈ {1, 3, 5, 7} = G - 2G.
For i = 1, 3 we also get mi ∈ R such that mi(i) = gi, so that mi(i + 4) =
gi + 4 and mi = 0 on G - {i, i + 4}. Now fimi ∈ Z, i = 1, 3. Clearly, f1m1

+ f3m3 fixes all the elements of G - 2G and maps all the elements of 2G to 0.
We have 2, 4, 6 ∈ H2 = 2G = {0, 2, 4, 6}. For i = 2, 4, 6 we get fi ∈ Z such
that fi(gi) = i, gi ∈ 2G. So, for i = 2, 4, 6 we get mi ∈ R such that mi(i) = gi
and mi is 0 on G - {i}. Now fimi ∈ Z, i = 2, 4, 6. f2m2 + f4m4 + f6m6 fixes
all the elements of 2G and maps all the elements of G -2G to 0. Therefore,
the identity map I of G can be expressed as I = f1m1 + f2m2 + f3m3 + f4m4

+ f6m6 ∈ Z. Hence, Z = R.

Proposition 3.25. Let R, Z, H1 and H2 be as defined in Proposition 3.23.
If Z is a maximal right ideal of R, then Z = (2G : G) = {f ∈ R | f(G) ⊆ 2G}
or (4G : 2G) = {f ∈ R | f(2G) ⊆ 4G}

Proof. Suppose that Z is a maximal right ideal of R. Clearly, if H and T are
(normal) subgroups of G and 2G respectively, then (H : G) = {f ∈ R | f(G)
⊆ H} and (T : 2G) = {f ∈ R | f(2G) ⊆ T} are right ideals of R. Now 2G and
4G are the maximal (normal) subgroups of G and 2G respectively. We have
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Z ⊆ (H1 : G) and Z ⊆ (H2 : 2G). Since Z is a maximal right ideal of R, by
Proposition 3.24, either H1 ̸= G or H2 ̸= 2G.
Case(i) Suppose that H2 ̸= 2G. Since Z is a maximal right ideal of R and Z
⊆ (H2 : 2G) ̸= R, we get that H2 = 4G and Z = (4G : 2G).
case(ii) Suppose that H1 ̸= G. Since Z is a maximal right ideal of R and Z ⊆
(H1 : G) ̸= R, we get that H1 = 2G and Z = (2G : G).
Therefore, either Z = (2G : G) or (4G : 2G).

Proposition 3.26. Let R be the near-ring considered in the Example 3.22.
Let U = (4G : 2G) = {f ∈ R | f(2G) ⊆ 4G}. Then U is a maximal right ideal
of R and R/U is a right R-group of type-2(e).

Proof. Clearly, U is a right ideal of R. Consider the right R-group R/U. We
prove that R/U is a right R-group of type-2. Since R has identity I, I + U
is a generator of the right R-group R/U and hence R/U is a monogenic right
R-group. Let 0 ̸= f + U ∈ R/U. So, f ̸∈ U. We get 0 ̸= a ∈ 2G such that b :=
f(a) ̸∈ 4G. So, 2G = {0, b, 2b, 3b} as 2 and 6 are generators of 2G. Construct
r ∈ R by r(b) = a, r(2b) = 0, r(3b) = a and r = 0 on G - {0, 1, 3, 5, 7}. Now
(I - fr)(x) ∈ 4G for all x ∈ 2G. Therefore, I - fr ∈ U and hence (f + U)r = I
+ U. This shows that (f + U)R = R/U. So, R/U is a right R-group of type-2.
We know that P := (0 : 2G) is the only non-trivial ideal of R. Therefore, P is
the largest ideal of R contained in U = (4G : 2G) and hence P is the largest
ideal of R contained in (0 : R/U) = (U : R) = {f ∈ R | Rf ⊆ U}. Let 0 ̸= s +
U ∈ R/U and f, h ∈ R. Suppose that (s + U)rf = (s + U)rh for all r ∈ R. So,
srf - srh ∈ U for all r ∈ R. We show that f - h ∈ P. If possible, suppose that f
- h ̸∈ P. We get 0 ̸= a ∈ 2G such that (f - h)(a) = f(a) - h(a) ̸= 0 with h(a) ̸=
0. Let s(c) ̸∈ {0, 4} for some c ∈ 2G. Choose r ∈ R such that r(f(a)) = 0 and
r(h(a)) = c. Now (srf)(a) = 0 and (srh)(a) = s(c). So, (srf - srh)(a) = 0 - s(c)
̸∈ {0, 4}, a contradiction to the fact that srf - srh ∈ U. Therefore, f(a) = h(a)
for all a ∈ 2G. Hence f - h ∈ P. So, R/U is a right R-group of type-2(e).

Proposition 3.27. Let R be the near-ring considered in Example 3.22. Then
Jrν(R) = {0} and Jrν(e)(R) = (0 : 2G) ̸= {0}.

Proof. We know that {0} and I := (0 : 2G) = {f ∈ R | f(2G) ={0}} are the
only proper ideals of R. Let K1 := (2G : G) = {f ∈ R | f(G) ⊆ 2G} and K2

:= (4G : 2G) = {f ∈ R | f(2G) ⊆ 4G}. By Proposition 3.25, a maximal right
ideal of R is either K1 or K2. So, a right R-group of type-0 is isomorphic
to R/K1 or R/K2. By Example 3.22, R/K1 is a right R-group of type-2 but
not of type-2(e). Since {0} is the largest ideal of R contained in K1, {0} is
a right 2-primitive ideal of R but not a right 2(e)-primitive ideal of R. By
Proposition 3.26, R/K2 is a right R-group of type-2(e). Since I = (0 : 2G) is
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the largest ideal of R contained in K2, I is a right 2(e)-primitive ideal of R.
Therefore, Jrν(R) = {0} and Jrν(e)(R) = (0 : 2G).

Now we study some of the properties of the radical Jrν(e).

Proposition 3.28. Let P be an ideal of R. P is a right ν(e)-primitive ideal
of R if and only if R/P is a right ν(e)-primitive near-ring.

A proof similar to the one given for Proposition 3.21 of [13] works here
also, which uses Corollary 3.17.

Theorem 3.29. Let R be a right ν(e)-primitive near-ring. Then R is an
equiprime near-ring.

Proof. Since {0} is a right ν(e)-primitive ideal of R, by Proposition 3.7, {0}
= (0 : G) for a right R-group G of type-ν(e). Let a ∈ R \ {0}, r1, r2 ∈ R and
axr1 = axr2 for all x ∈ R. Since (0 : G) = {0}, there is a g ∈ G such that ga
̸= 0. Let h := ga. Now hxr1 = hxr2 for all x ∈ R. Since G is a right R-group
of type-ν(e), r1 - r2 ∈ P, the largest ideal of R contained in (0 : G) = {0}.
Therefore, r1 = r2 and hence R is an equiprime near-ring.

Corollary 3.30. A right ν(e)-primitive ideal of R is an equiprime ideal of
R.

Corollary 3.31. A right ν(e)-primitive near-ring is a zero-symmetric near-
ring.

Theorem 3.32. Let G be a right R-group of type-ν(e). Suppose that S is an
invariant subnear-ring of R. If GS ̸= {0}, then G is also a right S-group of
type-ν(e).

Proof. Suppose that GS ̸= {0}. By Theorem 2.5, G is a right S-group of
type-ν. Let P be the largest ideal of S contained in (0 : G)S = {s ∈ S | Gs =
{0}}. Let g ∈ G \ {0}, s1, s2 ∈ S and gxs1 = gxs2 for all x∈ S. Let r ∈ R. Fix
x ∈ S. We have g(rx)s1 = g(rx)s2. So gr(xs1) = gr(xs2). Since G is a right
R-group of type-ν(e), by Proposition 3.7, xs1 - xs2 ∈ (0 : G) = {r ∈ R | Gr
= {0}} which is an ideal of R. Let g0 be a generator of the right S-group G.
Now g0(xs1 - xs2) = 0 and hence g0xs1 = g0xs2. Since g0S = G, we have g0R
= G. So g0rs1 = g0rs2, for all r ∈ R. Since G is a right R-group of type-ν(e),
by Proposition 3.7, s1 - s2 ∈ (0 : G). We have (0 : G)S = (0 : G) ∩ S is an
ideal of S and hence P = (0 : G)S . Now s1 - s2 ∈ (0 : G) ∩ S = P. Therefore,
G is a right S-group of type-ν(e).

Theorem 3.33. If R is a right ν(e)-primitive near-ring and I is a nonzero
ideal (or a nonzero invariant subnear-ring) of R, then I is a right ν(e)-primitive
near-ring.
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Theorem 3.34. The class of all right ν(e)-primitive near-rings is hereditary.

Corollary 3.35. The class of all right ν(e)-primitive near-rings is regular.

Theorem 3.36. Let I be an essential left invariant ideal of R. If I is a right
ν(e)-primitive near-ring, then R is also a right ν(e)-primitive near-ring.

Proof. Suppose that I is a right ν(e)-primitive near-ring and G is a faithful
right I-group of type-ν(e). Let r, s ∈ R. Let g0 be a generator of the right
I-group G. Define gr := g0(ar), if g = g0a, a ∈ I. By Theorem 2.6, G is a right
R-group of type-ν. Suppose that g ∈ G \ {0}, r, s ∈ R and gxr = gxs, for all
x ∈ R. Fix a ∈ I. Now g((ba)r) = g((ba)s) and hence g(b(ar)) = g(b(as)) for
all b ∈ I. Since G is a faithful right I-group of type-ν(e), ar - as = 0, that is,
ar = as. Now ar = as for all a ∈ I. Since I is a right ν(e)-primitive near-ring,
by Theorem 3.33, I is an equiprime near-ring. Also, since I is an essential left
invariant ideal of R, by Proposition 2.3, we get that R is an equiprime near-
ring. Since R is equiprime and ar = as for all a ∈ I and I is a left invariant
ideal of R, we get that r = s. So, 0 = r - s ∈ P, where P is the largest ideal of
R contained in (0 : G) = {r ∈ R | Gr = {0}}. Therefore G is a right R-group
of type-ν(e). Let t ∈ (0 : G). Now Gt = 0. So g0(at) = 0, for all a ∈ I and
hence 0 = g0((ba)t) = g0(b(at)) = (g0b)at for all a, b ∈ I. Since g0I = G,
we have G(at) = 0 for all a ∈ I and hence It = 0, as (0 : G)I = 0. Also,
since at = 0 = a0 for all a ∈ I and I is an invariant subnear-ring of R and R
is an equiprime near-ring, we get that t = 0. Therefore, G is a faithful right
R-group of type-ν(e) and hence R is a right ν(e)-primitive near-ring.

Theorem 3.37. The class of all right ν(e)-primitive near-rings is closed
under essential left invariant extensions.

Remark 3.38. By Proposition 2.4, the class of all equiprime near-rings satisfy
condition Fl. So, the class of all ν(e)-primitive near-rings which is also a class
of all equiprime near-rings also satisfy condition Fl.

By Theorem 2.1, Corollaries 3.31, and 3.35, Theorem 3.37 and Remark 3.38,
we get the following:

Theorem 3.39. Let E be the class of all right ν(e)-primitive near-rings and
UE be the upper radical class determined by E. Then UE is a c-hereditary
Kurosh-Amitsur radical class in the variety of all near-rings with hereditary
semisimple class SUE = E. So, Jrν(e) is a Kurosh-Amitsur radical in the class

of all near-rings and for any ideal I of R, Jrν(e)(I) ⊆ Jrν(e)(R) ∩ I with equality
if I is left invariant.

Corollary 3.40. Jrν(e) is an ideal-hereditary Kurosh-Amitsur radical in the
class of all zero-symmetric near-rings.

Corollary 3.41. Jrν(e) is a special radical in the class of all near-rings.
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