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Abstract

In this paper we provide various properties of Rad-⊕-supplemented
modules. In particular, we prove that a projective module M is Rad-
⊕-supplemented if and only if M is ⊕-supplemented, and then we show
that a commutative ring R is an artinian serial ring if and only if every
left R-module is Rad-⊕-supplemented. Moreover, every left R-module
has the property (P ∗) if and only if R is an artinian serial ring and
J2 = 0, where J is the Jacobson radical of R. Finally, we show that
every Rad-supplemented module is Rad-⊕-supplemented over dedekind
domains.

1 Introduction

Throughout this paper, it is assumed that R is an associative ring with identity
and all modules are unital left R-modules. A submodule N of an R-module
M will be denoted by N ≤ M . A submodule L ≤ M is said to be essential
in M , denoted as LEM , if L ∩N ̸= 0 for every nonzero submodule N ≤ M .
Dually, a submodule N of M is called small (in M) and denoted by N << M ,
if N + L ̸= M for every proper submodule L of M . The Jacobson radical of
M will be denoted by Rad(M). Equivalently, Rad(M) is the sum of all small
submodules of M .

A nonzero module M is said to be hollow if every proper submodule is
small in M , and it is said to be local if it is hollow and is finitely generated.
M is local if and only if it is finitely generated and Rad(M) is maximal (see
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[6, 2.12§2.15]). A ring R is said to be local if J is maximal, where J is the
Jacobson radical of R.

For any ring R, an R-module M is called supplemented if every submodule
N of M has a supplement, that is a submodule K minimal with respect to
N +K = M . K is a supplement of N in M if and only if N +K = M and
N ∩ K ≪ K [17]. Every direct summand of a module M is a supplement
submodule of M , and supplemented modules are a proper generalization of
artinian modules.

Mohamed and Müller [12] call a module M ⊕-supplemented if every sub-
module N of M has a supplement that is a direct summand of M [12]. Clearly
every ⊕-supplemented module is supplemented, but a supplemented mod-
ule need not be ⊕-supplemented in general (see [12, Lemma A.4 (2)]). It is
shown in [12, Proposition A.7 and Proposition A.8] that if R is a dedekind
domain, every supplemented R-module is ⊕-supplemented. Hollow modules
are ⊕-supplemented. Characterizations and the structure of supplemented
and ⊕-supplemented modules are extensively studied by many authors. We
specifically mention [8, 10, 12, 17, 19] among papers concerning supplemented
and ⊕-supplemented modules.

A module M is lifting if every submodule N of M contains a direct sum-
mand L of M such that M = L ⊕ K and N ∩ K << K (see [6]). Every
projective module over a left artinian ring is lifting, and lifting modules are ⊕-
supplemented. In addition, every π-projective supplemented module is lifting
(see [17, 41.15]). Here a module M over an arbitrary ring is called π-projective
if for every two submodules U, V of M such that U + V = M , there exists
an endomorphism f of M with f(M) ≤ U and (1 − f)(M) ≤ V [17]. For
example, projective modules are π-projective.

Let M be a module. Weakening the “supplement” condition, one calls a
submodule K of M Rad-supplement of N in M (in [18], generalized supple-
ment) if M = N + K and N ∩ K ≤ Rad(K) [6, pp. 100]. Adapting the
concept of supplemented modules, we say that M is Rad-supplemented if ev-
ery submodule has a Rad-supplement in M , and M is Rad-⊕-supplemented if
every submodule has a Rad-supplement that is a direct summand of M [4, 7].
Under given definitions, we clearly have the following implication on modules:
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Let f : P −→ M be an epimorphism. Xue [18] calls f a (generalized)
cover if (Ker(f) ≤ Rad(P )) Ker(f) << P , and calls a (generalized) cover f
a (generalized) projective cover if P is a projective module. In the spirit of
[18], a module M is said to be (generalized) semiperfect if every factor module
of M has a (generalized) projective cover. Every (generalized) semiperfect
module is (Rad-) supplemented.

In this paper, we study the properties of Rad-⊕-supplemented modules.
We prove that a projective module M is Rad-⊕-supplemented if and only if it
is ⊕-supplemented. It follows that a ring R is left perfect if and only if every
projective left R-module is Rad-⊕-supplemented. Every π-projective Rad-⊕-
supplemented module M has the property (P ∗), i.e., for every submodule N ≤
M , there exists a decomposition M = K ⊕ L such that K ≤ N and N ∩ L ≤
Rad(L). We prove that every left R-module has the property (P ∗) if and only
if R is an artinian serial ring and J2 = 0, where J is the Jacobson radical of R.
We show that the class of weakly distributive Rad-⊕-supplemented modules
is closed under factor modules, and we prove that a commutative ring R is an
artinian serial ring if and only if every left R-module is Rad-⊕-supplemented.
We also prove that over dedekind domains every Rad-supplemented module
is Rad-⊕-supplemented. Finally, we completely determine the structure of
Rad-⊕-supplemented modules over local dedekind domains.

2 Rad-⊕-Supplemented Modules

Every ⊕-supplemented module is Rad-⊕-supplemented; however, the converse
is not always true (see [9, Example 3.11]). Now we prove that every projective
Rad-⊕-supplemented module is ⊕-supplemented. We start with the following
key Lemma.
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Lemma 2.1. Let M be a projective module. If M is Rad-⊕-supplemented,
then Rad(M) << M .

Proof. Let M = Rad(M) +N for some submodule N of M . Since M is Rad-
⊕-supplemented, there exists a direct summand V of M such that M = N+V
and V ∩N ≤ Rad(V ). Then, it follows from [11, Theorem 5.3.4 (b)] that V is
projective. Now, for all v ∈ V ,

α : V −→ M

N
, defined by α(v) := v +N

is an epimorphism and Ker(α) = N ∩ V . That is, α is a generalized cover
since Ker(α) = N ∩ V ≤ Rad(V ). From M = Rad(M) + N , it follows
immediately that Rad(MN ) = M

N . Then, since M
N has a generalized projective

cover, it is easy to see that M
N = 0. That is, M = N . Hence we obtain that

Rad(M) << M .

Theorem 2.2. Let M be a projective module. M is Rad-⊕-supplemented if
and only if it is ⊕-supplemented.

Proof. Suppose that M is Rad-⊕-supplemented. Since M is projective, it
follows from Lemma 2.1 that Rad(M) << M . Then, by [7, Proposition 2.1],
M is ⊕-supplemented. The converse is clear.

A ring R is called left perfect if every left R-module has a projective cover
[17, 43.9]. It is well known that R is left perfect if and only if every projec-
tive left R-module is ⊕-supplemented. Using this fact along with the above
Theorem we obtain the following:

Corollary 2.3. Let R be a ring. R is left perfect if and only if every projective
left R-module is Rad-⊕-supplemented.

Recall that a module M is called radical if M has no maximal submodules,
that is, M = Rad(M). We denote by P (M) the sum of all radical submodules
of M . It is easy to see that P (M) is the largest radical submodule of M .
If P (M) = 0, M is called reduced. Note that M

P (M) is reduced for every left

R-module M .

Proposition 2.4. Let M be a module. If M is Rad-⊕-supplemented, then
the factor module M

P (M) of M is ⊕-supplemented.

Proof. Firstly, we have f(Rad(P (M))) ≤ Rad(P (M)) for each f ∈ EndR(M)
by [6, 2.8 (1) (2)]. Note that P (M) = Rad(P (M)). Thus f(P (M)) ≤ P (M)
for each f ∈ EndR(M). Since M is Rad-⊕-supplemented, it follows from [9,
Proposition 3.5.(1)] that M

P (M) is Rad-⊕-supplemented. Let P (M) ≤ U ≤ M .
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Then there exists a direct summand V
P (M) of M

P (M) such that M
P (M) =

U
P (M) +

V
P (M) and U∩V

P (M) ≤ Rad( V
P (M) ). Since M

P (M) is reduced, it follows from [4,

Theorem 4.6] that M
P (M) is coatomic, so Rad( M

P (M) ) << M
P (M) . Thus

U∩V
P (M) <<

M
P (M) and therefore U∩V

P (M) << V
P (M) by [17, 19.3.(5)]. This means that V

P (M)

is a supplement of U
P (M) in M

P (M) . Hence M
P (M) is ⊕-supplemented.

We say that a module M is completely Rad-⊕-supplemented if every direct
summand of M is Rad-⊕-supplemented as in [15].

Corollary 2.5. P (M) is completely Rad-⊕-supplemented for every R-module
M .

Proof. Let M be a module and let N be a direct summand of P (M). Note
that every radical module is Rad-⊕-supplemented. Therefore it suffices to
show that N is radical. Since N is a direct summand of P (M), we can write
P (M) = N ⊕ L for some submodule L of P (M). By [17, 21.6.(5)], we have
P (M) = Rad(P (M)) = Rad(N⊕L) = Rad(N)⊕Rad(L). By the modular law,
N = N∩P (M) = N∩(Rad(N)⊕Rad(L)) = Rad(N)⊕Rad(L)∩N = Rad(N),
i.e., N is radical. Hence P (M) is completely Rad-⊕-supplemented.

Proposition 2.6. Let M be a Rad-⊕-supplemented module. If every Rad-
supplement in M is a direct summand of M , then M is completely Rad-⊕-
supplemented.

Proof. Let N be a direct summand of M . Then we can write M = N ⊕ L
for some submodule L of M . Since M is Rad-⊕-supplemented, it is Rad-
supplemented and therefore N is Rad-supplemented by [2, 2.2 (2)]. Let U ≤
N , then U has a Rad-supplement V in N . Now we argue that V is a direct
summand of N . Note that

M = N ⊕ L = (U + V ) + L = (U + L) + V ,

and

(U + L) ∩ V ≤ (U + V ) ∩ L+ (L+ V ) ∩ U = (L+ V ) ∩ U ≤ U .

Then (U+L)∩V ≤ U∩V ≤ Rad(V ). This means that V is a Rad-supplement
of (U + L) in M . By our assumption, we can write M = V ⊕ V

′
for some

submodule V
′
of M . It follows by the modular law that N = V ⊕ V

′ ∩ N .
This completes the proof.

Let M be a module. M is said to have the property (P ∗) if for every
submodule N ≤ M there exists a direct summand K of M such that K ≤ N
and N

K ≤ Rad(MK ) [1]. Equivalently, for every submodule N ≤ M there exists
a decomposition M = K ⊕ L such that K ≤ N and N ∩ L ≤ Rad(L).



230 Ergül Türkmen

Proposition 2.7. Let M be a module. If M has the property (P ∗), then M
is completely Rad-⊕-supplemented.

Proof. Let N be a direct summand of M and let U ≤ N . Since M has the
property (P ∗), there exists a submodule X of U such that M = X ⊕X

′
and

U ∩ X
′ ≤ Rad(X

′
) for some submodule X

′
of M . By the modular law, we

can write N = X ⊕N ∩X
′
. This means that N ∩X

′
is a direct summand of

N . Therefore N = U +N ∩X
′
.

Next, we prove that U ∩ (N ∩ X
′
) = U ∩ X

′ ≤ Rad(N ∩ X
′
). Let m

be any element of U ∩ X
′
. Since U ∩ X

′ ≤ Rad(X
′
), by [11, 9.1.3.(a)], we

get Rm << X
′
so that Rm << M . Applying [17, 19.3.(5)] twice, we first

obtain Rm << N and then Rm << N ∩ X
′
. By [11, 9.1.3.(a)], we have

U ∩X
′ ≤ Rad(N ∩X

′
).

Recall that a π-projective module M is ⊕-supplemented if and only if the
module is lifting [17, 41.15]. Now we shall prove analogous characterization
for Rad-⊕-supplemented modules.

Theorem 2.8. A π-projective module M is Rad-⊕-supplemented if and only
if M has the property (P ∗).

Proof. (=⇒) Let U be a submodule of M . Then, we have the sum M = U+V ,
where V is a direct summand of M . Since M is a π-projective module, we
can write M = X ⊕ V for some submodule X of M by [6, 4.14.(1)]. It follows
that, for U ≤ M , there exists a decomposition M = X ⊕ V such that X ≤ U
and U ∩ V ≤ Rad(V ). This means that M has the property (P ∗).

(⇐=) By Proposition 2.7.

Clearly lifting modules has the property (P ∗), but the converse is not true
in general. For example, the left Z-module Q has the property (P ∗) but it is
not lifting. If a module M is projective, then we have the following fact.

Proposition 2.9. Let M be a module. If M is projective and has the property
(P ∗), then M is lifting.

Proof. By Proposition 2.7, M is Rad-⊕-supplemented. Applying Theorem 2.2,
we obtain that M is ⊕-supplemented. Since M is projective, it is π-projective
and thus M is lifting by [17, 41.15].

Before giving the following corollary which summarizes the combined re-
sults of Theorem 2.2, Theorem 2.8 and Proposition 2.9, we recall some known
definitions. For a module M , consider the following conditions:

(D2) IfN is a submodule ofM such that M
N is isomorphic to a direct summand

of M , then N is a direct summand of M .
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(D3) For every direct summands K and L of M with M = K +L, K ∩L is a
direct summand of M .

In [12], a module M is called discrete if M is lifting and satisfies the
property(D2). This is equivalent to M is supplemented, π-projective and
direct projective (see [6, 27.1]). The module M is called quasi-discrete if it is
lifting and satisfies the property (D3). We know that M is quasi-discrete if
and only if it is supplemented and π-projective (see [6, 26.6]).

Corollary 2.10. For a projective module M , the following conditions are
equivalent.

1. M is supplemented.

2. M is ⊕-supplemented.

3. M is Rad-⊕-supplemented.

4. M has the property (P ∗).

5. M is lifting.

6. M is (quasi-) discrete.

Proof. (1) =⇒ (2) It is obvious according to [17, 41.15].

(2) =⇒ (3) By Theorem 2.2.

(3) =⇒ (4) It follows from Theorem 2.8.

(4) =⇒ (5) It is proven in Proposition 2.9.

(5) =⇒ (6) Clear since projective modules are direct projective and π-
projective.

(6) =⇒ (1) Trivial.

Now, we shall characterize the rings whose modules have the property (P ∗)
in the following Corollary.

Corollary 2.11. The following statements are equivalent for a ring R.

1. Every left R-module has the property (P ∗).

2. Every left R-module is lifting.

3. R is an artinian serial ring and J2 = 0, where J is the Jacobson radical
of R.
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Proof. (1) =⇒ (2) Observe first that R is a left perfect ring. Let F be any
projective R-module. By the hypothesis, F has the property (P ∗). Since F
is projective, it is π-projective and so F is Rad-⊕-supplemented by Theorem
2.8. It follows from Corollary 2.3 that R is left perfect.

For any module M , let U ≤ M . By assumption, there exists a decompo-
sition M = U ⊕ V such that K ≤ U and U ∩ V ≤ Rad(V ). Since R is left
perfect, we have that U ∩ V << V . This means that M is lifting.

(2) ⇐⇒ (3) See [6, 29.10].
(2) =⇒ (1) Clear.

A module M is called weakly distributive if every submodule N of M is
weak distributive, i.e., N = U ∩N +V ∩N whenever M = U +V (see [5]). It
follows from [7, Example 4.1] that factor modules of a Rad-⊕-supplemented
module need not be Rad-⊕-supplemented, in general. For weakly distributive
modules we have the following fact:

Theorem 2.12. Every factor module of a weakly distributive Rad-⊕-supplemented
module is Rad-⊕-supplemented.

Proof. Suppose that a module M is weakly distributive Rad-⊕-supplemented.
Let N ≤ U ≤ M . Then there exist submodules V and L of M such that
M = U + V , U ∩ V ≤ Rad(V ) and M = V ⊕ L. By [9, Lemma 3.4], V+N

N is

a Rad-supplement of U
N of M

N . Since M is a weakly distributive module, we
conclude that N = V ∩N + L ∩N . It follows that

(V+N
N ) ∩ (L+N

N ) = (V+N)∩L+N
N = (V+L∩N)∩L+N

N = V ∩L+L∩N+N
N = 0.

Hence V+N
N is a direct summand of M

N . This means that M
N is Rad-⊕-

supplemented.

It is proven in [9, Theorem 3.3] that every finite direct sum of Rad-⊕-
supplemented modules is Rad-⊕-supplemented. The following example shows
that the class of Rad-⊕-supplemented is not closed under infinite direct sums.

Example 2.13. Let R be a local dedekind domain (i.e. DVR) with quotient
K ̸= R (e.g. the ring Z(p) containing all rational numbers of the form a

b with
p - b for any prime p in Z). Since R is local, it follows that R is ⊕-supplemented
and therefore R is Rad-⊕-supplemented. On the other hand, by Corollary 2.3,
there exists a projective R-module which is not Rad-⊕-supplemented because
R is not field.

A module M is said to be a duo module if every submodule N of M is
fully invariant [13]. Now we prove that direct sums of Rad-⊕-supplemented
modules is Rad-⊕-supplemented, under a certain condition: namely, when M
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is a duo module. The proof of the next result is taken from [16, Theorem 1],
but is given for the sake of completeness.

Proposition 2.14. Let Mi (i ∈ I) be any infinite collection of Rad-⊕-
supplemented modules and let M =

⊕
i∈I Mi. If M is a duo module, then

M is Rad-⊕-supplemented.

Proof. Let U ≤ M . Since M is a duo module, by [13, Lemma 2.1], U =⊕
i∈I(Mi ∩ U). By the hypothesis, there exists a submodule Vi of Mi such

that Mi = Mi ∩U + Vi and (Mi ∩U)∩ Vi = U ∩ Vi ≤ Rad(Vi) for every i ∈ I.
Let V =

⊕
i∈I Vi. Note that V is a direct summand of M . Then

M = U + V

and

U ∩ V = (
⊕
i∈I

(Mi ∩ U)) ∩ (
⊕
i∈I

Vi) ≤
⊕
i∈I

Rad(Vi) = Rad(V )

by [17, 21.6.(5)]. It follows that V is a Rad-supplement of U in M . Thus M
is Rad-⊕-supplemented.

It is shown in [10, Theorem 1.1] that a commutative ring R is an artinian
serial ring if and only if every left R-module is ⊕-supplemented. Now we
generalize this fact in the next Corollary, characterizing the commutative rings
in which modules are Rad-⊕-supplemented.

Corollary 2.15. Let R be any commutative ring. Then R is an artinian
serial ring if and only if every left R-module is Rad-⊕-supplemented.

Proof. Suppose that every left R-module is Rad-⊕-supplemented. Then every
projective left R-module is Rad-⊕-supplemented and so, by Corollary 2.3, R is
left perfect. It follows that any module has a small radical. Therefore a Rad-
⊕-supplemented module over the ring is ⊕-supplemented. So every module is
⊕-supplemented. Thus, the proof follows from [10, Theorem 1.1].

Recall that a module M is called w-local if M has a unique maximal sub-
module. It is clear that M is w-local if and only if Rad(M) is maximal. Every
local module is w-local. However, a w-local module is not necessarily local
(see [3]). It is clear that if a w-local module M is finitely generated, then it is
local.

Lemma 2.16. Let R be a local commutative ring and let M be a uniform
R-module. Suppose that every submodule of M is Rad-⊕-supplemented. Then
M is uniserial.
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Proof. By [14, Lemma 6.2], it suffices to show that every finitely generated
submodule of M is local. Let K be any finitely generated submodule of M .
Then K contains a maximal submodule L. By the assumption, L has a Rad-
supplement V in K such that V ⊕V

′
= K for some submodule V

′
of K. Note

that V
′ ⊆ M . It follows from [3, Lemma 3.3] that V has a unique maximal

submodule, i.e., V is w-local as in [3]. Therefore V is local. Since M is uniform
and L is maximal, we have V

′
= 0. In conclusion V = K.

Corollary 2.17. Let R be a local commutative ring with a maximal ideal J .
Suppose that every submodule of E(RJ ) is Rad-⊕-supplemented, where E(RJ )

is the injective hull of the simple module R
J . Then R is a uniserial noetherian

ring.

Proof. Since E(RJ ) is uniform, it follows from Lemma 2.16 and [14, Lemma
6.2 (Corollary)] that R is uniserial. Therefore R is a uniserial noetherian ring
by [14, Lemma 6.3].

A ring R is called semilocal if R
J is semisimple, where J is the Jacobson

radical of R. We know that a semilocal ring R is left perfect if and only if R
is a left max ring (i.e. every left R-module has a maximal submodule).

Proposition 2.18. The following conditions on a semilocal ring R are equiv-
alent:

1. Every w-local module is semiperfect.

2. Every w-local module is generalized semiperfect.

3. R is left perfect.

Proof. Clearly, we have (3) =⇒ (1) =⇒ (2). Finally, it remains to prove the
implication (2) =⇒ (3). Let M be any w-local module. Assume that, for
N ≤ M , Rad(M) +N = M . Then Rad(MN ) has no maximal submodules. It
follows from proof of Lemma 2.1 that Rad(M) << M . So M is local. By [3,
Lemma 3.1], R is left perfect.

3 Rad-⊕-Supplemented Modules Over Commutative Do-
mains

Throughout this section, we consider only commutative domains. Our aim is to
prove that a Rad-supplemented module is Rad-⊕-supplemented over dedekind
domains. To this aim, we need the following key Lemma:

Lemma 3.1. Let M be a module over a dedekind domain. The following are
equivalent:
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1. M is Rad-⊕-supplemented.

2. M
P (M) is Rad-⊕-supplemented.

3. M
P (M) is ⊕-supplemented.

Proof. (1) =⇒ (3) It follows from Proposition 2.4.
(3) =⇒ (2) Clear.
(2) =⇒ (1) Since every radical module over a dedekind domain is injective,

the submodule P (M) of M is injective. Therefore, there exists a submodule
N of M such that M = P (M)⊕N . From (2), N is Rad-⊕-supplemented. By
Corollary 2.5 and [9, Theorem 3.3], M is Rad-⊕-supplemented.

Note that Lemma 3.1 is not true for ⊕-supplemented modules, in general
(see [9, Example 3.11].

Theorem 3.2. Let R be a dedekind domain. Then every Rad-supplemented
R-module is Rad-⊕-supplemented.

Proof. Let M be any Rad-supplemented module over the domain R. Then,
by [2, 2.2.(2)], M

P (M) is Rad-supplemented. Applying [4, Proposition 7.3],

we conclude that M
P (M) is supplemented. Therefore M

P (M) is ⊕-supplemented

according to [12, Proposition A.7 and Proposition A.8]. Hence M is Rad-⊕-
supplemented by Lemma 3.1.

The structure of Rad-supplemented modules over local dedekind domains
is completely determined in [4, Theorem 7.2]. Using this Theorem along with
Theorem 3.2 we obtain:

Corollary 3.3. Let R be a local dedekind domain with a quotient field K
and let M be an R-module. Then M is Rad-⊕-supplemented if and only if
M ∼= Rn ⊕ K(I) ⊕ (KR )(J) ⊕ N for some bounded R-module N . Here n is a
nonnegative integer, and I and J are any index sets.

Proof. This equivalence follows from Theorem 3.2 and [4, Theorem 7.2].

Zöschinger proved in [19, Theorem 3.1 (Folgerung)] that every supple-
mented module over a dedekind domain is the direct sum of hollow modules.
Using this fact we obtain a new characterization of dedekind domains.

Proposition 3.4. Let R be a local noetherian ring. Every Rad-supplemented
R-module is the direct sum of hollow modules if and only if R is a dedekind
domain.
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Proof. Suppose thatR is a dedekind domain. LetM be anyRad-supplemented
R-module. Then we can write M = P (M)⊕N for some submodule N of M .
Since R is a local dedekind domain, P (M) is the direct sum of hollow radical
modules. By Lemma 3.1, N is supplemented and therefore N is the direct
sum of hollow modules according to [19, Theorem 3.1 (Folgerung)]. It follows
immediately that M is the direct sum of hollow modules. The converse is clear
by [19, Lemma 3.2].
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