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Differential sandwich theorems of p—valent
analytic functions involving a linear operator

M. K. Aouf and T. M. Seoudy

Abstract

In this paper we derive some subordination and superordination re-
sults for certain p—valent analytic functions in the open unit disc, which
are acted upon by a class of a linear operator. Some of our results im-
prove and generalize previously known results.

1 Introduction

Let H(U) denotes the class of analytic functions in the open unit disc U =
{z € C: |z| < 1} and let H][a, p] denotes the subclass of the functions f € H(U)
of the form:

f(z)=a+apzf +ap 127+ .(a€C;peN={1,2,.}).
Also, let A(p) be the subclass of the functions f € H(U) of the form:
f(z)=2"+ Z apz® (p eN), (1.1)
k=p+1

and set A = A(1). For functions f(z) € A(p), given by (1.1), and g(z) given
by

g =+ S bt (peN), (1.2)
k=p+1

Key Words: Analytic function, Hadamard product, differential subordination, superor-
dination, linear operator.

2010 Mathematics Subject Classification: 30C45.

Received: April, 2011.

Revised: April, 2011.

Accepted: February, 2012.



6 M. K. Aour AND T. M. SEOUDY

the Hadamard product (or convolution) of f(z) and g(z) is defined by

(fx9)(z) = 2"+ Y axbpz® = (9% [)(2). (1.3)
k=p+1

For f,g € H(U), we say that the function f is subordinate to g, if there
exists a Schwarz function w, i.e, w € H(U) with w(0) = 0 and |w(z)| < 1,
z € U, such that f(z) = g(w(z)) for all z € U. This subordination is usually
denoted by f(z) < g(z). It is well-known that, if the function ¢ is univalent
in U, then f(z) < g(z) is equivalent to f(0) = ¢(0) and f(U) C g(U) (see [5]

and [9]).

Supposing that h and k are two analytic functions in U, let
é(r,s,t;2) : C* x U — C.

If h and (h(z), zh'(2), 22h" (2); ) are univalent functions in U and if h satisfies
the second-order superordination

k(z) = o(h(2), zh (), 22h" (2); 2), (1.4)

then h is called to be a solution of the differential superordination (1.4). A
function ¢ € H(U) is called a subordinant of (1.4), if ¢(z) < h(z) for all the
functions h satisfying (1.4). A univalent subordinant g that satisfies ¢(z) <
4(z) for all of the subordinants ¢ of (1.4), is said to be the best subordinant.

Recently, Miller and Mocanu [10] obtained sufficient conditions on the
functions k, ¢ and ¢ for which the following implication holds:

k(z) < o(h(z), 20 (2), 22K (2): 2) = q(2) < h(2).

Using these results, Bulboaca [3] considered certain classes of first-order
differential superordinations, as well as superordination-preserving integral op-
erators [4]. Ali et al. [1], using the results from [3], obtained sufficient condi-
tions for certain normalized analytic functions to satisfy

2f (2)
f(z)

where g; and ¢y are given univalent normalized functions in U.
For complex parameters

aq,...,0q and By, ..., Bs (ﬁ] ¢Zy ={0,—1,-2,..};5=1,2, ,s) ,

we now define the generalized hypergeometric function ¢ Fs (o, ..., og; 81, ..., Bs; 2)
by (see, for example, [15, p.19])

qi(z) < =< q2(2),

: =N (@) (ag)e 2
JFa(an, .y agi B, ooy B )—kz:: CATAR (1.5)

. Dx K
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(¢<s+1;q,s e Ng=NU{0};z € U),

where (6),, is the Pochhammer symbol defined, in terms of the Gamma function
I, by

T(9+v) (v =0;0 € C* = C\{0}),

1

O =—T@ ~ { 00+1)..(0+v—1)  weNoec). 1O

Let
h(oa, ...,aq; By, By 2) = 2PgFs(ou,...,aq; B, -, Bs; 2)
= 2P+ Z Tpqs (1) 25,
k=p+1

where

Fp,q,s (al) _ (al)kfp"'(aq)k‘fp , (17)

(B1)k—p--(Bs)k—p(L)k—
and using the Hadamard product, El-Ashwah and Aouf [7] defined the follow-

ing operator ,
L5 (a1, e i By -, Bs) 2 Alp) — A(p)

by
Iz()):f\(ala AR Oéq; ﬁlu (LS BS)f(Z)
I;:f\<a1a AR ] Oéq; ﬁla (LS Bs)f(z)
A

J(2) % h(on, ..., aq; B, -.ns Bs; 2);
(1 — )\)(f(z) * h(al, ...,Oéq;ﬁl, ceny Bs; 2))

£ . )Y
+W(’Z f(Z) * h(O{]_, -~-704an17 "'7657z)> )
and
I;?ié(ah ~-'7aq;617 755)f( ) = I;SS )\(I;nq slf(al? ---,aq;ﬁla 768)f<z)() )
1.8
If f € A(p), then from (1.1) and (1.8), we can easily see that
m p+ L+ Ak
Ip,ie(alv-“vaq;ﬁla 7Bs _Zp+ Z |:p—i—€p) ].—‘p7q75 (al)akzk,
k=p+1

(1.9)
peN;meNy=NU{0}£4>0;A>0;2€U)

It can be easily verified from the definition (1.9) that:

/

AL @) f(2) = an) s (an+1)f(2) = (a1 =p) I, s (@1) f(2), (1.10)

P,q,8,A
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where
Lsa (@0 (2) = L (a1, 00 B1, 0 B2) f(2).

It should be remarked that the linear operator I;?fs’ y(o1) is a general-

ization of many other linear operators considered earlier. In particular, we
have

12:5737/\((11)]0(2) = Hp,q,s(al)f(z),

where the linear operator Hp 4 s(a1) was investigated by Dziok and Srivastava
[8], and also we have

1% 1\ (a,150) f(2) = Ly(a, o) f(2)(a € R;c € R\Zy),

where the linear operator L,(a, c) was studied by Saitoh [13] which yields the
operator L(a,c)f(z) introduced by Carlson and Shaffer [6] for p = 1.

2 Preliminaries

In order to prove our subordination and superordination results, we make use
of the following known definition and results.

Definition [10]. Denote by @ the set of all functions f(z) that are analytic
and injective on U\E(f), where

E(f):{(:(eaand il_)rréf(z):oo} (2.1)

and are such that f (¢) # 0 for ¢ € QU\E(f).
Lemma 1 [9]. Let the function q(z) be univalent in the unit disc U and let
0 and ¢ be analytic in a domain D containing q(U) with o(w) # 0 when

w e q(U). Set Q(z) = 2q (2)@(q(2)) and h(z) = 0(q(2)) + Q(2). Suppose that
(i) Q(z) is starlike univalent in U,
.. zh'(2)
(ii) R )
If p is analytic with p(0) = ¢(0), p(U) C D and

>>O for z e U.

0(p(2)) + 2p (2)¢(p(2)) < 0(a(2)) + 24 (2)¢(a(2)), (2.2)

then p(z) < q(z) and q(z) is the best dominant.
Lemma 2 [5]. Let q(z) be convex univalent in the unit disc U and let 6 and
© be analytic in a domain D containing q(U). Suppose that

o ] 0 a2) ,
(i) %{cp(q(z))}>0 for ze€ U;
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(i) 2q (2)@(q(2)) is starlike univalent in U.
If p(z) € Hq(0),1NQ, with p(U) C D, and 0(p(2)) + 2p (2)¢(p(2)) is uni-
valent in U, and

0(a(2)) + 24 (2)¢(a(2)) < 0(p(2)) + 2p (2)¢(p(2)), (2.4)

then q(z) < p(z) and q(z) is the best subordinant

The following lemma gives us a necessary and sufficient condition for the
univalence of a special function which will be used in some particular case.
Lemma 3 [12]. The function q(z) = (1 — 2) "> (a,b € C*) is univalent in the
unit disc U if and only if |2ab— 1| <1 or |2ab+ 1] <1.

3 Main Results

Unless otherwise mentioned, we assume throughout this paper that p € N,;m €
Np, £ > 0; A > 0 and the power understood as principal values.
Theorem 1. Let q(z) be univalent in U such that ¢(0) = 1, q(z) # 0 and

ZZ(S) is starlike in U. Let f € A(p) and suppose that f and q satisfy the next

conditions:

llgéfS,A(al)f(z>‘| . [ P ‘| n
. e (oa + 1) f(2)

#0(neChneCzel),

(3.1)
and

m{1+§q<z>+2,f[q<z>12— ), 2 (z)} >0 (C.6eCiyeChzel).

q(z) q'(2)
(3.2)
I
¥ () < o) +0la ) 2D, (3.3
where
_ Lt () f()]" 27 !
U(z) = x+¢ P ] [ngs,A(al‘Fl)f(z)]
+0 I;nfs (1) f(2) o l 2P rn
2P e (on +1)f(2)
T e+ 1) f(2) ]
Fypoy | 2L -1
b [ @) f(2)
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L (o +2)f(2)
1) 1 - s : 3.4
M R N .
then o i .
Ipyq,s,A(al)f(Z) i 2P <q(z),
zP I;:L(;,s})\(al +1)f(2)
and q is the best dominant of (3.3).
Proof. Let
m,L H n
h(z) = [Ip7q,s,k(al)f(z)] [ _ 2P ] (z € U). (3.5)
2P Ip7(;7s7/\(a1 +1)f(2)

According to (3.1) the function h(z) is analytic in U, and differentiating (3.5)
logarithmically with respect to z, we obtain

) [z(fgt’q*ixal)f(z))’ 2L (o + 1>f<z>>’] .

= —p|+n|p- —=
h(Z) Ipvéiv)\(al)f(z Ip,cfs,)\(al + 1)f(2)
By using the identity (1.10), we obtain
2h(2) pion [Ip"fs’*(al T DAE) 1 +n (a1 +1) |1 - G Q)f(z)l .
(=) Laenla)f(2) L Ao+ 1Df(2)

In order to prove our result we will use Lemma 1. In this lemma consider

O(w) =x+ Cw+ Sw?  and o(w) = 1,
w

then 6 is analytic in C and ¢(w) # 0 is analytic in C*.Also, if we let

Q(2) = 24 (ela(2)) = L2

and

24 (2)
q(z) -
We see that Q(z) is starlike function in U. From (3.2), we also have

%{Zg((j))} :%{1+§q(z)+2j[q(z)]2— 0 (), 2 (Z)} >0 (z€U),

9(2) = 0(q(2)) + Q(2) = x +Cq(2) +6[q (2)]* +
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and then, by using Lemma 1 we deduce that the subordination (3.3) implies
h(z) < q(z), and the function ¢ is the best dominant of (3.3).

Putting ¢ = 2,s = p =1,m = 0,1 = a(a€C),ap = 1 and B = ¢
(c € C\Zy ) in Theorem 1, we obtain the following result which improves the
corresponding work of Shammugam et al. [14,Theorem 3.1].

Corollary 1. Let q(z) be univalent in U such that q(0) =1, q(z) # 0 and

24 (2) s starlike in U. Let f € A such that

q(z)
O] e

7
} #0 (peCrzel), (3.6)
and suppose that q satisfies (3.2).1f

2q (2)

q(z) ’

A(z) = x+Cq(2) +8[q ()] +7 (3.7)

where

Alz) = x+<{L<a,Z>f<z>H .

L(a+ 1,c)f(z:)y7

o[22 ]

L{a+1¢c)f(z) 1}
L{(a,c) f(z)

+yua {

+yn(a+1) {1 - —E EZ i ? 3 ;8] (3.8)

then

2 7
{L(a,c)f(z)] { z } <q(2),
: Lt 1,0 /()
and q is the best dominant of (3.7).

Putting ¢ (z) = % (-1 < B < A<1) in Corollary 1, we obtain the
following result which improves the corresponding work of Shammugam et al.
[14, Corollary 3.2].

Corollary 2. Assume that

5 1-AB2?  ([l+42] 26 [1+42]%
(1+A42)(1+Bz) ~ |1+ Bz v |1+ Bz

((,6€eC;yeCr2ze )
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holds. Let f € A such that (3.6) holds. If

A(z) = x+¢

1+ Az [1+Azr (W(A_B)Z (3.9)

1+ Bz 1+ Bz 14+ Az2)(1+ Bz)’

where A (z) is given by (3.8), then

[L(a’cz)f@)r [L(a+ f,c)f(z)]n B 112?

and ij_gi is the best dominant of (3.9).

11—z
result which improves the corresponding work of Shammugam et al. [14,
Corollary 3.3].
Corollary 3. Assume that

1—322 1+21" 26 [142]%
§R{ 5 +C[ ”} +[ ”} >0 (C,6€C;yeChzel)
1—=2 v l1—-=2 v [1—=2

9
Putting ¢ (2) = (1+z> (0 < ¥ < 1) in Corollary 1, we obtain the following

holds. Let f € A such that (3.6) holds. If

9 29
A(z)<x+CGJ_ri> +5ij> +(12T9;) 0<9<1), (3.10)

where A (z) is given by (3.8), then

[““’Z”“)T {L<a+ic>f<z>r A Gi)

0
and <1+ ) is the best dominant of (3.10).

11—z
Putting ¢ (z) = e (JuA| < 7) in Corollary 1, we obtain the following
result which improves the corresponding work of Shammugam et al. [14,
Corollary 3.4].
Corollary 4. Assume that

25
§R{1 + %e“Azq(z) + 762#142} >0 (¢,6€CyeCrzel)

holds and let f € A such that (3.6) holds. If

A(2) < x4 Cet* 4564 L yApz  (Jud| < ), (3.11)
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where A (2) is given by (3.8), then

deﬁﬂ@YTLw+i@f@Jn

and et4* is the best dominant of (3.11).

Putting ¢ = s+ 1L, = 1(¢ = 1,..,5s+1),58, = 1(j = 1,..,s),m = ( =
§=0,x=p=1,7=Z(a,beC)u=amn=0and gq(z) = (1 —2)"2* in
Theorem 1, then combining this to gather with Lemma 3 we obtain the next
result due to Obradovic et al. [11, Theorem 1].

Corollary 5 [11]. Let a,b € C* such that |2ab—1| <1 or |2ab+ 1| < 1. Let

f € A and suppose that @ #0 forall z € U. If

1 /zf'(2) 1+2
v (g ) <

Az
< el?®

then

(C) 1)

z

and (1 — z)72% s the best dominant of (3.12).
Remark 1. For a = 1, Corollary 5 reduces to the recent result of Srivastava
and Lashin [16].

Puttingg=s+1,0s =1(¢ =1,..,s+1),8,=1(=1,..,5),m=( =0 =
O,bx=p=~v=1n=0and q(z) = (1+ Bz)MAE:m
Lemma 2 we obtain the next result.

Corollary 6. Let —1 < A < B < 1 with B # 0, and suppose that

in Theorem 2, and using

IN

W(A—B)
B - 1‘

10r‘@+1‘§1.Letfeﬂsuchthat%’Z)#OforallzeU, and let

weC . If

- CWQLJ)<1+B+MM—BW

f(2) 1+ Bz ’
then "
(f(z)) < (1+ B2)"5>, (3.13)
z
and (1+ Bz) “U5 s the best dominant of (3.13).

Putting g = s+ 1, =1 =1,..,s+1),6, =1(j = 1,..,8),m = ¢ =
0=0x=p=1y= %(a,b € Cy|r| < §),u = a,n =0 and q(z) =
(1 — z)~2abeos 7¢""in Theorem 1, we obtain the following result due to Aouf
et al. [2, Theorem 1].
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Corollary 7 [2]. Let a,b € C*,|7| < I and suppose that |2abcosTe™"—1] <
1 or |2abcos7'e_”—|—1’ < 1. Let f € A and suppose that @ # 0 for all

ze U If
e (zf'(2) 1+z2
beosT ( f(2) _1) 1z
then .
<f(zz)> ~ (1 _ z)72abcosre’” (314)

iT

and (1 — z)72abeosTe™™ s the best dominant of (3.14).

Theorem 2. Let g be convex in U such that q(0) = 1 and
in U. Further assume that

’

ZS(S) is starlike

%{@+mm@»“”j‘”}>o (C,6€C;yeCr). (3.15)

Let f € A(p) such that

ﬁﬁxmﬁ@q”[ o

IZLéfs,A(al + 1)f(z)] € Hlq(0),1]NQ.  (3.16)

2P

g

If U (2) given by (3.4) is univalent in U and satisfies the following superordi-
nation condition

X+Ca(2) +3a ()] + <V (2), (3.17)

then

fﬂixwvwﬂ“[ o

q(z) < l I;f;fm(al " 1)f(z)1 ,

2P

and q is the best subordinant of (3.17).
Putting ¢ = 2,s = p =1,m = 0,01 = a(a€C),ap =1 and f; = ¢

(c € C\Zy ) in Theorem 2, we obtain the following result which improves the

corresponding work of Shammugam et al. [14, Theorem 3.11].

Corollary 8. Let q be convez in U such that q(0) =1 and ZZ(S) is starlike
in U. Further assume that (3.15) holds. Let f € A such that

e )

o#{ € H[q(0),1] N Q. (3.18)
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If A(z) given by (3.8) is univalent in U and satisfies the following superordi-
nation condition

’

@)+l (o + 72 <a o), (3.19)

a(2) < [L(“’?f(z)r b f,c>f<z>r’

then

and ¢ is the best subordinant of (3.19).
Combining Theorems 1 and 2, we obtain the following two sandwich results:
Theorem 3. Let g¢; be two convex functions in U such that q;(0) = 1 and

%(ZZ)) (1 =1,2) is starlike in U. Suppose that q1(z) satisfies (3.15) and qa2(z)

satisfies (3.2). Let f € A(p) and suppose that
m, I
[Ip,qﬂ,/\(al)f(z)] [ 2P r
@ Lyaa(on+ 1)f(2)

If U (z) given by (3.4) is univalent in U, and

€ Hlq(0),1]Nn Q.

x+Gar ()46l P 728 0 () <yt (2) 5[ () 4122,
" ae

then

P =< q2 (Z) )

0 () < [fﬁzﬁ,A(al)f(z)r [ - 1
Lgsalar +1Df ()

and q1 and qo are, respectively, the best subordinant and the best dominant of
(3.20).

Putting ¢ = 2,s = p =1,m = 0,1 = a(a€C),ay = 1 and B = ¢
(¢ € C\Zy ) in Theorem 3, we obtain the following result which improves the
corresponding work of Shammugam et al. [14, Theorem 3.12].
Corollary 9. Let g; be two convex functions in U such that ¢;(0) = 1 and

Zq‘ii(gz)) (i = 1,2) is starlike in U. Suppose that qi(z) satisfies (3.15) and g2(z)

o
satisfies (3.2). Let f € A and suppose that [M} € Hlq(0),1] N Q.
If A(z) given by (3.8) is univalent in U, and

X+ o () + 8o ()] +vqul<<j)) < A(2) < X+ (a2 (2) + 012 (2) +72qu(f)>7
(3.21)
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then

< )
. q2 (2)

¢ (2) < {L(a—i— l,c)f(z)r

and q1 and qo are, respectively, the best subordinant and the best dominant of
(3.21).
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