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Commutativity of near-rings with
(0, 7)-derivations

Ahmed A. M. Kamal and Khalid H. Al-Shaalan

Abstract

In this paper we study some conditions under which a near-ring R
admitting a (multiplicative) (o, 7)-derivation d must be a commutative
ring with constrained-suitable conditions on d, o and 7. Consequently,
we obtain some results which generalize some recent theorems in the
literature.

1 Introduction

Let R be a left near-ring, Z(R) its multiplicative center and o, 7 two maps
from R to R. We say that R is 3-prime if, for all z,y € R, xRy = {0}
implies = 0 or y = 0. For all z,y € R, we write [z,y] = xy — yx for the
multiplicative commutator, [z,y], = o(z)y — y7(x),x oy = zy + yx for the
anti-commutator, (z 0 y)s,» = o(z)y + y7(z) and (z,y) =z +y —x —y for
the additive commutator. A map d : R — R is called a multiplicative (o, T)-
derivation if d(zy) = o(z)d(y)+d(z)7(y) for all z, y € R. If d is also an additive
mapping, then d is called a (o, 7)-derivation (see [1] and [6]). If 7 = 1, then d
is called a (multiplicative) o-derivation (see [8]). If ¢ = 7 = 1g, then d is the
usual (multiplicative) derivation. We say that « € R is constant if d(x) = 0.
d will be called (o, 7)-commuting ( (o, T)-semicommuting) if [z, d(x)],r = 0
(if [z,d(x)]o.r =0 0r (xod(x))sr =0) for all z € R. An element = € R is
called a left (right) zero divisor in R if there exists a non-zero element y € R
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such that zy = 0 (yz = 0). A zero divisor is either a left or a right zero
divisor. A near-ring R is called a constant near-ring, if xy =y for all z,y € R
and is called a zero-symmetric near-ring, if Ox = 0 for all x € R. A trivial
zero-symmetric near-ring R is a zero-symmetric near-ring such that zy = y
for all x € R — {0},y € R [11]. We refer the reader to the books of Meldrum
[11] and Pilz [12] for basic results of near-ring theory and its applications.

The study of commutativity of 3-prime near-rings by using derivations
was initiated by H. E. Bell and G. Mason in 1987 [4]. In [8] A. A. M. Kamal
generalizes some results of Bell and Mason by studying the commutativity of
3-prime near-rings using a o-derivation instead of the usual derivation, where
o is an automorphism on the near-ring. M. Ashraf, A. Ali and Shakir Ali in
[1] and N. Aydin and O. Golbasi in [6] generalize Kamal’s work by using a
(o, 7)-derivation instead of a o-derivation, where o and 7 are automorphisms.
In this paper, we generalize many results on near-rings with (o, 7)-derivations,
where ¢ and 7 are just two maps from the near-ring to itself which satisfy
some other conditions.

In Section 2 we give some well-known results and we add some new auxil-
iary results on a near-ring R admitting a non-zero (o, 7)-derivation d, which
will be useful in the sequel. Proposition 2.7 determines the relation between
zero-symmetric near-rings and (o, 7)-derivations.

In Section 3 we give some examples of non-zero (o, 7)-derivations on near-
rings. Theorem 3.3 shows that under some conditions any zero-symmetric
near-ring without non-zero zero divisors admitting a non-zero (o, 7)-semicommuting
(o, T)-derivation is an abelian near-ring. In Theorem 3.5 we show the whole
cases for a trivial zero-symmetric near-ring to have a non-zero multiplicative
(o, T)-derivation.

Section 4 is devoted to study the commutativity of a near-ring R admitting
a non-zero (multiplicative) (o, 7)-derivation d such that d(R) C Z(R). As a
consequence, we generalized Theorem 2 of [6], Theorem 3.1 of [1], Theorem
2.5 of [8] and Theorem 2 of [4].

Section 5 is focused on studying the commutativity of a near-ring R ad-
mitting a non-zero (multiplicative) (o, 7)-derivation d such that d(zy) = d(yx)
for all z,y € R. As a consequence of the results obtained in this section, we
generalized Theorem 2.6 of [7] and Theorem 4.1 of [3]. The rest of Section 5 is
devoted to study the commutativity under the condition d(zy) = —d(yzx) for
all z,y € R to obtain that R is a commutative ring of characteristic 2. As a
consequence, we generalized Theorem 4.2 of [3].
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2 Preliminaries

In this section we give some well-known results and we add some new lemmas
which will be used throughout the next sections of the paper. Throughout
this section, R will be a near-ring.

Lemma 2.1 [6, Lemma 1] Let d and 7 be additive mappings on a near-ring
R and o be any map from R to R. Then d(xy) = d(x)7(y) + o(x)d(y), for all
z,y € R if and only if d is a (o, 7)-derivation on R.

Lemma 2.2 [6, Lemma 2] For all z,y, z € R and ¢ and 7 are multiplicative
endomorphisms, we have that R satisfies the partial distributive law on a
multiplicative (o, 7)-derivation d, that means (o(z)d(y) + d(x)7(y))7(z) =
o(x)d(y)7(z) +d(z)7(y)T(2). Moreover, if 7 is onto, then for all z,y,c € R we
have (o(x)d(y) + d(x)7(y))c = o(x)d(y)c + d(z)7(y)c.

Lemma 2.3 Let z € Z(R) be not zero divisor. If either yz or zy is in
Z(R), then y € Z(R).

Proof. Suppose zy € Z(R). For all r € R, we have zyr = ray = zry.
Thus, z(yr — ry) = 0. Since z is not a zero divisor in R, we get y € Z(R).
The proof for yz € Z(R) is similar.

Lemma 2.4 [4, Lemma 3(ii)] If x € Z(R) is not a zero divisor in R and
x+x € Z(R), then (R, +) is abelian.

Lemma 2.5 [4, Lemma 3(i)] Let R be a 3-prime near-ring and z € Z(R) —
{0}. Then z is not a zero divisor in R.

Lemma 2.6 Let d be a non-zero (o, 7)-derivation on R such that 7 is an
additive mapping on R and suppose o(u) # 0 is not a left zero divisor in R for
some u € R. If [u,d(u)]sr =0 or (uod(u))sr =0, then (z,u) is a constant
for every = € R.

Proof. We prove the lemma in the case [u, d(u)],, = 0. From u(u+z) =
u? + ur we obtain

d(u(utx)) = o(u)d(utz)+d(uw)r(u+z) = o(u)d(u)+o(u)d(z)+d(u)T(u)+d(u)T(z)
and
d(u? +uz) = d(u?) + d(uzr) = o(u)d(u) + d(u)7(u) + o(u)d(z) + d(u)T(z).

Comparing the previous two equations, we get o (u)d(z)+d(u)7(u) = d(u)7(u)+
o(u)d(z). Since [u, d(u)], = 0, we have o(u)d(u) = d(u)T(uw). So o(u)d(x)
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) =
o(u)d (ug—O Therefore, o(u)d(z)+o(uw)d(u)+o(u)(—d(z))+

o(u)d(u) = o(u)d(u) + o(u)d(z) and then o(u)d(z) + ()(U()
and o(u)(d(z)+d(u )—d(a:)—d(u)) =o(u)d(z+u—z— u)(
)o,r

O

Since o(u) # 0 is not a left zero divisor in R, we get d((x,u ) =0 and (z
is a constant. The proof is similar for the case (uod(u))y r

Proposition 2.7 A near-ring R is admitting a multiplicative (o, 7)-derivation
d such that ¢ and 7 are multiplicative endomorphisms and 7(0) = 0 where 7
is either one-to-one or onto if and only if R is zero-symmetric.

Proof. By [11, Theorem 1.15] any near-ring can be expressed as the sum
of R, = {z € R: 0x = 0} the unique maximal zero-symmetric subnear-ring of
R and R, = OR = {Or : r € R} the unique maximal constant subnear-ring of
R.

1) Suppose that R admitting a multiplicative (o, 7)-derivation d such that
o and 7 are multiplicative endomorphisms and 7(0) = 0 where 7 is either one-
to-one or onto. Suppose also that R is not zero-symmetric, so {0} & OR. If
z € OR, then z = 0y for some y € R. Forall z € R, we have xz = 20y = 0y = 2
and zz = Oyz € OR. Observe that 7(z) = 7(0y) = 7(0)7(y) = 07(y) € OR.
Thus, z € OR implies 7(z) € OR. Since 7 is either one-to-one or onto, we
have 7(0R) # {0}. So there exists z € OR such that 7(2) # 0. Hence,
d(z) = d(2%) = 0(2)d(2) + d(2)7(2) = 0(2)d(2) + 7(2). Multiplying both sides
by o(z), we have o(2)d(z) = 0(z)o(2)d(z)+0(2)7(2) = 0(2)d(z)+7(2). Thus,
7(2z) = 0, which is a contradiction. Therefore, R must be zero-symmetric.

2) Suppose R is zero-symmetric. It is easy to show that the zero map
is a derivation on R which is called the zero derivation on R. Trivially this
zero derivation on R is a (1g,1g)-derivation on R where 1g is the identity
automorphism on R.

For the usual derivation, there are some classes of near-rings which has
only the zero derivation. The most important one is the subclass of the class
of simple near-rings with identity {M,(G) : G is any group}, where the near-
ring M, (G) is the set of all zero preserving maps from G to itself with addition
and composition of maps [5, Theorem 1.1]. For the (o, 7)-derivation, we have
a better result in the proof of Proposition 2.9 than the zero derivation.

Corollary 2.8 A near-ring R is admitting a multiplicative o-derivation
such that o is a multiplicative endomorphism if and only if R is zero-symmetric.

Proposition 2.9 If R is a non-zero near-ring, then it has a non-zero (mul-
tiplicative) (o, 7)-derivation d.

Proof. Take d to be any non-zero additive map (any non-zero map) from
R to R such that d(zy) = f(x)d(y) for all z,y € R, where f is a map from R to
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itself (e. g. take d = f as the identity map). Let 0 = f and 7 = 0. Then for all
z,y € R we have d(zy) = f(2)d(y) = f(x)d(y) + d(2)0 = o(z)d(y) + d(z)7(y).
Hence, d is a non-zero (o, 7)-derivation.

Note that the (o, 7)-derivation mentiond in the proof of Proposition 2.9
includes all endomorphisms (multiplicative endomorphisms) on R by putting
f = d. Observe that also if d.is a right multiplcative map (i. e. there exists
¢ € R such that d(z) = zc for all x € R), then d(zy) = xd(y) for all z,y € R.
So the multiplicative (o, 7)-derivation mentiond in the proof of Proposition 2.9
includes all right multiplcative maps by putting f equal to the identity map.

The following example shows that the condition “r is either one-to-one or
onto” in Proposition 2.7 is essential.

Example 2.1 Let R be any non-zero constant near-ring. Then R is not
zero-symmetric. Suppose 7 = 0 and o is any endomorphism on R. So for
any additive mapping d of R and for all z,y € R we have d(zy) = d(y) =
o(z)d(y) = o(x)d(y) + d(z)7(y). Therefore, any additive mapping on R is a
(o, 7)-derivation on R which illustrates that Proposition 2.7 is not true if 7 is
neither one-to-one nor onto.

Lemma 2.10 Let R be a distributive near-ring such that there exists a € R
which is not a left zero divisor for (x,y) for all z,y € R. Then R is a ring.

Proof. Since R is distributive, we have (r+r)(z+y) = (r+r)z+(r+r)y =
re+re+ry+ry and (r+7)(x+y) = r(z+y)+r(z+y) = re+ry+re—+ry for all
r,z,y € R. Comparing the previous two expressions, we get rx +ry = ry+rz
and hence r(z +y —x —y) = 0 for all ,z,y € R. Choosing r = a, we have
z4+y—a—y=0and (R,+) is abelian. Hence, R is a ring.

Definition 2.1 [10] A near-ring R is called n-distributive, where n is a
positive integer, if for all a,b, ¢, d,r, a;,b; € R,

(i) ab+ ed = ed + adb

(i) (OC ab))r = aibyr, where t =1,2,...,n.

Lemma 2.11 Let R be a 2-distributive near-ring. Then

(i) R is zero-symmetric.

(ii) For all z,y,r € R, we have —zyr = (—zy)r.

Proof. (i) For all » € R, we get Or 4+ Or = 00r + 00r = (00 + 00)r = Or.
So Or = 0 and R is zero-symmetric.

(ii) For all z,y,r € R, we have zyr + (—zy)r = (zvy + (—zy))r = Or = 0.
Thus, (—zy)r = —zyr for all z,y,r € R.
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Lemma 2.12 Let R be a 2-distributive near-ring with identity. Then R
is a ring.

Proof. Let 1 be the identity of R. Using Definition 2.1, we have r + s =
rl+sl =sl+rl =s+rforall rs € Rand (R,+) is an abelian group.
Now, (z +y)r = (z1 + y1)r = 2lr + ylr = xr + yr for all z,y,r € R, so R is
distributive. Hence, R is a ring.

3 Examples and commutativity of (R, +)

We start this section by giving three examples of (o, 7)-derivations on a near-
ring.

Example 3.1 Let R be a 2-distributive near-ring with a distributive ele-
ment a in R (see [9, Example 2.4] for an example of a 2-distributive near-ring
with some distributive elements which is not a distributive near-ring). We will
now prove that for any endomorphisms 0,7 on R, d(z) = o(x)a — ar(x) is a
(o, T)-derivation on R. Using (i) and (ii) of Lemma 2.11 and Definition 2.1(i),
observe that

dxz+y) = o@+yla—ar(z+y)=(o(z)+o(y))a—alr(z)+7(y))
= o(@)a+o(y)a—ar(y) —ar(z) =o(x)a — ar(z) + o(y)a — a7 (y)
d(z) + d(y)

and d is an additive mapping. Also, from Definition 2.1(ii) we have

d(xy) = o(zy)a—ar(zy) = o(x)o(y)a - ar(x)7(y)
= o(@)o(y)a —o(x)ar(y) + o(x)ar(y) — ar(z)7(y)
= o(@)[o(y)a —ar(y)] + [o(x)a — ar(2)]7(y) = o(x)d(y) + d(2)7(y).

In particular, If R has an identity, then R is a ring by Lemma 2.12. If
we take a to be the identity, then for any endomorphisms o,7 on R, d(x) =
o(x) — 7(x) is a (o, 7)-derivation on R.

Example 3.2 Let R be an abelian near-ring with identity 1 € R and
without non-zero zero divisors which is not a ring (for example take R to
be any near-field which is not a division ring). Take o to be any non-zero
multiplicative endomorphism on R such that ¢ # 7 where 7 is defined by
7(0) =0 and 7(z) =1 for all x € R — {0}. Observe that 7 is a multiplicative
endomorphism on R. Define d : R — R by d(z) = o(z)a — ar(x) where
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a € R —{0}. So d is a non-zero multiplicative (o, 7)-derivation on R. indeed,
for all x € R,y € R, we have

dzy) = o(zy)a—at(zy) = o(r)o(y)a —at()7(y)
o(z)o(y)a —o(z)ar(y) + o(x)ar(y) — a7 (x)7(y)
= o(z)[o(y)a—ar(y)] + [o(z)a — at(2)]7(y) = o(z)d(y) + d(z)7(y).

Also, for all ¢ € R such that d(c) # 0, we obtain that d(c) is not a left zero
divisor in R.

Example 3.3 Let N be a zero-symmetric abelian near-ring which has a
non-zero ideal I contained in Z(N). Let a € I and define d : N — N by
d(xz) = o(x)a — 7(z)a for all x € N, where o and 7 are endomorphisms of N.
Then d(N) C I C Z(N) and d is a (o, 7)-derivation on N. Indeed,

da+y) = ole+yla—r(e+y)a=o(w)a+olya—r(ya—r(z)a
— o(@)a—r(2)a+o(y)a—T(y)a = d(z) +d(y)

which means that d is an additive mapping.

d(zy) = o(zy)a—T1(ry)a = o(r)o(y)a —o()r(y)a+o(x)7(y)a —7(x)7(y)a
= o(@)[o(y)a —7(y)a] + 7(y)ao(z) — 7(y)ar(z)
= o(@)lo(y)a —7(y)a] + 7(y)lo(z)a — 7(z)a]
(z) )d(

For example, take N to be the direct sum of M and R, where M is a zero-
symmetric abelian near-ring and R a commutative ring, which generalizes an
example due to Samman in 2009 [13].

Remark 3.1 We know from [14, Lemma 2] that for a derivation d on a
near-ring R that if z € R is central, then so is d(x). This is not true in a (o, 7)-
derivation on R, even if we take R to be a ring and o, 7 are automorphisms
on R or ¢ = 7 is an endomorphism on R which is not onto. The next example
illustrates that.

Example 3.4 Let R = Ms(Z) x M3(Z) where Z is the ring of integers.
Then R is a non-commutative ring which has a non-zero center Z(R), where

- {([5 213 £])e0es)

Define d : R — R by d(z) = o(z)A — Ar(x) for all z € R, where A is a
non-zero element of R, o is the identity map on R and 7(x,y) = (y,x) for



128 AnMED A. M. KAMAL AND KHALID H. AL-SHAALAN

all z,y € R. Clearly that 0,7 are automorphisms on R. So d is a (o, 7)-
derivation on R by Example 3.1. Let A = ({ é 8 } , [ 8 8 }) Thus, for
all a,b,c,d,e, f,g,h €Z

d(Lealle iD= L))

(Lo o]-Lo o )]
A (oo lo o)l
NowtakeR:H“ Ic)}:a,b,cél}. Define d : R — R by d(z) =

OO OO OO
OO O o O o
o= OO
SO O
| IS
| —
oo OO

OO OO O+
OO O OO

0
o(x)A — Ao (z) for all z € R, where A is a non-zero element of R and o is

an endomorphism on R defined by o ([ a b }) = [ a 0 } Clearly o is

ol (5 2)-[ 5]

a,bceZ. Nowe—[(l] (R), but d(e) = } ¢ Z(R), since
oolloo]=[oa]#[0 0]=[0 o]l 0]

For Remark 3.1, we have the following result:

1
0

0
1

not onto. Choosing A = [ 1 } we have d <[ 8

b
c
0
0

o O

Proposition 3.1 [2, Proposition 2.1] Let R be a near-ring with a (o, 0)-
derivation d such that ¢ is an epimorphism on R. If x € Z(R), then d(z) €
Z(R).

Remark 3.2 In the usual derivation we have that for a derivation d on
a near-ring R, d(R) C Z(R) implies d(zy) = d(yz) for all z,y € R, but
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the converse is not true. For (o, 7)-derivations, d(R) C Z(R) does not imply
d(xy) = d(yz) for all 2,y € R even for rings, as Example 3.5 shows.

a 3b
3¢ d

of M5(Zg). So d : R — R defined by d(z) = o(z) [

Example 3.5 Let R = { [ } ta,b,e,d e Zg}. Then R is a subring

30 30

0 3}_[0 3]7(””)
for all z € R where 0,7 are endomorphisms on R, is a (o, 7)-derivation by
Example 3.1. Take 7 = 0 and o is the identity. Thus, for all a,b,c,d € Zqg

d([gc szZU(Hc inS 3}[3“ gd]eZ(R)
and then d(R) C Z(R). ObservethatdQé g] é i’] _
d

ool #Le o ]=e(ls 5]

The following result shows that when d(R) C Z(R) implies d(zy) = d(yx)
for all x,y € R.

Proposition 3.2 Let R be a near-ring with a (o, 7)-derivation d such that
d(R) C Z(R) and 7 is an additive mapping on R. Then d is a (7, 0)-derivation
on R if and only if d(zy) = d(yz) for all z,y € R.

Proof. Using d(R) C Z(R) and Lemma 2.1, we have d(xy) = d(z)7(y) +
o(z)d(y) = 7(y)d(z) + d(y)o(z) for all z,y € R. Now suppose d is a (7,0)-
derivation. Thus, d(zy) = 7(y)d(z) + d(y)o(z) = d(yz). Conversely, suppose
d(zy) = d(yz) for all z,y € R. Therefore, d(yz) = d(zy) = 7(y)d(z)+d(y)o(x)
for all x,y € R which means d is a (7, 0)-derivation on R.

Theorem 3.3 Let R be a zero-symmetric near-ring without non-zero zero
divisors. If R admits a non-zero (o, 7)-semicommuting (o, 7)-derivation d on
R such that 7 is a monomorphism on R. Then (R, +) is abelian.

Proof. For any additive commutator (z,y), if o(y) # 0 for some y €
R, then (z,y) is constant by Lemma 2.6. If o(y) = 0, then for both cases
[y, d(y)]o,r = 0or (yod(y))s,r = 0 we have o(y)d(y) = 0 and hence d(y)7(y) =
0. Since R does not have non-zero zero divisors, we obtain that either d(y) = 0
or 7(y) = 0. If d(y) = 0, then d(z +y — x —y) = 0 and (x,y) is constant.
If 7(y) = 0, then y = 0 as 7 is a monomorphism. So d(z +y—z —y) =0
and (z,y) is constant. Hence, in all cases (z,y) is constant. Since y is an
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arbitrary, we have (x,y) is constant for all additive commutators. Observe
that (zz, 2y) = ze+zy—zox—zy = z(x+y—x—y) = z(z,y) for all z,y, z € R.
It follows that d(z(x,y)) = 0 and o(2)d(z,y) + d(2)7(x,y) = d(z)7(x,y) =0
for all x,y,z € R. As d is non-zero, choose z = t € R such that d(¢) # 0.
Since d(t) is not a zero divisor in R, we have 7(z,y) = 0 and then (x,y) =0
for all x,y € R. Hence, (R, +) is abelian.

In [9, Example 2.14], we mentioned an example of a class of 3-prime abelian
near-rings which are not rings admitting a non-zero (o, o)-derivation and a
non-zero (1,c)-derivation, where 1 = ig the identity map on R. Also, in
Example 3.2 above, we have an example of a non-zero multiplicative (o, 7)-
derivation on a near-field (which is an abelian near-ring without non-zero zero
divisors).

Corollary 3.4 Let R be a near-ring without non-zero zero divisors. If
R admits a non-zero o-semicommuting o-derivation d on R, then (R,+) is
abelian.

The class of trivial zero-symmetric near-rings is very useful as a tool in some
proofs of results in near-rings, for example, to prove the simplicity of M (G)
and M,(G) (see Lemma 1.34, Theorem1.37 and Theorem 1.42 of [11]). Observe
that for any near-ring R # {0}, the identity ig is a non-zero (o, 7)-derivation
on R with (¢ =0 and 7 = ig) or (¢ =ig and 7 = 0). In the following result
we will show that if d is a non-zero multiplicative (o, 7)-derivation on a trivial
zero symmetric near-ring R, what are the possible cases.

Theorem 3.5 Let R be a trivial zero symmetric near-ring with a non-zero
multiplicative (o, 7)-derivation d. Then we have one of the following cases:

(i)c=0and d=r.

(ii) 7 =0, o(z) # 0 for all z € R—{0} and ¢(0) = 0 if and only if d(0) = 0.
If o(0) # 0, then d is a constant function.

(iii) d = 7 and o # 0 such that o(z)d(x) = 0 = ¢(0) = d(0) and if o(x) =0
then d(x) # 0 for all x € R — {0}.

(iv) d(0) = 7(z) # 0,0(y) # 0 and d(z) = 7(0) =0 for all z € R—{0},y €
R.

(v) 7(y) = d(0) # 0,0(x) # 0 and d(z) = 0(0) =0 for all z € R — {0},y €
R.

Proof. Suppose ¢ = 0. Then for all z € R — {0},y € R, we have
d(y) = d(zy) = o(z)d(y) + d(z)7(y) = d(z)7(y). As d # 0, we have d(z) # 0
for all x € R — {0}. That means d(y) = 7(y) for all y € R and d = 7. Hence,
we get (i).
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Now suppose 7 = 0. Then for all x € R — {0},y € R, we have d(y) =
d(zy) = o(z)d(y). For all x € R — {0}, we get that d(a) = d(za) = o(z)d(a)
which implies that o(x) # 0 for all z € R — {0}. If d(0) = 0, then 0 = d(0) =
d(0a) = o(0)d(a). Thus, 0(0) = 0. Now, if ¢(0) = 0, then d(0) = d(00) =
0(0)d(0) = 0. Now, if 0(0) # 0, then d(0) = d(0z) = ¢(0)d(z) = d(z) for all
x € R. Thus, d is a constant function. Hence, we get (ii).

After that, suppose ¢ # 0 and 7 # 0. There exist a,b,c € R such that
d(a) # 0, o(b) # 0 and 7(c) # 0. For all z € R — {0},y € R, we have
d(y) = d(zy) = o(x)d(y) + d(z)7(y). If there exists x € R — {0} such that
o(xz) = 0 then for all y € R, we have d(y) = d(zy) = d(x)7(y). If d(z) =
0, then d(y) = d(zy) = d(z)7(y) = 0 for all y € R and hence d = 0, a
contradiction. So d(z) # 0 and d(y) = d(z)7(y) = 7(y) for all y € R. Thus,
d = 7. Therefore, d(x) = d(xzz) = o(z)d(x)+d(x)d(z) = o(z)d(x)+d(x) for all
x € R. That implies o(z)d(z) = 0 for all z € R. So o(a) = o(c) = d(b) = 0.
Then d(0) = d(0b) = o(0)d(b) + d(0)d(b) = 0. Also, 0 = d(0) = d(0a) =
o(0)d(a) + d(0)d(a) = o(0)d(a). That means o(0) =0. So a # 0, b # 0 and
¢ # 0. Hence, we get (iii).

Now, suppose that o(z) # 0 for all x € R — {0}. Then for all z € R —
{0},y € R, we have d(y) = d(zy) = o(x)d(y) + d(x)7(y) = d(y) + d(z)7(y).
So d(x)T(y) = 0 for all x € R — {0},y € R. As 7 # 0, we deduce that
d(z) = 0 for all z € R — {0}. That means a = 0 as d # 0. Therefore,
0# d(0) = d(0x) = o(0)d(z)+d(0)7(z) = d(0)T(z) = 7(x) for all z € R—{0}.
If o(0) # 0, then d(0) = d(00) = o(0)d(0) + d(0)7(0) = d(0) + 7(0) and
0 = 7(0). Hence, we get (iv).

If 0(0) = 0, then d(0) = d(00) = 0(0)d(0) + d(0)7(0) = 7(0). Hence, we
get (v).

In the following example, we will give an example for each case of the five
cases mentioned in Theorem 3.5.

Example 3.6 Let R be a non-zero trivial zero symmetric near-ring. For
case (i), take 0 = 0 and d = 7 = iy the identity map. For case (ii), if ¢(0) = 0,
then take 0 = d = ig and 7 = 0. If ¢(0) # 0, then take 7 = 0 and 0 = d
as a constant map defined by d(z) = ¢ # 0 for all x € R. For case (iii), let
R —{0} = SUT such that SNT = ¢ and S # ¢ # T. Let d = 7,0 be
any maps defined as the following, 0 = ¢(0) = d(0) and d(z) = z,0(x) = 0 if
z € S and d(z) = 0,0(x) =z if z € T . For case (iv), take o as a constant
map defined by o(z) = ¢ # 0 for all z € R and define d and 7 as the following
d(xz) = 7(0) = 0 and d(0) = 7(z) = c for all z € R — {0}. For case (v), take 7
as a constant map defined by 7(x) = ¢ # 0 for all x € R and define d and o
as the following d(z) = 0(0) = 0 and d(0) = o(x) = ¢ for all z € R — {0}.
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4 The condition d(R) C Z(R)

We shall prove some theorems in this section on commutativity of near-rings
which generalize known results due to [4], [8], [1] and [6].

Theorem 4.1 Let R be a near-ring with a non-zero multiplicative (o, 7)-
derivation d such that ¢ and 7 are multiplicative endomorphisms and 7 is
either one-to-one or onto. If d(R) C Z(R) and there exists a € R such that
d(a) is not a left zero divisor in R, then R is a commutative ring.

Proof. For all z,y € R, we have d(zy) = o(z)d(y) + d(z)7(y) € Z(R).
Multiplying d(xy) by 7(y) in the right and the left respectively, we get

dzy)r(y) = (o(@)d(y) +d(@)7(y))7(y) = o(z)d(y)7(y) + d(z)7(y)7(y)
= d(y)o(x)r(y) +d(z)T(y)7(y

)

by g Lomma 22 and () = 7(0)e (2(0) 7 (0)0(2)7(0) = d)7(0)o )4
d(z)T(y)7(y) for all z,y € R. (y)o(x)T(y) = d(y)7(y)o(x) which means
that d(y)[o(z)T(y) — T(y)a(x)] = 0 for all z,y € R. Since d(a) is not a left
zero divisor in R, we have o(x)7(a) = 7(a ) (x) for all x € R. Multiply-
ing d(zy) by 7(a) in the right and the left respectively, we have d(zy)7(a) =
o(x)d(y)r(a) + d(x)7(y)7(a) = d(y)o(x)7(a) + d(x)7(y)7(a) and 7(a)d(zy) =
d(y)r(a)o(z) + d(x)T(a)T(y) for all z,y € R. Using that o(z)7(a) = 7(a)o(x)
for all € R, we have d(z)7(a)7(y) = d(z)7(y)7(a). So d(z)[r(a)T(y) —

7(y)7(a)] = 0 for all z,y € R. Using d(a) is not a left zero divisor in R, we get

7(a)7(y) = 7(y)7(a) for all y € R. Now, multiply d(za) by 7(2) in the right and
the left respectively. It follows that d(za)7(z) = d(a)o(x)7(2) + d(z)7(a)7(2)

~—

Ao&

and 7(2)d(za) = d(a)T(2)o(x) + d(x)7(2)7(a) for all x,z € R. Using that
T(a)T(y) = 7(y)7(a) for all y € R, we get d(a)o(x)7(2) = d(a)7(2)o(z). So

d(a)[o(z)7(2) — 7(2)o(x)] = 0 and then
o(x)1(z) =1(2)0(x) for all x,z € R. (4.1)

Multiplying d(ay) by 7(z) in the right and the left respectively, we have

d(ay)7(z) = d(y)o(a)7(2) + d(a)T(y)7(2) and 7(2)d(ay) = d(y)o(a)7(2) +
d(a)T(z)7(y) for all y, z € R. Using (4.1), we get d(a)7(2)7(y) = d(a)7(y)7(2).

So d(a)[r(2)7(y) — T7(y)T(2)] = 0 and
T(2)T(y) = 7(y)7(2) for all y,z € R. (4.2)

If 7 is either one-to-one or onto, then R is a commutative near-ring. Using,
0 # d(a) € Z(R) is not a left zero divisor in R and Lemma 2.10, we have that
R is a commutative ring.
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The condition “7 is either one-to-one or onto” in Theorem 4.1 is essential
even for rings.

Example 4.1 Let R =

1C

R o O

0
0 |:a€Z(S),bceS ) where S is
a
h

any non-commutative division rin, has non-zero center. Take for exam-

ple

w

S = { [ Z_m ;U ] ,z and w are complex numbers}

where Z is the complex conjugate of z. Then S is a non-commutative division
ring which has a non-zero center as if r is a real number, then for every complex

numbers z, w we have
2r wr | | z w r 0
—wr zZr | | —w Zz 0 r

HHIFEE

a 0 0
Then R is a non-commutative ring. Defined : R — R by d 0 b 0 =
c 0 a

a 0 0
0 a 0 |. Sodis an additive mapping. Taking ¢ = d, then ¢ is an en-
0 0 a
domorphism on R. Taking 7 = 0, then 7 is neither one-to-one nor onto.
Also, d is a non-zero (o,7)-derivation and d(R) C Z(R). If there exists
e 0 0] e 0 0 e 0 0
0 f 0| € R such that d 0 f O =10 e 0| #0and
| g 0 e | g 0 e 0 0 e
[e 0 O a 0 0 a 0 0
0 e O 0 b 0| =0forsome | 0O b 0 [ € R, then e # 0 and
| 0 0 e c 0 a c 0 a
[ ea 0 0
0 e O = 0. Since S has no non-zero divisors of zero, we have
ec 0 ea
a 0 0 0 0 O
a =b=c=0and hence | 0 b 0 =10 0 O That means if
c 0 a 0 0 0

d(A) # 0 for some A € R, then it is not a zero divisor in R. Using the
example above with 0 = 0 and 7 = d, we get another counter example.

The next corollary generalizes Theorem 2 of O. Golbasi and N. Aydin [6]
and Theorem 3.1 of M. Ashraf, A. Ali and Shakir Ali [1].
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Corollary 4.2 Let R be a 3-prime near-ring with a non-zero multiplicative
(o, 7)-derivation d such that o and 7 are multiplicative endomorphisms and 7
is either one-to-one or onto. If d(R) C Z(R), then R is a commutative ring.

Proof. Since d is a non-zero multiplicative (o, 7)-derivation, there exists
a € R such that 0 # d(a) and by Lemma 2.5 d(a) is not a left zero divisor in
R. So R is a commutative ring by Theorem 4.1.

Corollary 4.3 Let R be a near-ring with a non-zero multiplicative o-
derivation d such that o is a multiplicative endomorphism on R. If d(R) C
Z(R) and there exists a € R such that d(a) is not a left zero divisor in R, then
R is a commutative ring.

Proof. Since 7 here is the identity isomorphism, we get the result from
Theorem 4.1.

The following corollary generalizes Theorem 2.5 of Kamal [8] and Theorem
2 of Bell and Mason [4].

Corollary 4.4 Let R be a 3-prime near-ring with a non-zero multiplicative
o-derivation d such that o is a multiplicative endomorphism on R and d(R) C
Z(R). Then R is a commutative ring.

Proof. Since 7 here is the identity isomorphism, we get the result by
Corollary 4.2.

Theorem 4.5 Let R be a 3-prime near-ring with a non-zero multiplicative
(o, T)-derivation d that satisfies d(R) C Z(R) such that ¢ and 7 are endomor-
phisms on R and either ker 7 Nkero = {0} or 7(R) Uo(R) = R. Then R is a
commutative ring.

Proof. Since d is a non-zero multiplicative (o, 7)-derivation, there exists
a € R such that 0 # d(a) and by Lemma 2.5 d(a) is not a left zero divisor in
R. So the first Part of this proof is similar to the proof of 4.1 up to equation
(4.2). Now, we have two possible cases:

Case 1: d(b) =0 for all b € ker 7.

From (4.2), we obtain that Or(z) = 7(x)0 = 0 for all x € R. Thus,
d(bz) = o(b)d(x) + d(b)T(x) = o(b)d(x) for all x € R. Multiplying d(bx) by
o(y) in the left and the right respectively, we have o(y)d(bz) = o(y)o(b)d(x) =

o(b)d(x =

d(z)o(y)o(b) for all z,y € R and d(bz)o(y) = of Jo(y) = d(z)o(b)o(y).
Choosing « = a, we have d(a)[o(y)o(b) — o(b)o(y)] = 0 and then
o(y)o(d) —o(b)o(y) =0 for all y € R and for all b € ker7.  (4.3)

Suppose first that ker7 Nkero = {0}. So from (4.2) and (4.3) we conclude
that yb — by € kerr Nkero = {0} for all y € R and for all b € ker7. Thus,
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ker7 C Z(R). If 7 is a monomorphism, then by (4.2) R is a commutative ring.
If there exists 0 # b € ker 7, then 7(o(2)b) = 7(o(z))7(b) = 7(c(2))0 = 0 for
all x € R which means o(z)b € ker 7. Thus, o(z)b € Z(R ) for all z € R. By
Lemma 2.3 and Lemma 2.5 we conclude that o(z) € Z(R) for all x € R. So

o(z)o(z) —o(z)o(x) =0 for all z,z € R. (4.4)

Equations (4.2) and (4.4) imply that zy — yx € kert Nkero = {0} for all
z,y € R and hence R is a commutative near-ring. Now, Suppose 7(R)Uc(R) =
R. From (4.1) and (4.3), we conclude that o(b) € Z(R) for all b € kerr.
Since 7(xb) = 7(x)7(b) = 0 for all z € R and for all b € kerr, we have
xb € ker7 and hence o(zb) € Z(R) for all x € R and for all b € kerr. If
there exists b € ker 7 such that o(b) # 0, then we have o(z)o(b) € Z(R) for
all z € R. By Lemma 2.3 and Lemma 2.5 we conclude that o(z) € Z(R)
for all z € R and by the same way above we conclude equation (4.4). Now,
suppose 1,5 € R, then (r = o(a) or r = 7(b)) and (s = o(c) or s = 7(d))
for some a,b,¢,d € R since 7(R) Uo(R) = R. Using (4.1), (4.2) and (4.4) we
conclude that rs = sr and R is a commutative near-ring. If o(b) = 0 for all
b € ker 7, then ker 7 C kero. Since (7(R),+) and (o(R),+) are subgroups of
(R,+) whose union is R, we have either 7(R) C o(R) or ¢(R) C 7(R). Since
ker 7 C ker o, we get from isomorphism theorems that (R/ ker 7)/(ker o/ ker 7)
is isomorphic as near-rings to R/ ker . But R/ ker 7 is isomorphic to 7(R) and
R/ ker o is isomorphic to o(R), so 7(R)/(ker o/ ker ) is isomorphic to o(R).
Thus, the cardinal number of 7(R) is greater than or equal to the cardinal
number of o(R). Therefore o(R) C 7(R) and R = 7(R)Uo(R) = 7(R). So T
is an epimorphism and hence R is a commutative near-ring from (4.2).

Case 2: d(b) # 0 for some b € ker 7.

So d(b) is not a zero divisor in R by Lemma 2.5 and d(zb) = o(z)d(b) +
d(x)T(b) = o(x)d(b) for all x € R. Multiplying d(zb) by o(y) in the left and
the right respectively, we have o(y)d(xb) = o(y)o(z)d(b) = d(b)o(y)o(z) and
d(zb)o(y) = o(z)d(b)o(y) = d(b)o(z)o(y) for all z,y € R. So d(b)[o(y)o(z) —
o(z)o(y)] = 0 for all z,y € R and then we get (4.4). Suppose ker 7 Nkero =
{0}, then (4.2) and (4.4) imply that xy — yz € ker7 Nkero for all z,y € R.
So R is a commutative near-ring. Now, suppose 7(R) U o(R) = R. Then
(4.1), (4.2) and (4.4) imply that R is a commutative near-ring by the same
way above in case 1.

So from the above two cases, R is a commutative near-ring. Using d(a) is
not a left zero divisor in R and Lemma 2.11, we have that R is a commutative
ring.

The next corollary is another generalization of Theorem 2 of O. Golbasi
and N. Aydin [6] and Theorem 3.1 of M. Ashraf, A. Ali and Shakir Ali [1].
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Corollary 4.6 Let R be a 3-prime near-ring with a non-zero multiplicative
(o, 7)-derivation d such that o and 7 are endomorphisms on R, ¢ or 7 is a
monomorphism or an epimorphism and d(R) C Z(R). Then R is a commuta-
tive ring.

Proof. If o or 7 is a monomorphism, then ker 7 Nkero = {0}. If o or 7
is an epimorphism, then 7(R) U o(R) = R. Therefore, we get the result by
Theorem 4.5.

5 The condition d(zy) = d(yx)

In this section we study the commutativity of a near-ring R admitting a non-
zero derivation d satisfying the condition d(zy) = d(yx) (d(xy) = —d(yx)) for
all z,y € R. As a consequence of results obtained, we generalized some results
due to Golbasi, Ashraf and S. Ali.

Proposition 5.1 Let R be a near-ring admitting a non-zero multiplicative
(o, T)-derivation d such that 7 is one-to-one. Then the following are equivalent:

(1) d(zy) = d(yx) for all x,y € R and there exists a € R such that d(a) is
not a left zero divisor for 7(xy) — 7(yx) for all z,y € R.

(2) R is a commutative near-ring.

Proof. Suppose d(zy) = d(yz) for all z,y € R and there exists a € R such
that d(a) is not a left zero divisor for 7(ay) — 7(yx) for all z,y € R. Replacing
x by yxin d(xy) = d(yx) we get d(yry) = d(yyx) and hence o(y)d(zy) +
d(y)r(wy) = o(y)d(yz) + d(y)r(yz). Then we have d(y)r(zy) = d(y)r(yz). 1t
follows that

d(y)(t(zy) — 7(yz)) = 0 for all z,y € R. (5.1)

But d(a) is not a left zero divisor for 7(zy) —7(yz), so d(a)(r(xa) — 7(az)) = 0
implies 7(za) = 7(ax) for all x € R. As 7 is one-to-one, we obtain za = ax
for all x € R which means a € Z(R). From d(zy) = d(yx) for all z,y € R,
we have d(a(zy)) = d((az)y) = d(y(az)) = d((ya)z) = d((ay)z) = d(a(yz))
and then o(a)d(zy) + d(a)7(xzy) = o(a)d(yx) + d(a)r(yz). It follows that
d(a)T(zy) = d(a)7(yx) for all x,y € R. So

d(a)(1(zy) — 7(yx)) = 0 for all z,y € R. (5.2)

Again, d(a) is not a left zero divisor for 7(xy) — 7(yz) implies that 7(zy) =
7(yz) and hence zy = yx for all z,y € R. Therefore, R is a commutative
near-ring.

Conversely, Suppose R is a commutative near-ring. Thus, d(zy) = d(yx)
and 7(zy) — 7(yz) = 0 for all x,y € R. So for all z € R — {0}, we get that z
is not a left zero divisor for 7(zy) — 7(yz) for all z,y € R.
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Theorem 5.2 Let R be a near-ring admitting a non-zero multiplicative

(0, T)-derivation d such that 7 is one-to-one. Then the following are equivalent:

(1) d(zy) = d(yx) for all z,y € R and there exist a,b € R such that d(a)
is not a left zero divisor for 7(zy) — 7(yx) and b is not a left zero divisor for
x+y—x—y=(x,y) forall z,y € R.

(2) R is a commutative ring.

Proof. Suppose d(zy) = d(yx) for all x,y € R and there exist a,b € R
such that d(a) is not a left zero divisor for 7(zy) — 7(yz) for all z,y € R and
b is not a left zero divisor for (z,y). By proposition 5.1 we deduce that R is
a commutative near-ring. Since R is commutative, it is distributive. So by
Lemma 2.10, R is a ring. Conversely, suppose R is a commutative ring. By
proposition 5.1 d(zy) = d(yz) for all x,y € R and there exists a € R such that
d(a) is not a left zero divisor for 7(zy) — 7(yz) for all z,y € R. Since (R, +)
is abelian, we obtain (z,y) = 0 for all z,y € R. So for all z € R — {0}, we get
that z is not a left zero divisor for (x,y) for all z,y € R.

Corollary 5.3 Let R be a near-ring with a non-zero multiplicative o-
derivation d such that d(xy) = d(yz) for all z,y € R and there exists a € R
such that d(a) is not a left zero divisor in R. Then R is a commutative ring.

We generalize Theorem 2.6 of [7] and Theorem 4.1 of [3] in the following
theorem.

Theorem 5.4 Let R be a 3-prime near-ring with a non-zero multiplicative
(o, 7)-derivation d such that 7 is a multiplicative automorphism and d(zy) =
d(yx) for all ,y € R. Then R is a commutative ring,.

Proof. Using the proof of Proposition 5.1, we get (5.1) and then d(y)7(z)7(y) =

d(y)T(y)7(x) for all z,y € R. Putting xz instead of z, we have d(y)7(z)7(2)7(y) =
d(y)r(y)7(2)7(2) = d(y)7(2)7(y)7(2) for allz, y, 2 € R. Thus, d(y)r ()7 (=) (y)—
7(y)7(2)] = 0. Since 7 is onto, we obtain d(y)R[r(z)7(y) — 7(y)7(2)] = {0}.
Using primeness of R, for all y € R either d(y) = 0 or 7(2y) = 7(yz). Asdisa
non-zero multiplicative (o, 7)-derivation, there exists a € R such that d(a) # 0.
So a € Z(R) since 7T is a monomorphism. By the same way again in the
proof of Proposition 5.1, we have (5.2) and then d(a)7(x)7(y) = d(a)7(y)7(x).
Putting zz instead of z, we get d(a)7(z)7(2)7(y) = d(a)r(y)r(z)7(2) =
d(a)7(z)7(y)7(2) for all 2, y, 2 € R. Therefore, d(a)7(x)[r(2)7(y)—7(y)7(2)] =
0 for all z,y,z € R and then d(a)R[7(2)7(y) — 7(y)7(2)] = {0}. Using the
primeness of R and d(a) # 0, we have 7(2)7(y) = 7(y)7(z) for all y, 2 € R and
R is a commutative near-ring. Since R is commutative and d(a) # 0 is not a
left zero divisor in R by Lemma 2.5, then R is a commutative ring by Lemma
2.10.



138 AnMED A. M. KAMAL AND KHALID H. AL-SHAALAN

Remark 5.1 Since a near-ring R which satisfies the hypothesis of Theorem
5.4 will be commutative, we have d(a) # 0 is not a zero divisor in R for
some a € R by Lemma 2.5. So the condition “R is a 3-prime near-ring with
a non-zero multiplicative (o, 7)-derivation d such that 7 is a multiplicative
automorphism and d(zy) = d(yx) for all z,y € R” implies the condition “R is
a near-ring with a non-zero multiplicative (o, 7)-derivation d such that 7 is one-
to-one, d(zy) = d(yx) for all x,y € R and there exists a € R such that d(a) is
not a left zero divisor in R”. The converse is not true as the following example
shows, let R be the polynomial ring Z4[z] and d the usual derivative. Then R
is commutative and d(zy) = d(yx) for all z,y € R. Moreover, d(z°) = 5(z%) =
x? is not a zero divisor in R. But R is not prime since 22 R2x = R(2x)(27) =
R(42%) = {0} and 2z # 0. So the second condition is weaker than the first
one.

Corollary 5.5 Let R be a 3-prime near-ring with a non-zero (o, 7)-derivation
d such that [z,d(y)],- = 0 for all z,y € R. If 7 is an automorphism on R,
then R is commutative ring.

Proof. Using [z,d(y)]s,r = 0 and Lemma 2.1, we have d(zy) = o(z)d(y) +
d(z)7(y) = d(y)7(z) + o(y)d(z) = o(y)d(z) + d(y)7(z) = d(yx). Hence, we
get the result by Theorem 5.4.

Corollary 5.6 Let R be a 3-prime near-ring with a non-zero multiplica-
tive o-derivation d such that d(zy) = d(yx) for all z,y € R. Then R is a
commutative ring.

Theorem 5.7 Let R be a near-ring with a (o, 7)-derivation d such that
d(xy) = —d(yx) for all z,y € R and there exists a € R such that d(a) is not a
left zero divisor in R. If 7 is a monomorphism on R, then R is a commutative
ring of characteristic 2.

Proof. Replacing z by yzin d(zy) = —d(yz), we get d(yzy) = —d(yyz)
and hence d(y(zy + yz)) = 0. Then o(y)d(zy + yz) + d(y)7(xy + yz) = 0
for all ,y € R. Since d(xy) = —d(yz), we have d(y)7(zy + yz) = 0 for all
x,y € R. As d(a) is not a left zero divisor in R, then 7(za+ax) = 0 and hence
za = —az for all € R. For all z,y € R, we have d(a(zy)) = —d((zy)a) =
—d(x(ya)) = —d(z(~ay)) = —d(~zay) = d(z(ay)) = —d((ay)z) = ~d(a(y))
for all z,y € R. It follows that d(a(zy +yz)) = 0. So d(a)7(xy+yz) = 0. and
then zy = —yx for all z,y € R. Observe that (z+y)z = —[z(x+y)] = —[za +
z2y] = —zy — zx = yz + az for all z,y,z € R. Since 0z = (0 4+ 0)x = Oz + Ox
for all x € R, we have 0x = 0 and R is zero-symmetric. Now, 0 = 0z = (y +
(—y))xz = (—y)z + yx which means (—y)z = —yz for all x,y € R. Therefore,
(2+1)7 = —(2(a+9)) = (—2)(0+y) = (—2)a-+(—2)y = —za+(—2y) = D2y
for all z,y,z € R and R is distributive. Since xy = —yx for all z,y € R, we
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have 22 = —22 for all z € R and then 0 = 2% + 2% = z(z + z) = z(22).
Choosing = = d(a), we have d(a)(2d(a)) = 0 and hence 2d(a) = 0. Using
distributivity of R, observe that d(a)(2y) = d(a)(y +y) = d(a)y + d(a)y =
(d(a) + d(a))y = (2d(a))y = Oy = 0 which means 2y = 0 for all y € R. Thus,
2R = {0} and R is of characteristic 2. Therefore, R is an abelian near-ring
and zy = —yx = yx for all z,y € R. Therefore, R is a commutative ring.

Corollary 5.8 Let R be a near-ring with a o-derivation d such that
d(zy) = —d(yx) for all ,y € R and there exists a € R such that d(a) is
not a left zero divisor in R. Then R is a commutative ring of characteristic 2.

We generalize Theorem 4.2 of [3] in the next result.

Theorem 5.9 Let R be a 3-prime near-ring with a non-zero (o, 7)-derivation
d such that d(xy) = —d(yz) for all z,y € R. If 7 is an automorphism on R,
then R is a commutative ring of characteristic 2.

Proof. Replacing x by yzin d(zy) = —d(yz), we get d(y)7m(zy + yx) =0
and then d(y)7(x)7(y) = —d(y)7(y)7(x) for all z,y € R. Replacing = by zz,
we get

dy)r(z)7(2)7(y) = —d(y)7(y)7(2)7(2) = —(=d(y)7(2)7(y))7(2)
= —ldy)T(x)r(~y)7(2)]

and hence d(y)7(z)[7(2)7(y) + 7(=y)7(2)] = 0 for all z,y,2 € R. So we have
d(y)R[7(2)7(y) + 7(—y)7(z)] = {0} and then for each y € R either d(y) = 0 or
T7(zy+(—y)z) = 0. As d is non-zero, there exists a € R such that d(a) # 0. So
7(za + (—a)z) = 0 and then za = —(—a)z = (—a)(—=z) for all z € R. Observe
that z(—a) = —za = (—a)z and —a € Z(R). So d((—a)(zy)) = d(((—a)z)y) =
—dy((~a)s)) = —d((y(~a)w) = —d((-a)p)z) = —d((—a)(yz)). Thus,
d((—a)(zy + yx)) = 0 and then d(—a)7(zy + yz) = 0 for all z,y € R. So

7(y) + 7(—y)7(2)] = 0 for all z,y,z € R. Since d(—a) # 0,
we have 7(zy + (—y)z) = 0 which means zy = (—y)(—z) = —(—y)z for all
y,z € R. It follows that z(—y) = —zy = (—y)z for all y,z € R and R is
a commutative near-ring. Since R is commutative and a # 0 is not a zero
divisor in R, we have that R is a commutative ring by Lemma 2.10. Since
d # 0 and R is commutative, there exists a € R such that d(a) # 0 is not a
left zero divisor in R by Lemma 2.5 and hence R is a ring of characteristic 2
by Theorem 5.7.

(
d(—a)rgz)T 2)1(y) = —d(—a)7(z)7(—y)7(2) by the same way above. Hence
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Corollary 5.10 Let R be a 3-prime near-ring with a non-zero o-derivation
d such that d(zy) = —d(yx) for all ,y € R. Then R is a commutative ring of
characteristic 2.

Example 5.1 Let R = Zy[z] with d = 7 is the identity map and o = 0.
Then d is a non-zero (o, 7)-derivation on R and R is a commutative prime ring
of characteristic 2. Clearly d(zy) = d(yx) = —d(yz) and d(z) = z is not a left
zero divisor in R for all x € R — {0}.

The following example shows that the condition “d(xy) = —d(yx) for all
z,y € R” is not redundant in Theorem 5.9.

Example 5.2 Let R = M(Zs) with d = 7 is the identity map and o = 0.

Then R is a non-commutative 2-torsion prime ring and d is a non-zero (o, 7)-
derivation on R. Observe that

((alleo]) - (v s )])-1n

s 8
([ ][V 5 ])
and hence d(zy) # d(yz) = —d(yz). Also, d
Z(R) — {0} is not a left zero divisor in R by Lemma 2.5.

o o

o oo RO

o o
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