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RAD-@-SUPPLEMENTED MODULES

Ergiil Tiurkmen

Abstract

In this paper we provide various properties of Rad-®-supplemented
modules. In particular, we prove that a projective module M is Rad-
@-supplemented if and only if M is B-supplemented, and then we show
that a commutative ring R is an artinian serial ring if and only if every
left R-module is Rad-@&-supplemented. Moreover, every left R-module
has the property (P*) if and only if R is an artinian serial ring and
J? = 0, where J is the Jacobson radical of R. Finally, we show that
every Rad-supplemented module is Rad-@&-supplemented over dedekind
domains.

1 Introduction

Throughout this paper, it is assumed that R is an associative ring with identity
and all modules are unital left R-modules. A submodule N of an R-module
M will be denoted by N < M. A submodule L < M is said to be essential
in M, denoted as L < M, if LN N # 0 for every nonzero submodule N < M.
Dually, a submodule N of M is called small (in M) and denoted by N << M,
if N+ L # M for every proper submodule L of M. The Jacobson radical of
M will be denoted by Rad(M). Equivalently, Rad(M) is the sum of all small
submodules of M.

A nonzero module M is said to be hollow if every proper submodule is
small in M, and it is said to be local if it is hollow and is finitely generated.
M is local if and only if it is finitely generated and Rad(M) is maximal (see
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[6, 2.12§2.15]). A ring R is said to be local if J is maximal, where J is the
Jacobson radical of R.

For any ring R, an R-module M is called supplemented if every submodule
N of M has a supplement, that is a submodule K minimal with respect to
N+ K =M. K is a supplement of N in M if and only if N + K = M and
NNK < K [17]. Every direct summand of a module M is a supplement
submodule of M, and supplemented modules are a proper generalization of
artinian modules.

Mohamed and Miiller [12] call a module M @-supplemented if every sub-
module N of M has a supplement that is a direct summand of M [12]. Clearly
every @-supplemented module is supplemented, but a supplemented mod-
ule need not be @-supplemented in general (see [12, Lemma A.4 (2)]). It is
shown in [12, Proposition A.7 and Proposition A.8] that if R is a dedekind
domain, every supplemented R-module is @&-supplemented. Hollow modules
are @-supplemented. Characterizations and the structure of supplemented
and @-supplemented modules are extensively studied by many authors. We
specifically mention [8, 10, 12, 17, 19] among papers concerning supplemented
and @-supplemented modules.

A module M is lifting if every submodule N of M contains a direct sum-
mand L of M such that M = L@ K and NN K << K (see [6]). Every
projective module over a left artinian ring is lifting, and lifting modules are &-
supplemented. In addition, every m-projective supplemented module is lifting
(see [17, 41.15]). Here a module M over an arbitrary ring is called w-projective
if for every two submodules U,V of M such that U + V = M, there exists
an endomorphism f of M with f(M) < U and (1 — f)(M) < V [17]. For
example, projective modules are m-projective.

Let M be a module. Weakening the “supplement” condition, one calls a
submodule K of M Rad-supplement of N in M (in [18], generalized supple-
ment) if M = N4+ K and N N K < Rad(K) [6, pp. 100]. Adapting the
concept of supplemented modules, we say that M is Rad-supplemented if ev-
ery submodule has a Rad-supplement in M, and M is Rad-®-supplemented if
every submodule has a Rad-supplement that is a direct summand of M [4, 7].
Under given definitions, we clearly have the following implication on modules:
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Let f : P — M be an epimorphism. Xue [18] calls f a (generalized)
cover if (Ker(f) < Rad(P)) Ker(f) << P, and calls a (generalized) cover f
a (generalized) projective cover if P is a projective module. In the spirit of
[18], a module M is said to be (generalized) semiperfect if every factor module
of M has a (generalized) projective cover. Every (generalized) semiperfect
module is (Rad-) supplemented.

In this paper, we study the properties of Rad-®-supplemented modules.
We prove that a projective module M is Rad-®-supplemented if and only if it
is @-supplemented. It follows that a ring R is left perfect if and only if every
projective left R-module is Rad-®-supplemented. Every m-projective Rad-®-
supplemented module M has the property (P*), i.e., for every submodule N <
M, there exists a decomposition M = K @ L such that K < N and NN L <
Rad(L). We prove that every left R-module has the property (P*) if and only
if R is an artinian serial ring and J? = 0, where .J is the Jacobson radical of R.
We show that the class of weakly distributive Rad-@®-supplemented modules
is closed under factor modules, and we prove that a commutative ring R is an
artinian serial ring if and only if every left R-module is Rad-@®-supplemented.
We also prove that over dedekind domains every Rad-supplemented module
is Rad-@-supplemented. Finally, we completely determine the structure of
Rad-®-supplemented modules over local dedekind domains.

2 Rad-®-Supplemented Modules

Every @-supplemented module is Rad-®-supplemented; however, the converse
is not always true (see [9, Example 3.11]). Now we prove that every projective
Rad-®-supplemented module is @-supplemented. We start with the following
key Lemma.
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Lemma 2.1. Let M be a projective module. If M is Rad-®-supplemented,
then Rad(M) << M.

Proof. Let M = Rad(M) + N for some submodule N of M. Since M is Rad-
@-supplemented, there exists a direct summand V' of M such that M = N+V
and VNN < Rad(V'). Then, it follows from [11, Theorem 5.3.4 (b)] that V" is
projective. Now, for all v € V,

M
a:V— N defined by a(v) :=v+ N

is an epimorphism and Ker(a) = N NV. That is, « is a generalized cover
since Ker(a) = NNV < Rad(V). From M = Rad(M) + N, it follows
immediately that Rad(%) = % Then, since % has a generalized projective
cover, it is easy to see that % = 0. That is, M = N. Hence we obtain that
Rad(M) << M. O

Theorem 2.2. Let M be a projective module. M is Rad-®-supplemented if
and only if it is ®-supplemented.

Proof. Suppose that M is Rad-®-supplemented. Since M is projective, it
follows from Lemma 2.1 that Rad(M) << M. Then, by [7, Proposition 2.1],
M is @-supplemented. The converse is clear. O

A ring R is called left perfect if every left R-module has a projective cover
[17, 43.9]. Tt is well known that R is left perfect if and only if every projec-
tive left R-module is @-supplemented. Using this fact along with the above
Theorem we obtain the following:

Corollary 2.3. Let R be a ring. R is left perfect if and only if every projective
left R-module is Rad-®-supplemented.

Recall that a module M is called radical if M has no maximal submodules,
that is, M = Rad(M). We denote by P(M) the sum of all radical submodules
of M. Tt is easy to see that P(M) is the largest radical submodule of M.
If P(M) =0, M is called reduced. Note that P%/I) is reduced for every left
R-module M.

Proposition 2.4. Let M be a module. If M is Rad-®-supplemented, then
the factor module % of Mis ®-supplemented.

Proof. Firstly, we have f(Rad(P(M))) < Rad(P(M)) for each f € Endr(M)
by [6, 2.8 (1) (2)]. Note that P(M) = Rad(P(M)). Thus f(P(M)) < P(M)
for each f € Endr(M). Since M is Rad-@®-supplemented, it follows from [9,

Proposition 3.5.(1)] that P%) is Rad-@®-supplemented. Let P(M) < U < M.
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Then there exists a direct summand 5775 of Such that ( y = Pgw) +
% and g(% < Rad(P(M)) Slnce P%/[) is reduced 1t follows from [4,
1%
ran) << pan- Thus 547 <<
P(M) and therefore ¥ P(M) << P(M) by [17 19.3.(5)]. This means that

Theorem 4.6] that P(M) is coatomlc so Rad(

P(M )
is a supplement of P( B7a) in % Hence W is @-supplemented. O

We say that a module M is completely Rad-®-supplemented if every direct
summand of M is Rad-@-supplemented as in [15].

Corollary 2.5. P(M) is completely Rad-®-supplemented for every R-module
M.

Proof. Let M be a module and let N be a direct summand of P(M). Note
that every radical module is Rad-®-supplemented. Therefore it suffices to
show that NV is radical. Since N is a direct summand of P(M), we can write
P(M) = N @ L for some submodule L of P(M). By [17, 21.6.(5)], we have
P(M) = Rad(P(M)) = Rad(N®L) = Rad(N)®Rad(L). By the modular law,
N =NNP(M)=NN(Rad(N)®Rad(L)) = Rad(N)®Rad(L)NN = Rad(N),
i.e., N is radical. Hence P(M) is completely Rad-®-supplemented. O

Proposition 2.6. Let M be a Rad-®-supplemented module. If every Rad-
supplement in M is a direct summand of M, then M is completely Rad-®-
supplemented.

Proof. Let N be a direct summand of M. Then we can write M = N @ L
for some submodule L of M. Since M is Rad-®-supplemented, it is Rad-
supplemented and therefore N is Rad-supplemented by [2, 2.2 (2)]. Let U <
N, then U has a Rad-supplement V in N. Now we argue that V is a direct
summand of N. Note that

M=NoL=U+V)+L=U+L)+V,
and
U+D)nNV<U+V)NL+(L+V)NU=(L+V)NU<U.

Then (U+L)NV <UNV < Rad(V). This means that V is a Rad-supplement
of (U + L) in M. By our assumption, we can write M = V @& V' for some
submodule V' of M. It follows by the modular law that N = V@&V N N.
This completes the proof. O

Let M be a module. M is said to have the property (P*) if for every
submodule N < M there exists a direct summand K of M such that K < N
and & < Rad(%%) [1]. Equivalently, for every submodule N < M there exists
a decomposition M = K @ L such that K < N and NN L < Rad(L).
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Proposition 2.7. Let M be a module. If M has the property (P*), then M
s completely Rad-®-supplemented.

Proof. Let N be a direct summand of M and let U < N. Since M has the
property (P*), there exists a submodule X of U such that M = X & X " and
UNX < Rad(X') for some submodule X  of M. By the modular law, we
can write N = X & N N X'. This means that N N X" is a direct summand of
N. Therefore N=U+NNX .

Next, we prove that UN(NNX') =UNX < Rad(NNX'). Let m
be any element of U N X'. Since UN X < Rad(X'), by [11, 9.1.3.(a)], we
get Rm << X' so that Rm << M. Applying [17, 19.3.(5)] twice, we first
obtain Rm << N and then Rm << NN X. By [11, 9.1.3.(a)], we have
UNX <Rad(NNX'). O

Recall that a m-projective module M is @-supplemented if and only if the
module is lifting [17, 41.15]. Now we shall prove analogous characterization
for Rad-®-supplemented modules.

Theorem 2.8. A w-projective module M is Rad-®-supplemented if and only
if M has the property (P*).

Proof. (=) Let U be a submodule of M. Then, we have the sum M = U+V,
where V is a direct summand of M. Since M is a w-projective module, we
can write M = X @ V for some submodule X of M by [6, 4.14.(1)]. It follows
that, for U < M, there exists a decomposition M = X & V such that X <U
and UNV < Rad(V). This means that M has the property (P*).

(«<=) By Proposition 2.7. O

Clearly lifting modules has the property (P*), but the converse is not true
in general. For example, the left Z-module Q has the property (P*) but it is
not lifting. If a module M is projective, then we have the following fact.

Proposition 2.9. Let M be a module. If M is projective and has the property
(P*), then M is lifting.

Proof. By Proposition 2.7, M is Rad-@-supplemented. Applying Theorem 2.2,
we obtain that M is @-supplemented. Since M is projective, it is m-projective
and thus M is lifting by [17, 41.15]. O

Before giving the following corollary which summarizes the combined re-
sults of Theorem 2.2, Theorem 2.8 and Proposition 2.9, we recall some known
definitions. For a module M, consider the following conditions:

(D2) If N is a submodule of M such that % is isomorphic to a direct summand
of M, then N is a direct summand of M.
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(D3) For every direct summands K and L of M with M = K+ L, KNLisa
direct summand of M.

In [12], a module M is called discrete if M is lifting and satisfies the
property(Dz). This is equivalent to M is supplemented, m-projective and
direct projective (see [6, 27.1]). The module M is called quasi-discrete if it is
lifting and satisfies the property (D3). We know that M is quasi-discrete if
and only if it is supplemented and 7-projective (see [6, 26.6]).

Corollary 2.10. For a projective module M, the following conditions are
equivalent.

1. M s supplemented.

2. M is ®-supplemented.

3. M is Rad-®-supplemented.
4. M has the property (P*).
5. M is lifting.

6. M is (quasi-) discrete.

Proof. (1) = (2) It is obvious according to [17, 41.15].
= (3) By Theorem 2.2.
= (4) It follows from Theorem 2.8.
(5) It is proven in Proposition 2.9.
(5) = (6) Clear since projective modules are direct projective and -
projective.
(6) = (1) Trivial. O

)
(3)
(4) =

Now, we shall characterize the rings whose modules have the property (P*)
in the following Corollary.

Corollary 2.11. The following statements are equivalent for a ring R.
1. Every left R-module has the property (P*).
2. Every left R-module is lifting.

3. R is an artinian serial ring and J*> = 0, where J is the Jacobson radical
of R.
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Proof. (1) = (2) Observe first that R is a left perfect ring. Let F be any
projective R-module. By the hypothesis, F' has the property (P*). Since F
is projective, it is m-projective and so F' is Rad-®-supplemented by Theorem
2.8. It follows from Corollary 2.3 that R is left perfect.

For any module M, let U < M. By assumption, there exists a decompo-
sition M = U & V such that K < U and UNV < Rad(V). Since R is left
perfect, we have that U NV << V. This means that M is lifting.

(2) <= (3) See [6, 29.10).

(2) = (1) Clear. O

A module M is called weakly distributive if every submodule N of M is
weak distributive, i.e., N =U NN +V NN whenever M =U+V (see [5]). It
follows from [7, Example 4.1] that factor modules of a Rad-@-supplemented
module need not be Rad-@-supplemented, in general. For weakly distributive
modules we have the following fact:

Theorem 2.12. Fvery factor module of a weakly distributive Rad-®-supplemented
module is Rad-®-supplemented.

Proof. Suppose that a module M is weakly distributive Rad-@-supplemented.
Let N < U < M. Then there exist submodules V and L of M such that
M=U+V,UNV < Rad(V) and M =V & L. By [9, Lemma 3.4], Y& is
a Rad-supplement of % of % Since M is a weakly distributive module, we
conclude that N =V NN + LN N. It follows that

(V]J\FZN) N (L;FVN) _ (V+N])VOL+N _ (V+Lﬁ11\\/I)OL+N _ VﬂL+]LVﬂN+N = 0.

V+N
N

Hence is a direct summand of % This means that % is Rad-®-

supplemented. O

It is proven in [9, Theorem 3.3] that every finite direct sum of Rad-®-
supplemented modules is Rad-®-supplemented. The following example shows
that the class of Rad-@-supplemented is not closed under infinite direct sums.

Example 2.13. Let R be a local dedekind domain (i.e. DVR) with quotient
K # R (e.g. the ring Z,) containing all rational numbers of the form ¢ with
p 10 for any prime p in Z). Since R is local, it follows that R is @-supplemented
and therefore R is Rad-@®-supplemented. On the other hand, by Corollary 2.3,
there exists a projective R-module which is not Rad-®-supplemented because

R is not field.

A module M is said to be a duo module if every submodule N of M is
fully invariant [13]. Now we prove that direct sums of Rad-@®-supplemented
modules is Rad-®-supplemented, under a certain condition: namely, when M
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is a duo module. The proof of the next result is taken from [16, Theorem 1],
but is given for the sake of completeness.

Proposition 2.14. Let M; (i € I) be any infinite collection of Rad-®-
supplemented modules and let M = @,.; M;. If M is a duo module, then
M is Rad-®-supplemented.

Proof. Let U < M. Since M is a duo module, by [13, Lemma 2.1], U =
@;c;(M; NU). By the hypothesis, there exists a submodule V; of M; such
that M; = M;NU+V; and (M; NU)NV;, =UNV; < Rad(V;) for every i € I.
Let V = @,.; Vi. Note that V is a direct summand of M. Then

M=U+V
and
Unv =@0;nv)n(@ Vi) < P Rad(V;) = Rad(V)
iel iel i€l
by [17, 21.6.(5)]. It follows that V is a Rad-supplement of U in M. Thus M
is Rad-@®-supplemented. O

It is shown in [10, Theorem 1.1] that a commutative ring R is an artinian
serial ring if and only if every left R-module is &-supplemented. Now we
generalize this fact in the next Corollary, characterizing the commutative rings
in which modules are Rad-®-supplemented.

Corollary 2.15. Let R be any commutative ring. Then R is an artinian
serial ring if and only if every left R-module is Rad-®-supplemented.

Proof. Suppose that every left R-module is Rad-®-supplemented. Then every
projective left R-module is Rad-&-supplemented and so, by Corollary 2.3, R is
left perfect. It follows that any module has a small radical. Therefore a Rad-
@-supplemented module over the ring is @-supplemented. So every module is
@-supplemented. Thus, the proof follows from [10, Theorem 1.1]. O

Recall that a module M is called w-local if M has a unique maximal sub-
module. It is clear that M is w-local if and only if Rad(M) is maximal. Every
local module is w-local. However, a w-local module is not necessarily local
(see [3]). Tt is clear that if a w-local module M is finitely generated, then it is
local.

Lemma 2.16. Let R be a local commutative ring and let M be a uniform
R-module. Suppose that every submodule of M is Rad-®-supplemented. Then
M s unisertial.
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Proof. By [14, Lemma 6.2], it suffices to show that every finitely generated
submodule of M is local. Let K be any finitely generated submodule of M.
Then K contains a maximal submodule L. By the assumption, L has a Rad-
supplement V in K such that V & V' = K for some submodule V' of K. Note
that V' C M. It follows from [3, Lemma 3.3] that V has a unique maximal
submodule, i.e., V' is w-local as in [3]. Therefore V is local. Since M is uniform
and L is maximal, we have V' =0. In conclusion V = K. O]

Corollary 2.17. Let R be a local commutative ring with a mazimal ideal J.
Suppose that every submodule of E(?) is Rad-®-supplemented, where E(%)
1s the injective hull of the simple module % Then R is a uniserial noetherian
7ing.

Proof. Since E(%) is uniform, it follows from Lemma 2.16 and [14, Lemma
6.2 (Corollary)] that R is uniserial. Therefore R is a uniserial noetherian ring
by [14, Lemma 6.3]. O

A ring R is called semilocal if ? is semisimple, where J is the Jacobson

radical of R. We know that a semilocal ring R is left perfect if and only if R
is a left max ring (i.e. every left R-module has a maximal submodule).

Proposition 2.18. The following conditions on a semilocal ring R are equiv-
alent:

1. Every w-local module is semiperfect.
2. BEvery w-local module is generalized semiperfect.
3. R is left perfect.

Proof. Clearly, we have (3) = (1) = (2). Finally, it remains to prove the
implication (2) = (3). Let M be any w-local module. Assume that, for
N < M, Rad(M) + N = M. Then Rad(%) has no maximal submodules. It
follows from proof of Lemma 2.1 that Rad(M) << M. So M is local. By [3,
Lemma 3.1], R is left perfect. O

3 Rad-®-Supplemented Modules Over Commutative Do-
mains

Throughout this section, we consider only commutative domains. Our aim is to
prove that a Rad-supplemented module is Rad-@®-supplemented over dedekind
domains. To this aim, we need the following key Lemma:

Lemma 3.1. Let M be a module over a dedekind domain. The following are
equivalent:
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1. M is Rad-®-supplemented.

2. P%{) 1s Rad-®-supplemented.

e

3. % 18 D-supplemented.

Proof. (1) = (3) It follows from Proposition 2.4.

(3) = (2) Clear.

(2) = (1) Since every radical module over a dedekind domain is injective,
the submodule P(M) of M is injective. Therefore, there exists a submodule
N of M such that M = P(M) @ N. From (2), N is Rad-®-supplemented. By
Corollary 2.5 and [9, Theorem 3.3], M is Rad-@®-supplemented. O

Note that Lemma 3.1 is not true for &-supplemented modules, in general
(see [9, Example 3.11].

Theorem 3.2. Let R be a dedekind domain. Then every Rad-supplemented
R-module is Rad-®-supplemented.

Proof. Let M be any Rad-supplemented module over the domain R. Then,
by [2, 2.2.(2)], % is Rad-supplemented. Applying [4, Proposition 7.3],
we conclude that % is supplemented. Therefore % is @-supplemented
according to [12, Proposition A.7 and Proposition A.8]. Hence M is Rad-®-

supplemented by Lemma 3.1. O

The structure of Rad-supplemented modules over local dedekind domains
is completely determined in [4, Theorem 7.2]. Using this Theorem along with
Theorem 3.2 we obtain:

Corollary 3.3. Let R be a local dedekind domain with a quotient field K
and let M be an R-module. Then M is Rad-@-supplemented if and only if
M=R oKDg (%)(‘]) @ N for some bounded R-module N. Here n is a
nonnegative integer, and I and J are any index sets.

Proof. This equivalence follows from Theorem 3.2 and [4, Theorem 7.2]. O

Zoschinger proved in [19, Theorem 3.1 (Folgerung)| that every supple-
mented module over a dedekind domain is the direct sum of hollow modules.
Using this fact we obtain a new characterization of dedekind domains.

Proposition 3.4. Let R be a local noetherian ring. Every Rad-supplemented
R-module is the direct sum of hollow modules if and only if R is a dedekind
domain.
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Proof. Suppose that R is a dedekind domain. Let M be any Rad-supplemented
R-module. Then we can write M = P(M) & N for some submodule N of M.
Since R is a local dedekind domain, P(M) is the direct sum of hollow radical
modules. By Lemma 3.1, N is supplemented and therefore N is the direct
sum of hollow modules according to [19, Theorem 3.1 (Folgerung)]. It follows
immediately that M is the direct sum of hollow modules. The converse is clear
by [19, Lemma 3.2]. O
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