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Generalized Broughton polynomials and
characteristic varieties

Nguyen Tat Thang

Abstract

We introduce a family of generalized Broughton polynomials and
compute the characteristic varieties of complement of curve arrange-
ments defined by fibers of those generalized Broughton polynomials.

1 Introduction

In [3] Broughton considered the polynomial

f(x, y) = x(xy − 1).

The associated function f : C2 → C has no critical value, but the fiber f−1(0)
is not diffeomorphic to the generic one. This is explained by the existence of
the so-called ”critical value at infinity”, see [10], [3], [4].

In the paper [12] Zahid introduced a family of polynomials:

fp,q(x, y) = xp[xy(x+ 2) · · · (x+ q)− 1],

which are called generalized Broughton polynomials, where p ≥ 1 and q ≥ 1
are integer number, with the convention

fp,1 = xp(xy − 1).

Key Words: Broughton polynomial, characteristic varieties, translated component, con-
nected generic fiber.
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By computing the characteristic variety V1(M), where

M = C2 \ (C0 ∪ C1)

is a complement of a curve arrangement defined by a component of the 0−fiber:

C0 =

{
{xy(x+ 2) · · · (x+ q)− 1 = 0} if q > 1

{xy − 1 = 0} if q = 1

and the generic fiber of fp,q:

C1 = {fp,q(x, y) = 1},

the author obtained examples of characteristic varieties with an arbitrary num-
ber of translated components for complements of affine curve arrangements
consisting of just two curves, see [12].

The aim of this paper is to generalize the Zahid’s work in [12]. More
precisely, we introduce a family of generalized Broughton polynomials, which
generalizes the Zahid’s one. Namely

F (x, y) := p(x)(yq(x)− 1)

where p(x), q(x) ∈ C[x].
Put f(x, y) := F (x, y) − 1 and g(x, y) := yq(x) − 1. We denote by M the

complement

M = C2 \ {f(x, y) = 0, g(x, y) = 0}.

The main result in this note shows how to compute the characteristic variety
V1(M), for all polynomials p(x), q(x) such that they have at least one common
root and p(x) + 1, q(x) have no common root.

In Section 2 we recall the definition and the basic properties of the char-
acteristic and resonance varieties. In Section 3 we compute the characteristic
variety V1(M). In particular, we obtain examples of characteristic varieties
with an arbitrary number of translated components (Theorem 3.6). This is an
extension for Theorem 4.1 in [12].

2 Characteristic and Resonance varieties

Let M be a smooth, irreducible, quasi-projective complex variety. The char-
acter variety of M is defined by

T(M) := Hom(H1(M),C∗).
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This is an algebraic group whose identity irreducible component T(M)1 is an
algebraic torus (C∗)b1(M). Consider the exponential mapping

exp : H1(M,C) → H1(M,C∗) = T(M) (1)

induced by the usual exponential function exp : C → C∗. Clearly

exp(H1(M,C)) = T(M)1.

The characteristic varieties of M are the jumping loci for the first coho-
mology of M , with coefficients in rank one local systems:

Vi
k(M) = {ρ ∈ T(M) : dimHi(M,Lρ) ≥ k}.

When i = 1, we use the simpler notation Vk(M) = V1
k(M).

Foundational results on the structure of the cohomology support loci for
local systems on quasi-projective algebraic varieties were obtained by Beauville
[2], Green and Lazarsfeld [9], Simpson [11] (for the proper case), and Arapura
[1] (for the quasi-projective case and first characteristic varieties V1(M)).

Theorem 2.1. The strictly positive dimensional irreducible components of the
first characteristic variety V1(M) are translated subtori in T(M) by elements
of finite order. When M is proper, then all the components of Vi

k(M) are
translated subtori in T(M) by elements of finite order.

The strictly positive dimensional irreducible components of the first char-
acteristic variety V1(M) are described as follows.

Theorem 2.2. ([2], [1]) Let W be a d−dimensional irreducible component of
V1(M), d > 0. Then there is a regular morphism f : M → S onto a smooth
curve S with b1(S) = d such that the generic fiber F of f is connected, and a
torsion character ρ ∈ T(M) such that the composition

π1(F )
i#−→ π1(M)

ρ−→ C∗,

where i : F → M is the inclusion, is trivial and W = ρ · f∗(T(S)).

Remark 2.3. When M is a hypersurface complement in Pn, the curve S in
Theorem 2.2 above is obtained from C by deleting d points, see [7], Theorem
1.11.

If we fix a regular mapping f : M → S as above, the number of irreducible
components W = ρ · f∗(T(S)) obtained by varying the torsion character ρ is
given by the following.
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Theorem 2.4. ([6]) For a given regular mapping f : M → S as above, the
associated irreducible components W = ρ · f∗(T(S)) are parametrized by the
Pontrjagin dual T̂ (f) = Hom(T (f);C∗) of the finite abelian group

T (f) =
ker{f∗ : H1(M) → H1(S)}
im{i∗ : H1(F ) → H1(M)}

if χ(S) < 0 and by the non-trivial elements of this Pontrjagin dual T̂ (f) if
χ(S) = 0.

The group T (f) is determined as follows.

Theorem 2.5. ([6]) Let S is a non-proper smooth curve and f : M → S be
a regular function. Then the group T (f) is computed by the following

T (f) = ⊕c∈C(h)Z/mcZ,

where mc is the multiplicity of the divisor f−1(c) and C(f) is the set of bifur-
cation values of f .

The (first) resonance varieties of M are the jumping loci for the first co-
homology of the complex H∗(H∗(M,C), α∧), namely

Rk(M) = {α ∈ H1(M,C) : dimH1(H∗(M,C), α∧) ≥ k}.

The relation between the resonance and characteristic varieties can be sum-
marized as follows, see [8].

Theorem 2.6. Assume that M is any hypersurface complement in Pn. Then
the irreducible components E of the resonance variety R1(M) are linear sub-
spaces in H1(M,C) and the exponential mapping (1) sends these irreducible
components E onto the irreducible components W of R1(M) with 1 ∈ W .

3 The Characteristic varieties V1(M)

Consider from now on the complement M = C2 \C, where C = C0∪C1, C0 =
{g(x, y) = 0} and C1 = {f(x, y) = 0}.

By the same argument as in Section 3 in [12] we can prove the following.

Theorem 3.1. The integral (co)homology of the surface M is torsion free and

b1(M) = 2, b2(M) = s+ t,

where s and t are the numbers of roots of q(x) and p(x)q(x), respectively.
Moreover, the cup-product

∪ : H1(M)×H1(M) → H2(M)

is non-trivial.
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Using the definition of the resonance varieties we get the following.

Corollary 3.2. The resonance varieties of M are trivial, i.e. Rk(M) = 0 for
any k > 0.

Since the resonance varieties are trivial, and M is a hypersurface comple-
ment, it follows from Theorem 2.6 that the characteristic varieties V1(M) can
contain only isolated points and 1-dimensional translated components. In this
section we determine the latter ones.

In view of Theorem 2.2 and Remark 2.3, any such component comes from
a mapping h : M → C∗. If we regard h as a regular function on the affine
variety M , it follows that h should have the form

h =
P (x, y)

fmgn

for some polynomial P and some non-negative integers m,n. If P is not in
the multiplicative system spanned by f and g, then P vanishes at some point
of M and this is a contradiction. It follows that we may assume that

h = fmgn

for some (positive or negative) integers m,n. Now, we are looking for all such
maps such that they have multiple fibers and connected generic fiber.

Lemma 3.3. For all integer numbers m > 1, n > 1 and c ∈ C \ {0}, then the
generic fiber of the polynomial fm(x, y) + cgn(x, y) is connected.

We need the following fact.

Lemma 3.4. ([6]) For any polynomial map P : Cn → C the followings are
equivalent:

(1) The generic fiber of P is connected;

(2) There do not exist polynomials H : C → C and Q : Cn → C such that
deg(H) > 1 and P = H(Q).

Proof of Lemma 3.3. Let Φ : C2 → C2 be given by Φ(x, y) = (x, g(x, y)). We
have

fm(x, y) + cgn(x, y) = h ◦ Φ,

where h(u, v) := (p(u)v − 1)m + cvn.
It is easy to see that the restriction of Φ on C2 \ A is a homeomorphism,

where A = {(a, y) : q(a) = 0, y ∈ C}. Then, the generic fiber of fm(x, y) +
cgn(x, y) is connected if and only if the generic fiber of h(u, v) is connected.
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Now, we assume by contradiction that the generic fiber of h(u, v) is not
connected. According to Lemma 3.4, there are polynomials H : C → C and
Q : C2 → C such that deg(H) > 1 and

(p(u)v − 1)m + cvn = H(Q(u, v)).

We consider the singular locus of the polynomials in the above equality. Since
deg(H) > 1 then the singular locus of H(Q(u, v)) has dimension at least one.
In particular, there are infinitely many points. However, singular points of
h(u, v) are roots of the following systems.{

p
′
(u) = 0,

mp(u)(p(u)v − 1)m−1 + cnvn−1 = 0

or {
p(u) = 0.

v = 0

It is easy to see that the above systems have only finitely many points. Con-
tradiction.

Lemma 3.5. Assume that the map h = fmgn : M → C∗ has connected
generic fiber and a multiple fiber. Then n = 0 and m = ±1.

Proof. If n = 0 then m = ±1, because h has connected generic fiber. Similarly,
if m = 0 then n = ±1. However, since deg(f) > deg(g), it is easy to show that
the function g : C2 \ {fg = 0} → C∗ has not any multiple fiber.

Now, we assume that mn ̸= 0. Since M = C2 \ {fg = 0} and f, g are
two irreducible polynomial then the map h : M → C∗ has multiple fiber if

and only if, there exist c ∈ C∗, h1 ∈ C[x, y], h1 ̸
...f, h1 ̸

...g and integer numbers
s, l, k, |s| > 1, such that

fmgn = c+ hs
1f

lgk. (2)

Since f, g, h1 are pairwise relatively prime then ml ≥ 0 and nk ≥ 0. There are
four cases.

a) m, l, n, k ≥ 0: This implies that l = k = 0 and hence, the generic fiber
of h has at least |s| > 1 connected components which is a contradiction.

b) m, l, n, k ≤ 0: By dividing two sides of the equality (2) by the lowest
powers of f and g, one can prove that m = l and n = k. It means

(fmgn)−1 =
1

c
(1− hs

1).

So the generic fiber of fmgn is not connected.
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c) m, l ≥ 0 and n, k ≤ 0: Similarly, we get l = 0 and n = k. Hence
fm = cg−n + hs

1. Therefore, the generic fiber of the polynomial fm − cg−n is
not connected, contradicts to Lemma 3.3.

d) m, l ≤ 0 and n, k ≥ 0: By the same argument, we also obtain the
contradiction.

The main result in this paper is the following.

Theorem 3.6. Let p(x) and q(x) ∈ C[x] be two polynomials such that they
have at least one common root and p(x)+1, q(x) have no common root. Then,
if there exist an integer number s > 1 and a polynomial p1 ∈ C[x] such that

p(x) = p1(x)
s,

the strictly positive dimensional components of V1(M) are the translated 1-
dimensional sub-tori

Wj = ϵj × C∗,

where d is the maximum of the exponent s above and ϵj = exp (2πij/d) for j =
1, 2, . . . , d−1. Moreover, for a local system L ∈ Wj one has dimH1(M,L) ≥ 1
and equality holds with finitely many exceptions.

Otherwise, there do not exist strictly positive dimensional components of
V1(M).

Proof. According to Theorem 2.2 and Remark 2.3, any translated positive
dimensional component of V1(M) comes from a map h : M → C∗ which has
connected generic fibers.

According to Lemma 3.5, the only morphisms associated to strictly positive
dimensional components of V1(M) are f : M → C∗ and f−1 : M → C∗, z 7→
f(z)−1, but they give the same associated component of V1(M). Thus all
translated positive dimensional components of V1(M) are associated to the
map f : M → C∗.

On the other hand, it is easy to see that the only possibly multiple fiber of f
is f−1(−1). Hence, according to Theorem 2.5, if p(x) is not a power of a poly-
nomial then T (f) = 0 and there does not exist strictly positive dimensional
components of V1(M); unless T (f) = Z/dZ, where

d = max{s ∈ N : p(x) = p1(x)
s, p1 ∈ C[x]}.

We now consider the later case. It is deduced from Theorem 2.6 that there are
exactly d − 1 associated 1-dimensional translated components. If we identify
T(M) = C∗ by associating to a local system L ∈ T(M) the two monodromies
(λ0, λ1) about the curves C0 and C1, and in a similar way T(C∗) = C∗, then
the induced morphism

f∗ : T(C∗) → T(M)
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is just λ 7→ (1, λ).

With these identifications, the above d− 1 associated 1-dimensional trans-
lated components of V1(M) are given byWj = ϵj×C∗, where ϵj = exp (2πij/d)
for j = 1, 2, . . . , d− 1.

The inequality on dimension of cohomology group of M is the direct con-
sequence of Corollary 5.9 in [6].
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