Commutativity of near-rings with (σ, τ)-derivations

Ahmed A. M. Kamal and Khalid H. Al-Shaalan

Abstract

In this paper we study some conditions under which a near-ring R admitting a (multiplicative) (σ, τ)-derivation d must be a commutative ring with constrained-suitable conditions on d, σ and τ. Consequently, we obtain some results which generalize some recent theorems in the literature.

1 Introduction

Let R be a left near-ring, $Z(R)$ its multiplicative center and σ, τ two maps from R to R. We say that R is 3 -prime if, for all $x, y \in R, x R y=\{0\}$ implies $x=0$ or $y=0$. For all $x, y \in R$, we write $[x, y]=x y-y x$ for the multiplicative commutator, $[x, y]_{\sigma, \tau}=\sigma(x) y-y \tau(x), x \circ y=x y+y x$ for the anti-commutator, $(x \circ y)_{\sigma, \tau}=\sigma(x) y+y \tau(x)$ and $(x, y)=x+y-x-y$ for the additive commutator. A map $d: R \rightarrow R$ is called a multiplicative (σ, τ) derivation if $d(x y)=\sigma(x) d(y)+d(x) \tau(y)$ for all $x, y \in R$. If d is also an additive mapping, then d is called a (σ, τ)-derivation (see [1] and [6]). If $\tau=1_{R}$, then d is called a (multiplicative) σ-derivation (see [8]). If $\sigma=\tau=1_{R}$, then d is the usual (multiplicative) derivation. We say that $x \in R$ is constant if $d(x)=0$. d will be called (σ, τ)-commuting ((σ, τ)-semicommuting) if $[x, d(x)]_{\sigma, \tau}=0$ (if $[x, d(x)]_{\sigma, \tau}=0$ or $\left.(x \circ d(x))_{\sigma, \tau}=0\right)$ for all $x \in R$. An element $x \in R$ is called a left (right) zero divisor in R if there exists a non-zero element $y \in R$

[^0]such that $x y=0(y x=0)$. A zero divisor is either a left or a right zero divisor. A near-ring R is called a constant near-ring, if $x y=y$ for all $x, y \in R$ and is called a zero-symmetric near-ring, if $0 x=0$ for all $x \in R$. A trivial zero-symmetric near-ring R is a zero-symmetric near-ring such that $x y=y$ for all $x \in R-\{0\}, y \in R[11]$. We refer the reader to the books of Meldrum [11] and Pilz [12] for basic results of near-ring theory and its applications.

The study of commutativity of 3-prime near-rings by using derivations was initiated by H. E. Bell and G. Mason in 1987 [4]. In [8] A. A. M. Kamal generalizes some results of Bell and Mason by studying the commutativity of 3 -prime near-rings using a σ-derivation instead of the usual derivation, where σ is an automorphism on the near-ring. M. Ashraf, A. Ali and Shakir Ali in [1] and N. Aydin and O. Golbasi in [6] generalize Kamal's work by using a (σ, τ)-derivation instead of a σ-derivation, where σ and τ are automorphisms. In this paper, we generalize many results on near-rings with (σ, τ)-derivations, where σ and τ are just two maps from the near-ring to itself which satisfy some other conditions.

In Section 2 we give some well-known results and we add some new auxiliary results on a near-ring R admitting a non-zero (σ, τ)-derivation d, which will be useful in the sequel. Proposition 2.7 determines the relation between zero-symmetric near-rings and (σ, τ)-derivations.

In Section 3 we give some examples of non-zero (σ, τ)-derivations on nearrings. Theorem 3.3 shows that under some conditions any zero-symmetric near-ring without non-zero zero divisors admitting a non-zero (σ, τ)-semicommuting (σ, τ)-derivation is an abelian near-ring. In Theorem 3.5 we show the whole cases for a trivial zero-symmetric near-ring to have a non-zero multiplicative (σ, τ)-derivation.

Section 4 is devoted to study the commutativity of a near-ring R admitting a non-zero (multiplicative) (σ, τ)-derivation d such that $d(R) \subseteq Z(R)$. As a consequence, we generalized Theorem 2 of [6], Theorem 3.1 of [1], Theorem 2.5 of [8] and Theorem 2 of [4].

Section 5 is focused on studying the commutativity of a near-ring R admitting a non-zero (multiplicative) (σ, τ)-derivation d such that $d(x y)=d(y x)$ for all $x, y \in R$. As a consequence of the results obtained in this section, we generalized Theorem 2.6 of [7] and Theorem 4.1 of [3]. The rest of Section 5 is devoted to study the commutativity under the condition $d(x y)=-d(y x)$ for all $x, y \in R$ to obtain that R is a commutative ring of characteristic 2 . As a consequence, we generalized Theorem 4.2 of [3].

2 Preliminaries

In this section we give some well-known results and we add some new lemmas which will be used throughout the next sections of the paper. Throughout this section, R will be a near-ring.

Lemma 2.1 [6, Lemma 1] Let d and τ be additive mappings on a near-ring R and σ be any map from R to R. Then $d(x y)=d(x) \tau(y)+\sigma(x) d(y)$, for all $x, y \in R$ if and only if d is a (σ, τ)-derivation on R.

Lemma 2.2 [6, Lemma 2] For all $x, y, z \in R$ and σ and τ are multiplicative endomorphisms, we have that R satisfies the partial distributive law on a multiplicative (σ, τ)-derivation d, that means $(\sigma(x) d(y)+d(x) \tau(y)) \tau(z)=$ $\sigma(x) d(y) \tau(z)+d(x) \tau(y) \tau(z)$. Moreover, if τ is onto, then for all $x, y, c \in R$ we have $(\sigma(x) d(y)+d(x) \tau(y)) c=\sigma(x) d(y) c+d(x) \tau(y) c$.

Lemma 2.3 Let $x \in Z(R)$ be not zero divisor. If either $y x$ or $x y$ is in $Z(R)$, then $y \in Z(R)$.

Proof. Suppose $x y \in Z(R)$. For all $r \in R$, we have $x y r=r x y=x r y$. Thus, $x(y r-r y)=0$. Since x is not a zero divisor in R, we get $y \in Z(R)$. The proof for $y x \in Z(R)$ is similar.

Lemma 2.4 [4, Lemma 3(ii)] If $x \in Z(R)$ is not a zero divisor in R and $x+x \in Z(R)$, then $(R,+)$ is abelian.

Lemma 2.5 [4, Lemma 3(i)] Let R be a 3-prime near-ring and $x \in Z(R)-$ $\{0\}$. Then x is not a zero divisor in R.

Lemma 2.6 Let d be a non-zero (σ, τ)-derivation on R such that τ is an additive mapping on R and suppose $\sigma(u) \neq 0$ is not a left zero divisor in R for some $u \in R$. If $[u, d(u)]_{\sigma, \tau}=0$ or $(u \circ d(u))_{\sigma, \tau}=0$, then (x, u) is a constant for every $x \in R$.

Proof. We prove the lemma in the case $[u, d(u)]_{\sigma, \tau}=0$. From $u(u+x)=$ $u^{2}+u x$ we obtain
$d(u(u+x))=\sigma(u) d(u+x)+d(u) \tau(u+x)=\sigma(u) d(u)+\sigma(u) d(x)+d(u) \tau(u)+d(u) \tau(x)$
and

$$
d\left(u^{2}+u x\right)=d\left(u^{2}\right)+d(u x)=\sigma(u) d(u)+d(u) \tau(u)+\sigma(u) d(x)+d(u) \tau(x) .
$$

Comparing the previous two equations, we get $\sigma(u) d(x)+d(u) \tau(u)=d(u) \tau(u)+$ $\sigma(u) d(x)$. Since $[u, d(u)]_{\sigma, \tau}=0$, we have $\sigma(u) d(u)=d(u) \tau(u)$. So $\sigma(u) d(x)+$
$\sigma(u) d(u)=\sigma(u) d(u)+\sigma(u) d(x)$ and then $\sigma(u) d(x)+\sigma(u) d(u)-\sigma(u) d(x)-$ $\sigma(u) d(u)=0$. Therefore, $\sigma(u) d(x)+\sigma(u) d(u)+\sigma(u)(-d(x))+\sigma(u)(-d(u))=0$ and $\sigma(u)(d(x)+d(u)-d(x)-d(u))=\sigma(u) d(x+u-x-u)=\sigma(u) d((x, u))=0$. Since $\sigma(u) \neq 0$ is not a left zero divisor in R, we get $d((x, u))=0$ and (x, u) is a constant. The proof is similar for the case $(u \circ d(u))_{\sigma, \tau}=0$.

Proposition 2.7 A near-ring R is admitting a multiplicative (σ, τ)-derivation d such that σ and τ are multiplicative endomorphisms and $\tau(0)=0$ where τ is either one-to-one or onto if and only if R is zero-symmetric.

Proof. By [11, Theorem 1.15] any near-ring can be expressed as the sum of $R_{o}=\{x \in R: 0 x=0\}$ the unique maximal zero-symmetric subnear-ring of R and $R_{c}=0 R=\{0 r: r \in R\}$ the unique maximal constant subnear-ring of R.

1) Suppose that R admitting a multiplicative (σ, τ)-derivation d such that σ and τ are multiplicative endomorphisms and $\tau(0)=0$ where τ is either one-to-one or onto. Suppose also that R is not zero-symmetric, so $\{0\} \varsubsetneqq 0 R$. If $z \in 0 R$, then $z=0 y$ for some $y \in R$. For all $x \in R$, we have $x z=x 0 y=0 y=z$ and $z x=0 y x \in 0 R$. Observe that $\tau(z)=\tau(0 y)=\tau(0) \tau(y)=0 \tau(y) \in 0 R$. Thus, $z \in 0 R$ implies $\tau(z) \in 0 R$. Since τ is either one-to-one or onto, we have $\tau(0 R) \neq\{0\}$. So there exists $z \in 0 R$ such that $\tau(z) \neq 0$. Hence, $d(z)=d\left(z^{2}\right)=\sigma(z) d(z)+d(z) \tau(z)=\sigma(z) d(z)+\tau(z)$. Multiplying both sides by $\sigma(z)$, we have $\sigma(z) d(z)=\sigma(z) \sigma(z) d(z)+\sigma(z) \tau(z)=\sigma(z) d(z)+\tau(z)$. Thus, $\tau(z)=0$, which is a contradiction. Therefore, R must be zero-symmetric.
2) Suppose R is zero-symmetric. It is easy to show that the zero map is a derivation on R which is called the zero derivation on R. Trivially this zero derivation on R is a $\left(1_{R}, 1_{R}\right)$-derivation on R where 1_{R} is the identity automorphism on R.

For the usual derivation, there are some classes of near-rings which has only the zero derivation. The most important one is the subclass of the class of simple near-rings with identity $\left\{M_{o}(G): G\right.$ is any group $\}$, where the nearring $M_{o}(G)$ is the set of all zero preserving maps from G to itself with addition and composition of maps [5, Theorem 1.1]. For the (σ, τ)-derivation, we have a better result in the proof of Proposition 2.9 than the zero derivation.

Corollary 2.8 A near-ring R is admitting a multiplicative σ-derivation such that σ is a multiplicative endomorphism if and only if R is zero-symmetric.

Proposition 2.9 If R is a non-zero near-ring, then it has a non-zero (multiplicative) (σ, τ)-derivation d.

Proof. Take d to be any non-zero additive map (any non-zero map) from R to R such that $d(x y)=f(x) d(y)$ for all $x, y \in R$, where f is a map from R to
itself (e. g. take $d=f$ as the identity map). Let $\sigma=f$ and $\tau=0$. Then for all $x, y \in R$ we have $d(x y)=f(x) d(y)=f(x) d(y)+d(x) 0=\sigma(x) d(y)+d(x) \tau(y)$. Hence, d is a non-zero (σ, τ)-derivation.

Note that the (σ, τ)-derivation mentiond in the proof of Proposition 2.9 includes all endomorphisms (multiplicative endomorphisms) on R by putting $f=d$. Observe that also if d.is a right multiplcative map (i. e. there exists $c \in R$ such that $d(x)=x c$ for all $x \in R)$, then $d(x y)=x d(y)$ for all $x, y \in R$. So the multiplicative (σ, τ)-derivation mentiond in the proof of Proposition 2.9 includes all right multiplcative maps by putting f equal to the identity map.

The following example shows that the condition " τ is either one-to-one or onto" in Proposition 2.7 is essential.

Example 2.1 Let R be any non-zero constant near-ring. Then R is not zero-symmetric. Suppose $\tau=0$ and σ is any endomorphism on R. So for any additive mapping d of R and for all $x, y \in R$ we have $d(x y)=d(y)=$ $\sigma(x) d(y)=\sigma(x) d(y)+d(x) \tau(y)$. Therefore, any additive mapping on R is a (σ, τ)-derivation on R which illustrates that Proposition 2.7 is not true if τ is neither one-to-one nor onto.

Lemma 2.10 Let R be a distributive near-ring such that there exists $a \in R$ which is not a left zero divisor for (x, y) for all $x, y \in R$. Then R is a ring.

Proof. Since R is distributive, we have $(r+r)(x+y)=(r+r) x+(r+r) y=$ $r x+r x+r y+r y$ and $(r+r)(x+y)=r(x+y)+r(x+y)=r x+r y+r x+r y$ for all $r, x, y \in R$. Comparing the previous two expressions, we get $r x+r y=r y+r x$ and hence $r(x+y-x-y)=0$ for all $r, x, y \in R$. Choosing $r=a$, we have $x+y-x-y=0$ and $(R,+)$ is abelian. Hence, R is a ring.

Definition 2.1 [10] A near-ring R is called n-distributive, where n is a positive integer, if for all $a, b, c, d, r, a_{i}, b_{i} \in R$,
(i) $a b+c d=c d+a b$
(ii) $\left(\sum a_{i} b_{i}\right) r=\sum a_{i} b_{i} r$, where $i=1,2, \ldots, n$.

Lemma 2.11 Let R be a 2-distributive near-ring. Then
(i) R is zero-symmetric.
(ii) For all $x, y, r \in R$, we have $-x y r=(-x y) r$.

Proof. (i) For all $r \in R$, we get $0 r+0 r=00 r+00 r=(00+00) r=0 r$. So $0 r=0$ and R is zero-symmetric.
(ii) For all $x, y, r \in R$, we have $x y r+(-x y) r=(x y+(-x y)) r=0 r=0$. Thus, $(-x y) r=-x y r$ for all $x, y, r \in R$.

Lemma 2.12 Let R be a 2-distributive near-ring with identity. Then R is a ring.

Proof. Let 1 be the identity of R. Using Definition 2.1, we have $r+s=$ $r 1+s 1=s 1+r 1=s+r$ for all $r, s \in R$ and $(R,+)$ is an abelian group. Now, $(x+y) r=(x 1+y 1) r=x 1 r+y 1 r=x r+y r$ for all $x, y, r \in R$, so R is distributive. Hence, R is a ring.

3 Examples and commutativity of $(R,+)$

We start this section by giving three examples of (σ, τ)-derivations on a nearring.

Example 3.1 Let R be a 2-distributive near-ring with a distributive element a in R (see [9, Example 2.4] for an example of a 2-distributive near-ring with some distributive elements which is not a distributive near-ring). We will now prove that for any endomorphisms σ, τ on $R, d(x)=\sigma(x) a-a \tau(x)$ is a (σ, τ)-derivation on R. Using (i) and (ii) of Lemma 2.11 and Definition 2.1(i), observe that

$$
\begin{aligned}
d(x+y) & =\sigma(x+y) a-a \tau(x+y)=(\sigma(x)+\sigma(y)) a-a(\tau(x)+\tau(y)) \\
& =\sigma(x) a+\sigma(y) a-a \tau(y)-a \tau(x)=\sigma(x) a-a \tau(x)+\sigma(y) a-a \tau(y) \\
& =d(x)+d(y)
\end{aligned}
$$

and d is an additive mapping. Also, from Definition 2.1(ii) we have

$$
\begin{aligned}
d(x y) & =\sigma(x y) a-a \tau(x y)=\sigma(x) \sigma(y) a-a \tau(x) \tau(y) \\
& =\sigma(x) \sigma(y) a-\sigma(x) a \tau(y)+\sigma(x) a \tau(y)-a \tau(x) \tau(y) \\
& =\sigma(x)[\sigma(y) a-a \tau(y)]+[\sigma(x) a-a \tau(x)] \tau(y)=\sigma(x) d(y)+d(x) \tau(y)
\end{aligned}
$$

In particular, If R has an identity, then R is a ring by Lemma 2.12. If we take a to be the identity, then for any endomorphisms σ, τ on $R, d(x)=$ $\sigma(x)-\tau(x)$ is a (σ, τ)-derivation on R.

Example 3.2 Let R be an abelian near-ring with identity $1 \in R$ and without non-zero zero divisors which is not a ring (for example take R to be any near-field which is not a division ring). Take σ to be any non-zero multiplicative endomorphism on R such that $\sigma \neq \tau$ where τ is defined by $\tau(0)=0$ and $\tau(x)=1$ for all $x \in R-\{0\}$. Observe that τ is a multiplicative endomorphism on R. Define $d: R \rightarrow R$ by $d(x)=\sigma(x) a-a \tau(x)$ where
$a \in R-\{0\}$. So d is a non-zero multiplicative (σ, τ)-derivation on R. indeed, for all $x \in R, y \in R$, we have

$$
\begin{aligned}
d(x y) & =\sigma(x y) a-a \tau(x y)=\sigma(x) \sigma(y) a-a \tau(x) \tau(y) \\
& =\sigma(x) \sigma(y) a-\sigma(x) a \tau(y)+\sigma(x) a \tau(y)-a \tau(x) \tau(y) \\
& =\sigma(x)[\sigma(y) a-a \tau(y)]+[\sigma(x) a-a \tau(x)] \tau(y)=\sigma(x) d(y)+d(x) \tau(y)
\end{aligned}
$$

Also, for all $c \in R$ such that $d(c) \neq 0$, we obtain that $d(c)$ is not a left zero divisor in R.

Example 3.3 Let N be a zero-symmetric abelian near-ring which has a non-zero ideal I contained in $Z(N)$. Let $a \in I$ and define $d: N \rightarrow N$ by $d(x)=\sigma(x) a-\tau(x) a$ for all $x \in N$, where σ and τ are endomorphisms of N. Then $d(N) \subseteq I \subseteq Z(N)$ and d is a (σ, τ)-derivation on N. Indeed,

$$
\begin{aligned}
d(x+y) & =\sigma(x+y) a-\tau(x+y) a=\sigma(x) a+\sigma(y) a-\tau(y) a-\tau(x) a \\
& =\sigma(x) a-\tau(x) a+\sigma(y) a-\tau(y) a=d(x)+d(y)
\end{aligned}
$$

which means that d is an additive mapping.

$$
\begin{aligned}
d(x y) & =\sigma(x y) a-\tau(x y) a=\sigma(x) \sigma(y) a-\sigma(x) \tau(y) a+\sigma(x) \tau(y) a-\tau(x) \tau(y) a \\
& =\sigma(x)[\sigma(y) a-\tau(y) a]+\tau(y) a \sigma(x)-\tau(y) a \tau(x) \\
& =\sigma(x)[\sigma(y) a-\tau(y) a]+\tau(y)[\sigma(x) a-\tau(x) a] \\
& =\sigma(x) d(y)+\tau(y) d(x)=\sigma(x) d(y)+d(x) \tau(y) .
\end{aligned}
$$

For example, take N to be the direct sum of M and R, where M is a zerosymmetric abelian near-ring and R a commutative ring, which generalizes an example due to Samman in 2009 [13].

Remark 3.1 We know from [14, Lemma 2] that for a derivation d on a near-ring R that if $x \in R$ is central, then so is $d(x)$. This is not true in a (σ, τ) derivation on R, even if we take R to be a ring and σ, τ are automorphisms on R or $\sigma=\tau$ is an endomorphism on R which is not onto. The next example illustrates that.

Example 3.4 Let $R=M_{2}(\mathbb{Z}) \times M_{2}(\mathbb{Z})$ where \mathbb{Z} is the ring of integers. Then R is a non-commutative ring which has a non-zero center $Z(R)$, where

$$
Z(R)=\left\{\left(\left[\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right],\left[\begin{array}{ll}
b & 0 \\
0 & b
\end{array}\right]\right): a, b \in \mathbb{Z}\right\}
$$

Define $d: R \rightarrow R$ by $d(x)=\sigma(x) A-A \tau(x)$ for all $x \in R$, where A is a non-zero element of R, σ is the identity map on R and $\tau(x, y)=(y, x)$ for
all $x, y \in R$. Clearly that σ, τ are automorphisms on R. So d is a $(\sigma, \tau)-$ derivation on R by Example 3.1. Let $A=\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\right)$. Thus, for all $a, b, c, d, e, f, g, h \in \mathbb{Z}$

$$
d\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right],\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]\right)=\left(\left[\begin{array}{ll}
a-e & -f \\
c & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right)
$$

Now, we have $z=\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\right) \in Z(R)$ and $d\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\right)=$ $\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\right)$ which means $d(z) \notin Z(R)$, since

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right) & =\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right)\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right) \\
& \neq\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right)\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right) \\
& =\left(\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right) .
\end{aligned}
$$

Now take $R=\left\{\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]: a, b, c \in \mathbb{Z}\right\}$. Define $d: R \rightarrow R$ by $d(x)=$ $\sigma(x) A-A \sigma(x)$ for all $x \in R$, where A is a non-zero element of R and σ is an endomorphism on R defined by $\sigma\left(\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]\right)=\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right]$. Clearly σ is not onto. Choosing $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$, we have $d\left(\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]\right)=\left[\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right]$ for all $a, b, c \in \mathbb{Z}$. Now $e=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \in Z(R)$, but $d(e)=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \notin Z(R)$, since

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \neq\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] .
$$

For Remark 3.1, we have the following result:
Proposition 3.1 [2, Proposition 2.1] Let R be a near-ring with a (σ, σ) derivation d such that σ is an epimorphism on R. If $x \in Z(R)$, then $d(x) \in$ $Z(R)$.

Remark 3.2 In the usual derivation we have that for a derivation d on a near-ring $R, d(R) \subseteq Z(R)$ implies $d(x y)=d(y x)$ for all $x, y \in R$, but
the converse is not true. For (σ, τ)-derivations, $d(R) \subseteq Z(R)$ does not imply $d(x y)=d(y x)$ for all $x, y \in R$ even for rings, as Example 3.5 shows.

Example 3.5 Let $R=\left\{\left[\begin{array}{ll}a & 3 b \\ 3 c & d\end{array}\right]: a, b, c, d \in \mathbb{Z}_{9}\right\}$. Then R is a subring of $M_{2}\left(\mathbb{Z}_{9}\right)$. So $d: R \rightarrow R$ defined by $d(x)=\sigma(x)\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]-\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right] \tau(x)$ for all $x \in R$ where σ, τ are endomorphisms on R, is a (σ, τ)-derivation by Example 3.1. Take $\tau=0$ and σ is the identity. Thus, for all $a, b, c, d \in \mathbb{Z}_{9}$

$$
d\left(\left[\begin{array}{ll}
a & 3 b \\
3 c & d
\end{array}\right]\right)=\sigma\left(\left[\begin{array}{ll}
a & 3 b \\
3 c & d
\end{array}\right]\right)\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right]=\left[\begin{array}{ll}
3 a & 0 \\
0 & 3 d
\end{array}\right] \in Z(R)
$$

and then $d(R) \subseteq Z(R)$. Observe that $d\left(\left[\begin{array}{ll}1 & 3 \\ 0 & 3\end{array}\right]\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]\right)=d\left(\left[\begin{array}{ll}2 & 6 \\ 0 & 3\end{array}\right]\right)=$ $\left[\begin{array}{ll}6 & 0 \\ 0 & 0\end{array}\right] \neq\left[\begin{array}{ll}3 & 0 \\ 0 & 0\end{array}\right]=d\left(\left[\begin{array}{ll}1 & 3 \\ 3 & 3\end{array}\right]\right)=d\left(\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]\left[\begin{array}{ll}1 & 3 \\ 0 & 3\end{array}\right]\right)$.

The following result shows that when $d(R) \subseteq Z(R)$ implies $d(x y)=d(y x)$ for all $x, y \in R$.

Proposition 3.2 Let R be a near-ring with a (σ, τ)-derivation d such that $d(R) \subseteq Z(R)$ and τ is an additive mapping on R. Then d is a (τ, σ)-derivation on R if and only if $d(x y)=d(y x)$ for all $x, y \in R$.

Proof. Using $d(R) \subseteq Z(R)$ and Lemma 2.1, we have $d(x y)=d(x) \tau(y)+$ $\sigma(x) d(y)=\tau(y) d(x)+d(y) \sigma(x)$ for all $x, y \in R$. Now suppose d is a $(\tau, \sigma)-$ derivation. Thus, $d(x y)=\tau(y) d(x)+d(y) \sigma(x)=d(y x)$. Conversely, suppose $d(x y)=d(y x)$ for all $x, y \in R$. Therefore, $d(y x)=d(x y)=\tau(y) d(x)+d(y) \sigma(x)$ for all $x, y \in R$ which means d is a (τ, σ)-derivation on R.

Theorem 3.3 Let R be a zero-symmetric near-ring without non-zero zero divisors. If R admits a non-zero (σ, τ)-semicommuting (σ, τ)-derivation d on R such that τ is a monomorphism on R. Then $(R,+)$ is abelian.

Proof. For any additive commutator (x, y), if $\sigma(y) \neq 0$ for some $y \in$ R, then (x, y) is constant by Lemma 2.6. If $\sigma(y)=0$, then for both cases $[y, d(y)]_{\sigma, \tau}=0$ or $(y \circ d(y))_{\sigma, \tau}=0$ we have $\sigma(y) d(y)=0$ and hence $d(y) \tau(y)=$ 0 . Since R does not have non-zero zero divisors, we obtain that either $d(y)=0$ or $\tau(y)=0$. If $d(y)=0$, then $d(x+y-x-y)=0$ and (x, y) is constant. If $\tau(y)=0$, then $y=0$ as τ is a monomorphism. So $d(x+y-x-y)=0$ and (x, y) is constant. Hence, in all cases (x, y) is constant. Since y is an
arbitrary, we have (x, y) is constant for all additive commutators. Observe that $(z x, z y)=z x+z y-z x-z y=z(x+y-x-y)=z(x, y)$ for all $x, y, z \in R$. It follows that $d(z(x, y))=0$ and $\sigma(z) d(x, y)+d(z) \tau(x, y)=d(z) \tau(x, y)=0$ for all $x, y, z \in R$. As d is non-zero, choose $z=t \in R$ such that $d(t) \neq 0$. Since $d(t)$ is not a zero divisor in R, we have $\tau(x, y)=0$ and then $(x, y)=0$ for all $x, y \in R$. Hence, $(R,+)$ is abelian.

In [9, Example 2.14], we mentioned an example of a class of 3-prime abelian near-rings which are not rings admitting a non-zero (σ, σ)-derivation and a non-zero $(1, \sigma)$-derivation, where $1=i_{R}$ the identity map on R. Also, in Example 3.2 above, we have an example of a non-zero multiplicative (σ, τ) derivation on a near-field (which is an abelian near-ring without non-zero zero divisors).

Corollary 3.4 Let R be a near-ring without non-zero zero divisors. If R admits a non-zero σ-semicommuting σ-derivation d on R, then $(R,+)$ is abelian.

The class of trivial zero-symmetric near-rings is very useful as a tool in some proofs of results in near-rings, for example, to prove the simplicity of $M(G)$ and $M_{o}(G)$ (see Lemma 1.34, Theorem1.37 and Theorem 1.42 of [11]). Observe that for any near-ring $R \neq\{0\}$, the identity i_{R} is a non-zero (σ, τ)-derivation on R with ($\sigma=0$ and $\tau=i_{R}$) or ($\sigma=i_{R}$ and $\tau=0$). In the following result we will show that if d is a non-zero multiplicative (σ, τ)-derivation on a trivial zero symmetric near-ring R, what are the possible cases.

Theorem 3.5 Let R be a trivial zero symmetric near-ring with a non-zero multiplicative (σ, τ)-derivation d. Then we have one of the following cases:
(i) $\sigma=0$ and $d=\tau$.
(ii) $\tau=0, \sigma(x) \neq 0$ for all $x \in R-\{0\}$ and $\sigma(0)=0$ if and only if $d(0)=0$. If $\sigma(0) \neq 0$, then d is a constant function.
(iii) $d=\tau$ and $\sigma \neq 0$ such that $\sigma(x) d(x)=0=\sigma(0)=d(0)$ and if $\sigma(x)=0$ then $d(x) \neq 0$ for all $x \in R-\{0\}$.
(iv) $d(0)=\tau(x) \neq 0, \sigma(y) \neq 0$ and $d(x)=\tau(0)=0$ for all $x \in R-\{0\}, y \in$ R.
(v) $\tau(y)=d(0) \neq 0, \sigma(x) \neq 0$ and $d(x)=\sigma(0)=0$ for all $x \in R-\{0\}, y \in$ R.

Proof. Suppose $\sigma=0$. Then for all $x \in R-\{0\}, y \in R$, we have $d(y)=d(x y)=\sigma(x) d(y)+d(x) \tau(y)=d(x) \tau(y)$. As $d \neq 0$, we have $d(x) \neq 0$ for all $x \in R-\{0\}$. That means $d(y)=\tau(y)$ for all $y \in R$ and $d=\tau$. Hence, we get (i).

Now suppose $\tau=0$. Then for all $x \in R-\{0\}, y \in R$, we have $d(y)=$ $d(x y)=\sigma(x) d(y)$. For all $x \in R-\{0\}$, we get that $d(a)=d(x a)=\sigma(x) d(a)$ which implies that $\sigma(x) \neq 0$ for all $x \in R-\{0\}$. If $d(0)=0$, then $0=d(0)=$ $d(0 a)=\sigma(0) d(a)$. Thus, $\sigma(0)=0$. Now, if $\sigma(0)=0$, then $d(0)=d(00)=$ $\sigma(0) d(0)=0$. Now, if $\sigma(0) \neq 0$, then $d(0)=d(0 x)=\sigma(0) d(x)=d(x)$ for all $x \in R$. Thus, d is a constant function. Hence, we get (ii).

After that, suppose $\sigma \neq 0$ and $\tau \neq 0$. There exist $a, b, c \in R$ such that $d(a) \neq 0, \sigma(b) \neq 0$ and $\tau(c) \neq 0$. For all $x \in R-\{0\}, y \in R$, we have $d(y)=d(x y)=\sigma(x) d(y)+d(x) \tau(y)$. If there exists $x \in R-\{0\}$ such that $\sigma(x)=0$ then for all $y \in R$, we have $d(y)=d(x y)=d(x) \tau(y)$. If $d(x)=$ 0 , then $d(y)=d(x y)=d(x) \tau(y)=0$ for all $y \in R$ and hence $d=0$, a contradiction. So $d(x) \neq 0$ and $d(y)=d(x) \tau(y)=\tau(y)$ for all $y \in R$. Thus, $d=\tau$. Therefore, $d(x)=d(x x)=\sigma(x) d(x)+d(x) d(x)=\sigma(x) d(x)+d(x)$ for all $x \in R$. That implies $\sigma(x) d(x)=0$ for all $x \in R$. So $\sigma(a)=\sigma(c)=d(b)=0$. Then $d(0)=d(0 b)=\sigma(0) d(b)+d(0) d(b)=0$. Also, $0=d(0)=d(0 a)=$ $\sigma(0) d(a)+d(0) d(a)=\sigma(0) d(a)$. That means $\sigma(0)=0$. So $a \neq 0, b \neq 0$ and $c \neq 0$. Hence, we get (iii).

Now, suppose that $\sigma(x) \neq 0$ for all $x \in R-\{0\}$. Then for all $x \in R-$ $\{0\}, y \in R$, we have $d(y)=d(x y)=\sigma(x) d(y)+d(x) \tau(y)=d(y)+d(x) \tau(y)$. So $d(x) \tau(y)=0$ for all $x \in R-\{0\}, y \in R$. As $\tau \neq 0$, we deduce that $d(x)=0$ for all $x \in R-\{0\}$. That means $a=0$ as $d \neq 0$. Therefore, $0 \neq d(0)=d(0 x)=\sigma(0) d(x)+d(0) \tau(x)=d(0) \tau(x)=\tau(x)$ for all $x \in R-\{0\}$. If $\sigma(0) \neq 0$, then $d(0)=d(00)=\sigma(0) d(0)+d(0) \tau(0)=d(0)+\tau(0)$ and $0=\tau(0)$. Hence, we get (iv).

If $\sigma(0)=0$, then $d(0)=d(00)=\sigma(0) d(0)+d(0) \tau(0)=\tau(0)$. Hence, we get (v).

In the following example, we will give an example for each case of the five cases mentioned in Theorem 3.5.

Example 3.6 Let R be a non-zero trivial zero symmetric near-ring. For case (i), take $\sigma=0$ and $d=\tau=i_{R}$ the identity map. For case (ii), if $\sigma(0)=0$, then take $\sigma=d=i_{R}$ and $\tau=0$. If $\sigma(0) \neq 0$, then take $\tau=0$ and $\sigma=d$ as a constant map defined by $d(x)=c \neq 0$ for all $x \in R$. For case (iii), let $R-\{0\}=S \cup T$ such that $S \cap T=\phi$ and $S \neq \phi \neq T$. Let $d=\tau, \sigma$ be any maps defined as the following, $0=\sigma(0)=d(0)$ and $d(x)=x, \sigma(x)=0$ if $x \in S$ and $d(x)=0, \sigma(x)=x$ if $x \in T$. For case (iv), take σ as a constant map defined by $\sigma(x)=c \neq 0$ for all $x \in R$ and define d and τ as the following $d(x)=\tau(0)=0$ and $d(0)=\tau(x)=c$ for all $x \in R-\{0\}$. For case (v), take τ as a constant map defined by $\tau(x)=c \neq 0$ for all $x \in R$ and define d and σ as the following $d(x)=\sigma(0)=0$ and $d(0)=\sigma(x)=c$ for all $x \in R-\{0\}$.

4 The condition $d(R) \subseteq Z(R)$

We shall prove some theorems in this section on commutativity of near-rings which generalize known results due to [4], [8], [1] and [6].

Theorem 4.1 Let R be a near-ring with a non-zero multiplicative (σ, τ) derivation d such that σ and τ are multiplicative endomorphisms and τ is either one-to-one or onto. If $d(R) \subseteq Z(R)$ and there exists $a \in R$ such that $d(a)$ is not a left zero divisor in R, then R is a commutative ring.

Proof. For all $x, y \in R$, we have $d(x y)=\sigma(x) d(y)+d(x) \tau(y) \in Z(R)$. Multiplying $d(x y)$ by $\tau(y)$ in the right and the left respectively, we get

$$
\begin{aligned}
d(x y) \tau(y) & =(\sigma(x) d(y)+d(x) \tau(y)) \tau(y)=\sigma(x) d(y) \tau(y)+d(x) \tau(y) \tau(y) \\
& =d(y) \sigma(x) \tau(y)+d(x) \tau(y) \tau(y)
\end{aligned}
$$

by using Lemma 2.2 and $\tau(y) d(x y)=\tau(y) \sigma(x) d(y)+\tau(y) d(x) \tau(y)=d(y) \tau(y) \sigma(x)+$ $d(x) \tau(y) \tau(y)$ for all $x, y \in R$. So $d(y) \sigma(x) \tau(y)=d(y) \tau(y) \sigma(x)$ which means that $d(y)[\sigma(x) \tau(y)-\tau(y) \sigma(x)]=0$ for all $x, y \in R$. Since $d(a)$ is not a left zero divisor in R, we have $\sigma(x) \tau(a)=\tau(a) \sigma(x)$ for all $x \in R$. Multiplying $d(x y)$ by $\tau(a)$ in the right and the left respectively, we have $d(x y) \tau(a)=$ $\sigma(x) d(y) \tau(a)+d(x) \tau(y) \tau(a)=d(y) \sigma(x) \tau(a)+d(x) \tau(y) \tau(a)$ and $\tau(a) d(x y)=$ $d(y) \tau(a) \sigma(x)+d(x) \tau(a) \tau(y)$ for all $x, y \in R$. Using that $\sigma(x) \tau(a)=\tau(a) \sigma(x)$ for all $x \in R$, we have $d(x) \tau(a) \tau(y)=d(x) \tau(y) \tau(a)$. So $d(x)[\tau(a) \tau(y)-$ $\tau(y) \tau(a)]=0$ for all $x, y \in R$. Using $d(a)$ is not a left zero divisor in R, we get $\tau(a) \tau(y)=\tau(y) \tau(a)$ for all $y \in R$. Now, multiply $d(x a)$ by $\tau(z)$ in the right and the left respectively. It follows that $d(x a) \tau(z)=d(a) \sigma(x) \tau(z)+d(x) \tau(a) \tau(z)$ and $\tau(z) d(x a)=d(a) \tau(z) \sigma(x)+d(x) \tau(z) \tau(a)$ for all $x, z \in R$. Using that $\tau(a) \tau(y)=\tau(y) \tau(a)$ for all $y \in R$, we get $d(a) \sigma(x) \tau(z)=d(a) \tau(z) \sigma(x)$. So $d(a)[\sigma(x) \tau(z)-\tau(z) \sigma(x)]=0$ and then

$$
\begin{equation*}
\sigma(x) \tau(z)=\tau(z) \sigma(x) \quad \text { for all } x, z \in R \tag{4.1}
\end{equation*}
$$

Multiplying $d(a y)$ by $\tau(z)$ in the right and the left respectively, we have $d(a y) \tau(z)=d(y) \sigma(a) \tau(z)+d(a) \tau(y) \tau(z)$ and $\tau(z) d(a y)=d(y) \sigma(a) \tau(z)+$ $d(a) \tau(z) \tau(y)$ for all $y, z \in R$. Using (4.1), we get $d(a) \tau(z) \tau(y)=d(a) \tau(y) \tau(z)$. So $d(a)[\tau(z) \tau(y)-\tau(y) \tau(z)]=0$ and

$$
\begin{equation*}
\tau(z) \tau(y)=\tau(y) \tau(z) \quad \text { for all } y, z \in R \tag{4.2}
\end{equation*}
$$

If τ is either one-to-one or onto, then R is a commutative near-ring. Using, $0 \neq d(a) \in Z(R)$ is not a left zero divisor in R and Lemma 2.10, we have that R is a commutative ring.

The condition " τ is either one-to-one or onto" in Theorem 4.1 is essential even for rings.

Example 4.1 Let $R=\left\{\left[\begin{array}{ccc}a & 0 & 0 \\ 0 & b & 0 \\ c & 0 & a\end{array}\right]: a \in Z(S), b, c \in S\right\}$ where S is any non-commutative division ring which has non-zero center. Take for example

$$
S=\left\{\left[\begin{array}{ll}
z & w \\
-\bar{w} & \bar{z}
\end{array}\right], z \text { and } w \text { are complex numbers }\right\}
$$

where \bar{z} is the complex conjugate of z. Then S is a non-commutative division ring which has a non-zero center as if r is a real number, then for every complex numbers z, w we have
$\left[\begin{array}{ll}r & 0 \\ 0 & r\end{array}\right]\left[\begin{array}{ll}z & w \\ -\bar{w} & \bar{z}\end{array}\right]=\left[\begin{array}{ll}r z & r w \\ -r \bar{w} & r \bar{z}\end{array}\right]=\left[\begin{array}{ll}z r & w r \\ -\bar{w} r & \bar{z} r\end{array}\right]=\left[\begin{array}{ll}z & w \\ -\bar{w} & \bar{z}\end{array}\right]\left[\begin{array}{ll}r & 0 \\ 0 & r\end{array}\right]$.
Then R is a non-commutative ring. Define $d: R \rightarrow R$ by $d\left(\left[\begin{array}{ccc}a & 0 & 0 \\ 0 & b & 0 \\ c & 0 & a\end{array}\right]\right)=$ $\left[\begin{array}{lll}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right]$. So d is an additive mapping. Taking $\sigma=d$, then σ is an endomorphism on R. Taking $\tau=0$, then τ is neither one-to-one nor onto. Also, d is a non-zero (σ, τ)-derivation and $d(R) \subseteq Z(R)$. If there exists $\left[\begin{array}{lll}e & 0 & 0 \\ 0 & f & 0 \\ g & 0 & e\end{array}\right] \in R$ such that $d\left(\left[\begin{array}{lll}e & 0 & 0 \\ 0 & f & 0 \\ g & 0 & e\end{array}\right]\right)=\left[\begin{array}{lll}e & 0 & 0 \\ 0 & e & 0 \\ 0 & 0 & e\end{array}\right] \neq 0$ and
$\left[\begin{array}{lll}e & 0 & 0 \\ 0 & e & 0 \\ 0 & 0 & e\end{array}\right]\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ c & 0 & a\end{array}\right]=0$ for some $\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ c & 0 & a\end{array}\right] \in R$, then $e \neq 0$ and
$\left[\begin{array}{lll}e a & 0 & 0 \\ 0 & e b & 0 \\ e c & 0 & e a\end{array}\right]=0$. Since S has no non-zero divisors of zero, we have $a=b=c=0$ and hence $\left[\begin{array}{ccc}a & 0 & 0 \\ 0 & b & 0 \\ c & 0 & a\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. That means if $d(A) \neq 0$ for some $A \in R$, then it is not a zero divisor in R. Using the example above with $\sigma=0$ and $\tau=d$, we get another counter example.

The next corollary generalizes Theorem 2 of O. Golbasi and N. Aydin [6] and Theorem 3.1 of M. Ashraf, A. Ali and Shakir Ali [1].

Corollary 4.2 Let R be a 3 -prime near-ring with a non-zero multiplicative (σ, τ)-derivation d such that σ and τ are multiplicative endomorphisms and τ is either one-to-one or onto. If $d(R) \subseteq Z(R)$, then R is a commutative ring.

Proof. Since d is a non-zero multiplicative (σ, τ)-derivation, there exists $a \in R$ such that $0 \neq d(a)$ and by Lemma $2.5 d(a)$ is not a left zero divisor in R. So R is a commutative ring by Theorem 4.1.

Corollary 4.3 Let R be a near-ring with a non-zero multiplicative σ derivation d such that σ is a multiplicative endomorphism on R. If $d(R) \subseteq$ $Z(R)$ and there exists $a \in R$ such that $d(a)$ is not a left zero divisor in R, then R is a commutative ring.

Proof. Since τ here is the identity isomorphism, we get the result from Theorem 4.1.

The following corollary generalizes Theorem 2.5 of Kamal [8] and Theorem 2 of Bell and Mason [4].

Corollary 4.4 Let R be a 3-prime near-ring with a non-zero multiplicative σ-derivation d such that σ is a multiplicative endomorphism on R and $d(R) \subseteq$ $Z(R)$. Then R is a commutative ring.

Proof. Since τ here is the identity isomorphism, we get the result by Corollary 4.2.

Theorem 4.5 Let R be a 3 -prime near-ring with a non-zero multiplicative (σ, τ)-derivation d that satisfies $d(R) \subseteq Z(R)$ such that σ and τ are endomorphisms on R and either $\operatorname{ker} \tau \cap \operatorname{ker} \sigma=\{0\}$ or $\tau(R) \cup \sigma(R)=R$. Then R is a commutative ring.

Proof. Since d is a non-zero multiplicative (σ, τ)-derivation, there exists $a \in R$ such that $0 \neq d(a)$ and by Lemma $2.5 d(a)$ is not a left zero divisor in R. So the first Part of this proof is similar to the proof of 4.1 up to equation (4.2). Now, we have two possible cases:

Case 1: $d(b)=0$ for all $b \in \operatorname{ker} \tau$.
From (4.2), we obtain that $0 \tau(x)=\tau(x) 0=0$ for all $x \in R$. Thus, $d(b x)=\sigma(b) d(x)+d(b) \tau(x)=\sigma(b) d(x)$ for all $x \in R$. Multiplying $d(b x)$ by $\sigma(y)$ in the left and the right respectively, we have $\sigma(y) d(b x)=\sigma(y) \sigma(b) d(x)=$ $d(x) \sigma(y) \sigma(b)$ for all $x, y \in R$ and $d(b x) \sigma(y)=\sigma(b) d(x) \sigma(y)=d(x) \sigma(b) \sigma(y)$. Choosing $x=a$, we have $d(a)[\sigma(y) \sigma(b)-\sigma(b) \sigma(y)]=0$ and then

$$
\begin{equation*}
\sigma(y) \sigma(b)-\sigma(b) \sigma(y)=0 \quad \text { for all } y \in R \text { and for all } b \in \operatorname{ker} \tau \tag{4.3}
\end{equation*}
$$

Suppose first that $\operatorname{ker} \tau \cap \operatorname{ker} \sigma=\{0\}$. So from (4.2) and (4.3) we conclude that $y b-b y \in \operatorname{ker} \tau \cap \operatorname{ker} \sigma=\{0\}$ for all $y \in R$ and for all $b \in \operatorname{ker} \tau$. Thus,
$\operatorname{ker} \tau \subseteq Z(R)$. If τ is a monomorphism, then by (4.2) R is a commutative ring. If there exists $0 \neq b \in \operatorname{ker} \tau$, then $\tau(\sigma(x) b)=\tau(\sigma(x)) \tau(b)=\tau(\sigma(x)) 0=0$ for all $x \in R$ which means $\sigma(x) b \in \operatorname{ker} \tau$. Thus, $\sigma(x) b \in Z(R)$ for all $x \in R$. By Lemma 2.3 and Lemma 2.5 we conclude that $\sigma(x) \in Z(R)$ for all $x \in R$. So

$$
\begin{equation*}
\sigma(x) \sigma(z)-\sigma(z) \sigma(x)=0 \quad \text { for all } x, z \in R \tag{4.4}
\end{equation*}
$$

Equations (4.2) and (4.4) imply that $x y-y x \in \operatorname{ker} \tau \cap \operatorname{ker} \sigma=\{0\}$ for all $x, y \in R$ and hence R is a commutative near-ring. Now, Suppose $\tau(R) \cup \sigma(R)=$ R. From (4.1) and (4.3), we conclude that $\sigma(b) \in Z(R)$ for all $b \in \operatorname{ker} \tau$. Since $\tau(x b)=\tau(x) \tau(b)=0$ for all $x \in R$ and for all $b \in \operatorname{ker} \tau$, we have $x b \in \operatorname{ker} \tau$ and hence $\sigma(x b) \in Z(R)$ for all $x \in R$ and for all $b \in \operatorname{ker} \tau$. If there exists $b \in \operatorname{ker} \tau$ such that $\sigma(b) \neq 0$, then we have $\sigma(x) \sigma(b) \in Z(R)$ for all $x \in R$. By Lemma 2.3 and Lemma 2.5 we conclude that $\sigma(x) \in Z(R)$ for all $x \in R$ and by the same way above we conclude equation (4.4). Now, suppose $r, s \in R$, then $(r=\sigma(a)$ or $r=\tau(b))$ and $(s=\sigma(c)$ or $s=\tau(d))$ for some $a, b, c, d \in R$ since $\tau(R) \cup \sigma(R)=R$. Using (4.1), (4.2) and (4.4) we conclude that $r s=s r$ and R is a commutative near-ring. If $\sigma(b)=0$ for all $b \in \operatorname{ker} \tau$, then $\operatorname{ker} \tau \subseteq \operatorname{ker} \sigma$. Since $(\tau(R),+)$ and $(\sigma(R),+)$ are subgroups of $(R,+)$ whose union is R, we have either $\tau(R) \subseteq \sigma(R)$ or $\sigma(R) \subseteq \tau(R)$. Since $\operatorname{ker} \tau \subseteq \operatorname{ker} \sigma$, we get from isomorphism theorems that $(R / \operatorname{ker} \tau) /(\operatorname{ker} \sigma / \operatorname{ker} \tau)$ is isomorphic as near-rings to $R / \operatorname{ker} \sigma$. But $R / \operatorname{ker} \tau$ is isomorphic to $\tau(R)$ and $R / \operatorname{ker} \sigma$ is isomorphic to $\sigma(R)$, so $\tau(R) /(\operatorname{ker} \sigma / \operatorname{ker} \tau)$ is isomorphic to $\sigma(R)$. Thus, the cardinal number of $\tau(R)$ is greater than or equal to the cardinal number of $\sigma(R)$. Therefore $\sigma(R) \subseteq \tau(R)$ and $R=\tau(R) \cup \sigma(R)=\tau(R)$. So τ is an epimorphism and hence R is a commutative near-ring from (4.2).

Case 2: $d(b) \neq 0$ for some $b \in \operatorname{ker} \tau$.
So $d(b)$ is not a zero divisor in R by Lemma 2.5 and $d(x b)=\sigma(x) d(b)+$ $d(x) \tau(b)=\sigma(x) d(b)$ for all $x \in R$. Multiplying $d(x b)$ by $\sigma(y)$ in the left and the right respectively, we have $\sigma(y) d(x b)=\sigma(y) \sigma(x) d(b)=d(b) \sigma(y) \sigma(x)$ and $d(x b) \sigma(y)=\sigma(x) d(b) \sigma(y)=d(b) \sigma(x) \sigma(y)$ for all $x, y \in R$. So $d(b)[\sigma(y) \sigma(x)-$ $\sigma(x) \sigma(y)]=0$ for all $x, y \in R$ and then we get (4.4). Suppose $\operatorname{ker} \tau \cap \operatorname{ker} \sigma=$ $\{0\}$, then (4.2) and (4.4) imply that $x y-y x \in \operatorname{ker} \tau \cap \operatorname{ker} \sigma$ for all $x, y \in R$. So R is a commutative near-ring. Now, suppose $\tau(R) \cup \sigma(R)=R$. Then (4.1), (4.2) and (4.4) imply that R is a commutative near-ring by the same way above in case 1 .

So from the above two cases, R is a commutative near-ring. Using $d(a)$ is not a left zero divisor in R and Lemma 2.11, we have that R is a commutative ring.

The next corollary is another generalization of Theorem 2 of O. Golbasi and N. Aydin [6] and Theorem 3.1 of M. Ashraf, A. Ali and Shakir Ali [1].

Corollary 4.6 Let R be a 3 -prime near-ring with a non-zero multiplicative (σ, τ)-derivation d such that σ and τ are endomorphisms on R, σ or τ is a monomorphism or an epimorphism and $d(R) \subseteq Z(R)$. Then R is a commutative ring.

Proof. If σ or τ is a monomorphism, then $\operatorname{ker} \tau \cap \operatorname{ker} \sigma=\{0\}$. If σ or τ is an epimorphism, then $\tau(R) \cup \sigma(R)=R$. Therefore, we get the result by Theorem 4.5.

5 The condition $d(x y)=d(y x)$

In this section we study the commutativity of a near-ring R admitting a nonzero derivation d satisfying the condition $d(x y)=d(y x)(d(x y)=-d(y x))$ for all $x, y \in R$. As a consequence of results obtained, we generalized some results due to Golbasi, Ashraf and S. Ali.

Proposition 5.1 Let R be a near-ring admitting a non-zero multiplicative (σ, τ)-derivation d such that τ is one-to-one. Then the following are equivalent:
(1) $d(x y)=d(y x)$ for all $x, y \in R$ and there exists $a \in R$ such that $d(a)$ is not a left zero divisor for $\tau(x y)-\tau(y x)$ for all $x, y \in R$.
(2) R is a commutative near-ring.

Proof. Suppose $d(x y)=d(y x)$ for all $x, y \in R$ and there exists $a \in R$ such that $d(a)$ is not a left zero divisor for $\tau(x y)-\tau(y x)$ for all $x, y \in R$. Replacing x by $y x$ in $d(x y)=d(y x)$ we get $d(y x y)=d(y y x)$ and hence $\sigma(y) d(x y)+$ $d(y) \tau(x y)=\sigma(y) d(y x)+d(y) \tau(y x)$. Then we have $d(y) \tau(x y)=d(y) \tau(y x)$. It follows that

$$
\begin{equation*}
d(y)(\tau(x y)-\tau(y x))=0 \text { for all } x, y \in R . \tag{5.1}
\end{equation*}
$$

But $d(a)$ is not a left zero divisor for $\tau(x y)-\tau(y x)$, so $d(a)(\tau(x a)-\tau(a x))=0$ implies $\tau(x a)=\tau(a x)$ for all $x \in R$. As τ is one-to-one, we obtain $x a=a x$ for all $x \in R$ which means $a \in Z(R)$. From $d(x y)=d(y x)$ for all $x, y \in R$, we have $d(a(x y))=d((a x) y)=d(y(a x))=d((y a) x)=d((a y) x)=d(a(y x))$ and then $\sigma(a) d(x y)+d(a) \tau(x y)=\sigma(a) d(y x)+d(a) \tau(y x)$. It follows that $d(a) \tau(x y)=d(a) \tau(y x)$ for all $x, y \in R$. So

$$
\begin{equation*}
d(a)(\tau(x y)-\tau(y x))=0 \text { for all } x, y \in R . \tag{5.2}
\end{equation*}
$$

Again, $d(a)$ is not a left zero divisor for $\tau(x y)-\tau(y x)$ implies that $\tau(x y)=$ $\tau(y x)$ and hence $x y=y x$ for all $x, y \in R$. Therefore, R is a commutative near-ring.

Conversely, Suppose R is a commutative near-ring. Thus, $d(x y)=d(y x)$ and $\tau(x y)-\tau(y x)=0$ for all $x, y \in R$. So for all $z \in R-\{0\}$, we get that z is not a left zero divisor for $\tau(x y)-\tau(y x)$ for all $x, y \in R$.

Theorem 5.2 Let R be a near-ring admitting a non-zero multiplicative (σ, τ)-derivation d such that τ is one-to-one. Then the following are equivalent:
(1) $d(x y)=d(y x)$ for all $x, y \in R$ and there exist $a, b \in R$ such that $d(a)$ is not a left zero divisor for $\tau(x y)-\tau(y x)$ and b is not a left zero divisor for $x+y-x-y=(x, y)$ for all $x, y \in R$.
(2) R is a commutative ring.

Proof. Suppose $d(x y)=d(y x)$ for all $x, y \in R$ and there exist $a, b \in R$ such that $d(a)$ is not a left zero divisor for $\tau(x y)-\tau(y x)$ for all $x, y \in R$ and b is not a left zero divisor for (x, y). By proposition 5.1 we deduce that R is a commutative near-ring. Since R is commutative, it is distributive. So by Lemma $2.10, R$ is a ring. Conversely, suppose R is a commutative ring. By proposition $5.1 d(x y)=d(y x)$ for all $x, y \in R$ and there exists $a \in R$ such that $d(a)$ is not a left zero divisor for $\tau(x y)-\tau(y x)$ for all $x, y \in R$. Since $(R,+)$ is abelian, we obtain $(x, y)=0$ for all $x, y \in R$. So for all $z \in R-\{0\}$, we get that z is not a left zero divisor for (x, y) for all $x, y \in R$.

Corollary 5.3 Let R be a near-ring with a non-zero multiplicative σ derivation d such that $d(x y)=d(y x)$ for all $x, y \in R$ and there exists $a \in R$ such that $d(a)$ is not a left zero divisor in R. Then R is a commutative ring.

We generalize Theorem 2.6 of [7] and Theorem 4.1 of [3] in the following theorem.

Theorem 5.4 Let R be a 3 -prime near-ring with a non-zero multiplicative (σ, τ)-derivation d such that τ is a multiplicative automorphism and $d(x y)=$ $d(y x)$ for all $x, y \in R$. Then R is a commutative ring.

Proof. Using the proof of Proposition 5.1, we get (5.1) and then $d(y) \tau(x) \tau(y)=$ $d(y) \tau(y) \tau(x)$ for all $x, y \in R$. Putting $x z$ instead of x, we have $d(y) \tau(x) \tau(z) \tau(y)=$ $d(y) \tau(y) \tau(x) \tau(z)=d(y) \tau(x) \tau(y) \tau(z)$ for all $x, y, z \in R$. Thus, $d(y) \tau(x)[\tau(z) \tau(y)-$ $\tau(y) \tau(z)]=0$. Since τ is onto, we obtain $d(y) R[\tau(z) \tau(y)-\tau(y) \tau(z)]=\{0\}$. Using primeness of R, for all $y \in R$ either $d(y)=0$ or $\tau(z y)=\tau(y z)$. As d is a non-zero multiplicative (σ, τ)-derivation, there exists $a \in R$ such that $d(a) \neq 0$. So $a \in Z(R)$ since τ is a monomorphism. By the same way again in the proof of Proposition 5.1, we have (5.2) and then $d(a) \tau(x) \tau(y)=d(a) \tau(y) \tau(x)$. Putting $x z$ instead of x, we get $d(a) \tau(x) \tau(z) \tau(y)=d(a) \tau(y) \tau(x) \tau(z)=$ $d(a) \tau(x) \tau(y) \tau(z)$ for all $x, y, z \in R$. Therefore, $d(a) \tau(x)[\tau(z) \tau(y)-\tau(y) \tau(z)]=$ 0 for all $x, y, z \in R$ and then $d(a) R[\tau(z) \tau(y)-\tau(y) \tau(z)]=\{0\}$. Using the primeness of R and $d(a) \neq 0$, we have $\tau(z) \tau(y)=\tau(y) \tau(z)$ for all $y, z \in R$ and R is a commutative near-ring. Since R is commutative and $d(a) \neq 0$ is not a left zero divisor in R by Lemma 2.5, then R is a commutative ring by Lemma 2.10 .

Remark 5.1 Since a near-ring R which satisfies the hypothesis of Theorem 5.4 will be commutative, we have $d(a) \neq 0$ is not a zero divisor in R for some $a \in R$ by Lemma 2.5. So the condition " R is a 3-prime near-ring with a non-zero multiplicative (σ, τ)-derivation d such that τ is a multiplicative automorphism and $d(x y)=d(y x)$ for all $x, y \in R$ " implies the condition " R is a near-ring with a non-zero multiplicative (σ, τ)-derivation d such that τ is one-to-one, $d(x y)=d(y x)$ for all $x, y \in R$ and there exists $a \in R$ such that $d(a)$ is not a left zero divisor in R ". The converse is not true as the following example shows, let R be the polynomial ring $\mathbb{Z}_{4}[x]$ and d the usual derivative. Then R is commutative and $d(x y)=d(y x)$ for all $x, y \in R$. Moreover, $d\left(x^{5}\right)=5\left(x^{4}\right)=$ x^{4} is not a zero divisor in R. But R is not prime since $2 x R 2 x=R(2 x)(2 x)=$ $R\left(4 x^{2}\right)=\{0\}$ and $2 x \neq 0$. So the second condition is weaker than the first one.

Corollary 5.5 Let R be a 3 -prime near-ring with a non-zero (σ, τ)-derivation d such that $[x, d(y)]_{\sigma, \tau}=0$ for all $x, y \in R$. If τ is an automorphism on R, then R is commutative ring.

Proof. Using $[x, d(y)]_{\sigma, \tau}=0$ and Lemma 2.1, we have $d(x y)=\sigma(x) d(y)+$ $d(x) \tau(y)=d(y) \tau(x)+\sigma(y) d(x)=\sigma(y) d(x)+d(y) \tau(x)=d(y x)$. Hence, we get the result by Theorem 5.4.

Corollary 5.6 Let R be a 3 -prime near-ring with a non-zero multiplicative σ-derivation d such that $d(x y)=d(y x)$ for all $x, y \in R$. Then R is a commutative ring.

Theorem 5.7 Let R be a near-ring with a (σ, τ)-derivation d such that $d(x y)=-d(y x)$ for all $x, y \in R$ and there exists $a \in R$ such that $d(a)$ is not a left zero divisor in R. If τ is a monomorphism on R, then R is a commutative ring of characteristic 2 .

Proof. Replacing x by $y x$ in $d(x y)=-d(y x)$, we get $d(y x y)=-d(y y x)$ and hence $d(y(x y+y x))=0$. Then $\sigma(y) d(x y+y x)+d(y) \tau(x y+y x)=0$ for all $x, y \in R$. Since $d(x y)=-d(y x)$, we have $d(y) \tau(x y+y x)=0$ for all $x, y \in R$. As $d(a)$ is not a left zero divisor in R, then $\tau(x a+a x)=0$ and hence $x a=-a x$ for all $x \in R$. For all $x, y \in R$, we have $d(a(x y))=-d((x y) a)=$ $-d(x(y a))=-d(x(-a y))=-d(-x a y)=d(x(a y))=-d((a y) x)=-d(a(y x))$ for all $x, y \in R$. It follows that $d(a(x y+y x))=0$. So $d(a) \tau(x y+y x)=0$. and then $x y=-y x$ for all $x, y \in R$. Observe that $(x+y) z=-[z(x+y)]=-[z x+$ $z y]=-z y-z x=y z+x z$ for all $x, y, z \in R$. Since $0 x=(0+0) x=0 x+0 x$ for all $x \in R$, we have $0 x=0$ and R is zero-symmetric. Now, $0=0 x=(y+$ $(-y)) x=(-y) x+y x$ which means $(-y) x=-y x$ for all $x, y \in R$. Therefore, $(x+y) z=-(z(x+y))=(-z)(x+y)=(-z) x+(-z) y=-z x+(-z y)=x z+y z$ for all $x, y, z \in R$ and R is distributive. Since $x y=-y x$ for all $x, y \in R$, we
have $x^{2}=-x^{2}$ for all $x \in R$ and then $0=x^{2}+x^{2}=x(x+x)=x(2 x)$. Choosing $x=d(a)$, we have $d(a)(2 d(a))=0$ and hence $2 d(a)=0$. Using distributivity of R, observe that $d(a)(2 y)=d(a)(y+y)=d(a) y+d(a) y=$ $(d(a)+d(a)) y=(2 d(a)) y=0 y=0$ which means $2 y=0$ for all $y \in R$. Thus, $2 R=\{0\}$ and R is of characteristic 2 . Therefore, R is an abelian near-ring and $x y=-y x=y x$ for all $x, y \in R$. Therefore, R is a commutative ring.

Corollary 5.8 Let R be a near-ring with a σ-derivation d such that $d(x y)=-d(y x)$ for all $x, y \in R$ and there exists $a \in R$ such that $d(a)$ is not a left zero divisor in R. Then R is a commutative ring of characteristic 2 .

We generalize Theorem 4.2 of [3] in the next result.
Theorem 5.9 Let R be a 3 -prime near-ring with a non-zero (σ, τ)-derivation d such that $d(x y)=-d(y x)$ for all $x, y \in R$. If τ is an automorphism on R, then R is a commutative ring of characteristic 2 .

Proof. Replacing x by $y x$ in $d(x y)=-d(y x)$, we get $d(y) \tau(x y+y x)=0$ and then $d(y) \tau(x) \tau(y)=-d(y) \tau(y) \tau(x)$ for all $x, y \in R$. Replacing x by $x z$, we get

$$
\begin{aligned}
d(y) \tau(x) \tau(z) \tau(y) & =-d(y) \tau(y) \tau(x) \tau(z)=-(-d(y) \tau(x) \tau(y)) \tau(z) \\
& =-[d(y) \tau(x) \tau(-y) \tau(z)]
\end{aligned}
$$

and hence $d(y) \tau(x)[\tau(z) \tau(y)+\tau(-y) \tau(z)]=0$ for all $x, y, z \in R$. So we have $d(y) R[\tau(z) \tau(y)+\tau(-y) \tau(z)]=\{0\}$ and then for each $y \in R$ either $d(y)=0$ or $\tau(z y+(-y) z)=0$. As d is non-zero, there exists $a \in R$ such that $d(a) \neq 0$. So $\tau(z a+(-a) z)=0$ and then $z a=-(-a) z=(-a)(-z)$ for all $z \in R$. Observe that $z(-a)=-z a=(-a) z$ and $-a \in Z(R)$. So $d((-a)(x y))=d(((-a) x) y)=$ $-d(y((-a) x))=-d((y(-a)) x)=-d(((-a) y) x)=-d((-a)(y x))$. Thus, $d((-a)(x y+y x))=0$ and then $d(-a) \tau(x y+y x)=0$ for all $x, y \in R$. So $d(-a) \tau(x) \tau(y)=-d(-a) \tau(y) \tau(x)$ for all $x, y \in R$. Replacing x by $x z$, we get $d(-a) \tau(x) \tau(z) \tau(y)=-d(-a) \tau(x) \tau(-y) \tau(z)$ by the same way above. Hence $d(-a) \tau(x)[\tau(z) \tau(y)+\tau(-y) \tau(z)]=0$ for all $x, y, z \in R$. Since $d(-a) \neq 0$, we have $\tau(z y+(-y) z)=0$ which means $z y=(-y)(-z)=-(-y) z$ for all $y, z \in R$. It follows that $z(-y)=-z y=(-y) z$ for all $y, z \in R$ and R is a commutative near-ring. Since R is commutative and $a \neq 0$ is not a zero divisor in R, we have that R is a commutative ring by Lemma 2.10. Since $d \neq 0$ and R is commutative, there exists $a \in R$ such that $d(a) \neq 0$ is not a left zero divisor in R by Lemma 2.5 and hence R is a ring of characteristic 2 by Theorem 5.7.

Corollary 5.10 Let R be a 3 -prime near-ring with a non-zero σ-derivation d such that $d(x y)=-d(y x)$ for all $x, y \in R$. Then R is a commutative ring of characteristic 2.

Example 5.1 Let $R=\mathbb{Z}_{2}[x]$ with $d=\tau$ is the identity map and $\sigma=0$. Then d is a non-zero (σ, τ)-derivation on R and R is a commutative prime ring of characteristic 2. Clearly $d(x y)=d(y x)=-d(y x)$ and $d(x)=x$ is not a left zero divisor in R for all $x \in R-\{0\}$.

The following example shows that the condition " $d(x y)=-d(y x)$ for all $x, y \in R "$ is not redundant in Theorem 5.9.

Example 5.2 Let $R=M_{2}\left(\mathbb{Z}_{2}\right)$ with $d=\tau$ is the identity map and $\sigma=0$. Then R is a non-commutative 2-torsion prime ring and d is a non-zero (σ, τ) derivation on R. Observe that

$$
\begin{aligned}
d\left(\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\right) & =d\left(\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \\
& \neq\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=d\left(\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right) \\
& =d\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right)
\end{aligned}
$$

and hence $d(x y) \neq d(y x)=-d(y x)$. Also, $d\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right)=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \in$ $Z(R)-\{0\}$ is not a left zero divisor in R by Lemma 2.5.

Acknowledgement. The authors thank the referee for his/her valuable suggestions.

References

[1] M. Ashraf, A. Ali and S. Ali, (σ, τ) - derivations on prime near-rings, Arch. Math. (Brno) 40 (2004), no. 3, 281-286.
[2] M. Ashraf and S. Ali, On (σ, τ)-derivations of prime near-rings, Trends in Theory of Rings and Modules. (S. Tariq Rizvi \& S. M. A. Zaidi, (Eds.)), Anamaya Publishers, New Delhi, (2005), 5-10.
[3] M. Ashraf and S. Ali, On (σ, τ)-derivations of prime near-rings-II, Sarajevo J. Math. 4(16) (2008), no. 1, 23-30.
[4] H. E. Bell and G. Mason, On derivations in near-rings, Near-rings and near-fields (Tübingen, 1985), 31-35, North-Holland Math. Stud., 137, North-Holland, Amsterdam, 1987.
[5] Y. Fong, W.-F. Ke, and C.-S. Wang, Nonexistence of derivations on transformation near-rings, Comm. Algebra 28 (2000), 1423-1428.
[6] O. Golbasi, and N. Aydin, Results on prime near-rings with (σ, τ) derivation, Math. J. Okayama Univ. 46 (2004), 1-7.
[7] O. Golbasi, On a theorem of Posner for 3-prime near-rings with (σ, τ) derivation, Hacet. J. Math. Stat. 36 (2007), no. 1, 43-47.
[8] A. A. M. Kamal, σ-derivations on prime near-rings, Tamkang J. Math. 32(2001), no.2, 89-93.
[9] A. A. M. Kamal and K. H. Al-shaalan, Existence of derivations on nearrings, to appear in Math. Slovaca.
[10] S. Ligh, A note on matrix near rings, J. London Math. Soc. (2) 11 (1975), no. 3, 383-384.
[11] J. D. P. Meldrum, "Near-rings and their links with groups", Research Notes in Mathematics, 134. Pitman (Advanced Publishing Program), Boston, MA, 1985.
[12] G. Pilz, "Near-rings. The theory and its applications", Second edition. North-Holland Mathematics Studies, 23. North-Holland Publishing Co., Amsterdam, 1983.
[13] M. S. Samman, Existence and Posner's theorem for α-derivations in prime near-rings, Acta Math. Univ. Comenian., (N.S.) 78 (2009), no.2, 37-42.
[14] X. K. Wang, Derivations in prime near-rings, Proc. Amer. Math. Soc. 121 (1994), no. 2, 361-366.

[^1]
[^0]: Key Words: zero divisors, (σ, τ)-derivations, 3-prime near-rings, commutativity.
 2010 Mathematics Subject Classification: Primary 16W25, 16 Y30.
 Received: October, 2011.
 Revised: March, 2012.
 Accepted: April, 2012.

[^1]: Ahmed A. M. Kamal,
 Department of Mathematics,
 College of Science, King Saud University,
 P.O. Box 2455 Riyadh 11451, Kingdom of Saudi Arabia.

 Permanent address: Department of Mathematics, Faculty of Sciences, Cairo
 University, Giza, Egypt.
 Email: aamkamal_9@hotmail.com
 Khalid H. Al-shaalan,
 Science Department,
 King Abdul-aziz Military Academy,
 Kingdom of Saudi Arabia.

