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ON VARIABLE EXPONENT AMALGAM
SPACES

İSMAİL AYDIN

Abstract

We derive some of the basic properties of weighted variable exponent
Lebesgue spaces L

p(.)
w (Rn) and investigate embeddings of these spaces

under some conditions. Also a new family of Wiener amalgam spaces
W (L

p(.)
w , Lq

υ) is defined, where the local component is a weighted vari-

able exponent Lebesgue space L
p(.)
w (Rn) and the global component is a

weighted Lebesgue space Lq
υ (Rn) . We investigate the properties of the

spaces W (L
p(.)
w , Lq

υ). We also present new Hölder-type inequalities and
embeddings for these spaces.

1 Introduction

A number of authors worked on amalgam spaces or some special cases
of these spaces. The first appearance of amalgam spaces can be traced to
N.Wiener [26]. But the first systematic study of these spaces was undertaken
by F. Holland [18], [19]. The amalgam of Lp and lq on the real line is the
space (Lp, lq) (R) (or shortly (Lp, lq) ) consisting of functions f which are
locally in Lp and have lq behavior at infinity in the sense that the norms over
[n, n+ 1] form an lq -sequence. For 1 ≤ p, q ≤ ∞ the norm

∥f∥p,q =

 ∞∑
n=−∞

 n+1∫
n

|f (x)|p dx


q
p


1
q

< ∞
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makes (Lp, lq) into a Banach space. If p = q then (Lp, lq) reduces to Lp. A
generalization of Wiener’s definition was given by H.G. Feichtinger in [10],
describing certain Banach spaces of functions (or measures, distributions) on
locally compact groups by global behaviour of certain local properties of their
elements. C. Heil [17] gave a good summary of results concerning amalgam
spaces with global components being weighted Lq (R) spaces. For a historical
background of amalgams see [16]. The variable exponent Lebesgue spaces (
or generalized Lebesgue spaces) Lp(.) appeared in literature for the first time
already in a 1931 article by W. Orlicz [22]. The major study of this spaces was
initiated by O. Kovacik and J. Rakosnik [20], where basic properties such as
Banach space, reflexivity, separability, uniform convexity, Hölder inequalities
and embeddings of type Lp(.) ↪→ Lq(.) were obtained in higher dimension Eu-
clidean spaces. Also there are recent many interesting and important papers
appeared in variable exponent Lebesgue spaces (see, [4], [5], [6] [8], [9]). The
spaces Lp(.) and classical Lebesgue spaces Lp have many common properties,
but a crucial difference between this spaces is that Lp(.) is not invariant under
translation in general ( Ex. 2.9 in [20] and Lemma 2.3 in [6]). Moreover , the
Young theorem ∥f ∗ g∥p(.) ≤ ∥f∥p(.) ∥g∥1 is not valid for f ∈ Lp(.) (Rn) and

g ∈ L1 (Rn). But the Young theorem was proved in a special form and derived
more general statement in [25]. Aydın and Gürkanlı [3] defined the weighted
variable Wiener amalgam spaces W (Lp(.), Lq

w) where the local component is
a variable exponent Lebesgue space Lp(.) (Rn) and the global component is
a weighted Lebesgue space Lq

w (Rn) . They proved new Hölder-type inequal-
ities and embeddings for these spaces. They also showed that under some
conditions the Hardy-Littlewood maximal function does not map the space
W (Lp(.), Lq

w) into itself.

Let 0 < µ (Ω) < ∞. It is known that Lq(.) (Ω) ↪→ Lp(.) (Ω) if and
only if p(x) ≤ q(x) for a.e. x ∈ Ω by Theorem 2.8 in [20]. This paper is

concerned with embeddings properties of L
p(.)
w (Rn) with respect to variable

exponents and weight functions. We will discuss the continuous embedding

L
p2(.)
w2 (Rn) ↪→ L

p1(.)
w1 (Rn) under different conditions. We investigate the prop-

erties of the spaces W (L
p(.)
w , Lq

υ). We also present new Hölder-type inequalities
and embeddings for these spaces.

2 Definition and Preliminary Results

In this paper all sets and functions are Lebesgue measurable. The Lebesgue
measure and the characteristic function of a set A ⊂ Rn will be denoted by
µ (A) and χA, respectively. Let (X, ∥.∥X) and (Y, ∥.∥Y ) be two normed linear
spaces and X ⊂ Y . X ↪→ Y means that X is a subspace of Y and the iden-
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tity operator I from X into Y is continuous. This implies that there exists a
constant C > 0 such that

∥u∥Y ≤ C ∥u∥X
for all u ∈ X.

The space L1
loc (Rn) consists of all (classes of ) measurable functions f

on Rn such that fχK ∈ L1 (Rn) for any compact subset K ⊂ Rn. It is
a topological vector space with the family of seminorms f → ∥fχK∥L1 . A
Banach function space (shortly BF-space) on Rn is a Banach space (B, ∥.∥B)
of measurable functions which is continously embedded into L1

loc (Rn), i.e. for
any compact subset K ⊂ Rn there exists some constant CK > 0 such that
∥fχK∥L1 ≤ CK ∥f∥B for all f ∈ B. A BF-space (B, ∥.∥B) is called solid if
g ∈ L1

loc (Rn) , f ∈ B and |g(x)| ≤ |f(x)| almost everywhere (shortly a.e.)
implies that g ∈ B and ∥g∥B ≤ ∥f∥B . A BF- space (B, ∥.∥B) is solid iff it
is a L∞(Rn)-module. We denote by Cc(Rn) and C∞

c (Rn) the space of all
continuos, complex-valued functions with compact support and the space of
infinitely differentiable functions with compact support in Rn respectively.
The character operator Mt is defined by Mtf(y) = ⟨y, t⟩ f(y), y ∈ Rn ,t ∈ Rn.
(B, ∥.∥B) is strongly character invariant if MtB ⊆ B and ∥Mtf∥B = ∥f∥B for
all f ∈ B and t ∈ Rn.

We denote the family of all measurable functions p : Rn → [1,∞) (called
the variable exponent on Rn) by the symbol P (Rn). For p ∈ P (Rn) put

p∗ = ess inf
x∈Rn

p(x), p∗ = ess sup
x∈Rn

p(x).

For every measurable functions f on Rn we define the function

ϱp(f) =

∫
Rn

|f(x)|p(x) dx.

The function ϱp is a convex modular; that is, ϱp(f) ≥ 0, ϱp(f) = 0 if and only
if f = 0, ϱp(−f) = ϱp(f) and ϱp is convex. The variable exponent Lebesgue
space Lp(.)(Rn) is defined as the set of all µ−measurable functions f on Rn

such that ϱp(λf) < ∞ for some λ > 0, equipped with the Luxemburg norm

∥f∥p(.) = inf

{
λ > 0 : ϱp(

f

λ
) ≤ 1

}
.

If p∗ < ∞, then f ∈ Lp(.)(Rn) iff ϱp(f) < ∞. If p(x) = p is a constant
function, then the norm ∥.∥p(.) coincides with the usual Lebesgue norm ∥.∥p.
The space Lp(.)(Rn) is a particular case of the so-called Orlicz-Musielak space
[20]. The function p always denotes a variable exponent and we assume that
p∗ < ∞.
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Definition 2.1. Let w be a measurable, positive a.e. and locally µ−
integrable function on Rn. Such functions are called weight functions. By a
Beurling weight on Rn we mean a measurable and locally bounded function
w on Rn satisfying 1 ≤ w(x) and w(x+ y) ≤ w(x)w(y) for all x, y ∈ Rn. Let
1 ≤ p < ∞ be given. By the classical weighted Lebesgue space Lp

w (Rn) we
denote the set of all µ−measurable functions f for which the norm

∥f∥p,w = ∥fw∥p =

∫
Rn

|f(x)w(x)|p dx

1/p

< ∞.

We say that w1 ≺ w2 if and only if there exists a C > 0 such that w1(x) ≤
Cw2(x) for all x ∈ Rn. Two weight functions are called equivalent and written
w1 ≈ w2, if w1 ≺ w2 and w2 ≺ w1 [13], [15].

Lemma 2.2. (a) A Beurling weight function w is also weight function in
general.

(b) For each p ∈ P (Rn), both wp(.) and w−p(.) are locally integrable.

Proof. (a) Let any compact subset K ⊂ Rn be given. Since w is locally
bounded function, then we write

sup
x∈K

w(x) < ∞.

Hence ∫
K

w(x)dx ≤
(
sup
x∈K

w(x)

)
µ(K) < ∞.

(b) Since w(x) ≥ 1, then∫
K

w(x)p(x)dx ≤
∫
K

w(x)p
∗
dx ≤

(
sup
x∈K

w(x)p
∗
)
µ(K) < ∞.

Also w(x) ̸= 0 and w(x)−1 ≤ 1∫
K

w(x)−p(x)dx ≤
∫
K

w(x)−p∗dx ≤
(
sup
x∈K

w(x)−p∗

)
µ(K) < ∞.

Let w be a Beurling weight function on Rn and p ∈ P (Rn). The weighted

variable exponent Lebesgue space L
p(.)
w (Rn) is defined as the set of all mea-

surable functions f , for which

∥f∥p(.),w = ∥fw∥p(.) < ∞.
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The space
(
L
p(.)
w (Rn) , ∥.∥p(.),w

)
is a Banach space. Throughout this paper

we assume that w is a Beurling weight.

Proposition 2.3. (i) The embeddings L
p(.)
w (Rn) ↪→ Lp(.) (Rn) is conti-

nous and the inequality
∥f∥p(.) ≤ ∥f∥p(.),w

is satisfied for all f ∈ L
p(.)
w (Rn).

(ii) Cc(Rn) ⊂ L
p(.)
w (Rn).

(iii) Cc(Rn) is dense in L
p(.)
w (Rn).

(iv) L
p(.)
w (Rn) is a BF-space.

(v) L
p(.)
w is a Banach module over L∞ with respect to pointwise multipli-

cation.

Proof. (i) Assume f ∈ L
p(.)
w (Rn). Since w(x)p(x) ≥ 1, then

|f(x)|p(x) ≤ |f(x)w(x)|p(x) ,
ϱp(f) ≤ ϱp,w(f) < ∞.

This implies that L
p(.)
w (Rn) ⊂ Lp(.) (Rn). Also by using the inequality |f(x)| ≤

|f(x)w(x)| and definition of ∥.∥p(.), then

∥f∥p(.) ≤ ∥fw∥p(.) = ∥f∥p(.),w .

(ii) Let f ∈ Cc(Rn) be any function such that suppf = K compact.
For p∗ < ∞ it is known that Cc(Rn) ⊂ Lp(.) (Rn) by Lemma 4 in [1] and
ϱp(f) < ∞. Hence we have

ϱp,w(f) = ϱp(fw) =

∫
K

|f(x)|p(x) w(x)p(x)dx

≤
(
sup
x∈K

w(x)p
∗
)
ϱp(f) < ∞

and Cc(Rn) ⊂ L
p(.)
w (Rn).

(iii) It is known that C∞
c (Rn) is dense in L

p(.)
w (Rn) by Corollary 2.5 in [2].

Hence Cc(Rn) is dense in L
p(.)
w (Rn).

(iv) Let K ⊂ Rn be a compact subset and 1
p(.) + 1

q(.) = 1. By Hölder

inequality for generalized Lebesgue spaces [20] , we write∫
K

|f (x)| dx ≤ C ∥χK∥q(.) ∥f∥p(.)

≤ C ∥χK∥q(.),w ∥f∥p(.),w
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for all f ∈ L
p(.)
w (Rn) , where χK is the charecteristic function of K. It is known

that ∥χK∥q(.),w < ∞ if and only if ϱq,w(χK) < ∞ for q∗ < ∞. Then we have

ϱq,w(χK) =

∫
K

w(x)q(x)dx =

(
sup
x∈K

w(x)q
∗
)
µ(K) < ∞.

That means L
p(.)
w (Rn) ↪→ L1

loc (Rn) .

(v) We know that L
p(.)
w (Rn) is a Banach space. Also it is known that

L∞ (Rn) is a Banach algebra with respect to pointwise multiplication. Let

(f, g) ∈ L∞ (Rn)× L
p(.)
w (Rn) .Then

ϱp,w(fg) =

∫
R

|f(x)g (x)|p(x) w(x)p(x)dx

≤ max
{
1, ∥f∥p

∗

∞

}∫
R

|g (x)w(x)|p(x) dx < ∞.

We also have

ϱp,w(
fg

∥f∥∞ ∥g∥
p(.),w

) ≤
∫
R

|f(x)g (x)|p(x)

∥f∥p(x)∞ ∥g∥p(x)
p(.),w

dx ≤
∫
R

∥f∥p(x)L∞ |g (x)|p(x)

∥f∥p(x)∞ ∥g∥p(x)
p(.),w

dx

= ϱp,w(
g

∥g∥p(.),w
) ≤ 1.

Hence by the definition of the norm ∥.∥p(.),w of the weighted variable exponent

Lebesgue space, we obtain ∥fg∥p(.),w ≤ ∥f∥L∞ ∥g∥p(.),w . The remaining part
of the proof is easy.

Proposition 2.4. (i) The space L
p(.)
w (Rn) is strongly character invariant.

(ii) The function t → Mtf is continuous from Rn into L
p(.)
w (Rn).

Proof. (i) Let take any f ∈ L
p(.)
w (Rn). We define a function g such that

g(x) = Mtf(x) for all t ∈ Rn. Hence we have

|g(x)| = |Mtf(x)| = |< x, t > f(x)| = |f(x)|

and
∥Mtf∥p(.),w = ∥g∥p(.),w = ∥f∥p(.),w .

(ii) Since Cc(Rn) is dense in L
p(.)
w (Rn) by Proposition 2.3, then given any

f ∈ L
p(.)
w (Rn) and ε > 0, there exists g ∈ Cc(Rn) such that

∥f − g∥p(.),w <
ε

3
.
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Let assume that suppg = K. Thus for every t ∈ Rn, we have supp(Mtg − g) ⊂
K. If one uses the inequality

|Mtg(x)− g(x)| = |< x, t > g(x)− g(x)| = |g(x)| |< x, t > −1|
≤ |g(x)| sup

x∈K
|< x, t > −1| = |g(x)| ∥< ., t > −1∥∞,K ,

we have
∥Mtg − g∥p(.),w ≤ ∥< ., t > −1∥∞,K ∥g∥p(.),w .

It is known that ∥< ., t > −1∥∞,K → 0 for t → 0. Also, we have

∥Mtf − f∥p(.),w ≤ ∥Mtf −Mtg∥p(.),w + ∥Mtg − g∥p(.),w + ∥f − g∥p(.),w
= 2 ∥f − g∥p(.),w + ∥< ., t > −1∥∞,K ∥g∥p(.),w .

Let us take the neighbourhood U of 0 ∈ Rn such that

∥< ., t > −1∥∞,K <
ε

3 ∥g∥p(.),w

for all t ∈ U . Then we have

∥Mtf − f∥p(.),w <
2ε

3
+

ε

3 ∥g∥p(.),w
∥g∥p(.),w = ε

for all t ∈ U .

Definition 2.5. Let p1(.) and p2(.) be exponents on Rn. We say that
p2(.) is non-weaker than p1(.) if and only if Φp2 (x, t) = tp2(x) is non-weaker
than Φp1 (x, t) = tp1(x) in the sense of Musielak [21], i.e. there exist constants
K1, K2 > 0 and h ∈ L1 (Rn), h ≥ 0, such that for a.e. x ∈ Rn and all t ≥ 0

Φp1 (x, t) ≤ K1Φp2 (x,K2t) + h(x).

We write p1(.) ≼ p2(.).
Let p1(.) ≼ p2(.). Then the embedding Lp2(.) (Rn) ↪→ Lp1(.) (Rn) was

proved by Lemma 2.2 in [6].

Proposition 2.6. (i) If w1 ≺ w2, then L
p(.)
w2 (Rn) ↪→ L

p(.)
w1 (Rn).

(ii) If w1 ≈ w2, then L
p(.)
w1 (Rn) = L

p(.)
w2 (Rn).

(iii) Let 0 < µ (Ω) < ∞, Ω ⊂ Rn. If w1 ≺ w2 and p1(.) ≤ p2(.), then

L
p2(.)
w2 (Ω) ↪→ L

p1(.)
w1 (Ω).

Proof. (i) Let f ∈ L
p(.)
w2 (Rn). Since w1 ≺ w2, there exists a C > 0 such that

w1(x) ≤ Cw2(x) for all x ∈ Rn. Hence we write

|f(x)w1(x)| ≤ C |f(x)w2(x)| .
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This implies that

∥f∥p(.),w1
≤ C ∥f∥p(.),w2

.

for all f ∈ L
p(.)
w2 (Rn).

(ii) Obvious.

(iii) Let f ∈ L
p2(.)
w2 (Ω) be given. By using (i), we have f ∈ L

p2(.)
w1 (Ω) and

fw1 ∈ Lp2(.) (Ω) . Since p1(.) ≤ p2(.), then Lp2(.) (Ω) ↪→ Lp1(.) (Ω) by Theorem
2.8 in [20] and

∥fw1∥p1(.)
≤ C1 ∥fw1∥p2(.)

≤ C1C2 ∥f∥p2(.),w2
.

Hence L
p2(.)
w2 (Ω) ↪→ L

p1(.)
w1 (Ω).

Proposition 2.7. If p1(.) ≼ p2(.) and w1 ≺ w2, then L
p2(.)
w2 (Rn) ↪→

L
p1(.)
w1 (Rn).

Proof. Since p1(.) ≼ p2(.), then L
p2(.)
w2 (Rn) ↪→ L

p1(.)
w2 (Rn) by Theorem 8.5 of

[21]. Also by using Proposition 2.6, we have L
p1(.)
w2 (Rn) ↪→ L

p1(.)
w1 (Rn).

Remark 2.8. By the closed graph theorem in Banach space, to prove

that there is a continuous embedding L
p2(.)
w2 (Rn) ↪→ L

p1(.)
w1 (Rn), one need only

prove L
p2(.)
w2 (Rn) ⊂ L

p1(.)
w1 (Rn).

Let w1, w2 be weights on Rn. The space L
p1(.)
w1 (Rn)∩L

p2(.)
w2 (Rn) is defined

as the set of all measurable functions f , for which

∥f∥p1(.),p2(.)
w1,w2

= ∥f∥p1(.),w1
+ ∥f∥p2(.),w2

< ∞.

Proposition 2.9. Let w1, w2, w3 and w4 be weights on Rn. If w1 ≺ w3

and w2 ≺ w4, then L
p1(.)
w3 (Rn) ∩ L

p2(.)
w4 (Rn) ↪→ L

p1(.)
w1 (Rn) ∩ L

p2(.)
w2 (Rn).

Proof. Obvious.

Corollary 2.10. If w1 ≈ w3 and w2 ≈ w4, then L
p1(.)
w3 (Rn)∩L

p2(.)
w4 (Rn) =

L
p1(.)
w1 (Rn) ∩ L

p2(.)
w2 (Rn).

Proposition 2.11. If p1(x) ≤ p2(x) ≤ p3(x) and w2 ≺ w1, then

Lp1(.)
w1

(Rn) ∩ Lp3(.)
w1

(Rn) ↪→ Lp2(.)
w2

(Rn) .
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Proof. Since p1(x) ≤ p2(x) ≤ p3(x), then we write

|f(x)w1(x)|p2(x) ≤ |f(x)w1(x)|p1(x) χ{x:|f(x)w1(x)|≤1} +

+ |f(x)w1(x)|p3(x) χ{x:|f(x)w1(x)|≥1}.

Hence L
p1(.)
w1 (Rn) ∩ L

p3(.)
w1 (Rn) ↪→ L

p2(.)
w1 (Rn). Also by using Proposition 2.6,

we have L
p2(.)
w1 (Rn) ↪→ L

p2(.)
w2 (Rn).

Corollary 2.12. Let 1 ≤ p∗ ≤ p(x) ≤ p∗ < ∞ for all x ∈ Rn and w2 ≺ w1,
then

Lp∗
w1

(Rn) ∩ Lp∗

w1
(Rn) ↪→ Lp(.)

w2
(Rn) .

Proof. The proof is completed by Proposition 2.11.

For any f ∈ L1(Rn), the Fourier transform of f is denoted by f̂ and defined
by

f̂(x) =

∫
Rn

e−it.xf(t)dt.

It is known that f̂ is a continuos function on Rn, which vanishes at infin-

ity and the inequality
∥∥∥f̂∥∥∥

∞
≤ ∥f∥1 is satisfied. Let the Fourier algebra{

f̂ : f ∈ L1(Rn)
}
with by A (Rn) and is given the norm

∥∥∥f̂∥∥∥
A
= ∥f∥1.

Let ω be an arbitrary Beurling’s weight function on Rn. We next introduce
the homogeneous Banach space

Aω (Rn) =
{
f̂ : f ∈ L1

ω(Rn)
}

with the norm
∥∥∥f̂∥∥∥

ω
= ∥f∥1,ω. It is known that Aω (Rn) is a Banach algebra

under pointwise multiplication [23]. We set Aω
0 (Rn) = Aω (Rn) ∩ Cc (Rn)

and equip it with the inductive limit topology of the subspaces Aω
K (Rn) =

Aω (Rn) ∩ CK (Rn), K ⊂ Rn compact, equipped with their ∥.∥ω norms. For
every h ∈ Aω

0 (Rn) we define the semi-norm qh on Aω
0 (Rn)

′
by qh (h

p) =
|< h, hp >|, where Aω

0 (Rn)
′
is the topological dual of Aω

0 (Rn). The locally
convex topology on Aω

0 (Rn)
′
defined by the family (qh)h∈Aω

0 (Rn) of seminorms

is called the topology σ
(
Aω

0 (Rn)
′
, Aω

0 (Rn)
)
or the weak star topology.

Lemma 2.13. Let r∗ < ∞. Then Aω
K (Rn) is continuously embedded into

L
r(.)
w (Rn) for every compact subsets K ⊂ Rn, i.e Aω

K (Rn) ↪→ L
r(.)
w (Rn).

Proof. Using the classical resultAω
K (Rn) ↪→ Lr∗

w (Rn)∩Lr∗

w (Rn) and Lr∗
w (Rn)∩

Lr∗

w (Rn) ↪→ L
r(.)
w (Rn) by Corollary 2.12, then Aω

K (Rn) ↪→ L
r(.)
w (Rn).
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Theorem 2.14. L
p(.)
w (Rn) is continuously embedded into Aω

0 (Rn)
′
.

Proof. Let f ∈ L
p(.)
w (Rn) and h ∈ Aω

0 (Rn). By definition of Aω
0 (Rn), there

exists a compact subset K ⊂ Rn such that h ∈ Aω
K (Rn). Suppose that

1
p(.) + 1

r(.) = 1. Then by Hölder inequality for variable exponent Lebesgue

spaces and by Lemma 2.13, there exists a C > 0 such that

|< f, h >| =

∣∣∣∣∣∣
∫
Rn

f(x)h(x)dx

∣∣∣∣∣∣ ≤
∫
Rn

|f(x)h(x)| dx

≤ C ∥f∥p(.) ∥h∥r(.) ≤ C ∥f∥p(.),w ∥h∥r(.),ω < ∞. (1)

Hence the integral

< f, h >=

∫
Rn

f(x)h(x)dx

is well defined. Now define the linear functional < f, . >: Aω
0 (Rn) → C for

f ∈ L
p(.)
w (Rn) such that

< f, h >=

∫
Rn

f(x)h(x)dx.

It is known that the functional < f, . > is continuous from Aω
0 (Rn) into C if

and only if < f, . >
∣∣
Aω

K
is continuous from Aω

K (Rn) into C for all compact
subsets K ⊂ Rn. By Lemma 2.13, there exists a MK > 0 such that

∥h∥r(.),w ≤ MK ∥h∥ω . (2)

By (1) and (2),

|< f, h >| ≤ C ∥f∥p(.),w ∥h∥r(.),ω
≤ CMK ∥f∥p(.),w ∥h∥ω = DK ∥h∥ω (3)

whereDK = CMK ∥f∥p(.),w. Then we have the inclusion L
p(.)
w (Rn) ⊂ Aω

0 (Rn)
′
.

Define the unit map I : L
p(.)
w (Rn) → Aω

0 (Rn)
′
. Let h ∈ Aω

0 (Rn) be given.
Then there exists a compact subset K ⊂ Rn such that h ∈ Aω

K (Rn). Take
any semi-norm qh ∈ (qh) , h ∈ Aω

0 (Rn) on Aω
0 (Rn)

′
. By using (3) we obtain

qh (I(f)) = qh (f) = |< f, h >| ≤ BK ∥f∥p(.),w ,

where BK = CMK ∥h∥ω . Then I is continuous map from L
p(.)
w (Rn) into

Aω
0 (Rn)

′
. The proof is completed.
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3 Weighted Variable Exponent Amalgam Spaces W (L
p(.)
w , Lq

υ)

The space
(
L
p(.)
w (Rn)

)
loc

consists of all (classes of ) measurable functions

f on Rn such that fχK ∈ Lp(.) (Rn) for any compact subset K ⊂ Rn, where
χK is the characteristic function of K. Since the general hypotheses for the

amalgam space W (L
p(.)
w , Lq

υ) are satisfied by Lemma 2.13 and Theorem 2.14,

then W (L
p(.)
w , Lq

υ) is well defined as follows as in [10].

Let us fix an open set Q ⊂ Rn with compact closure. The variable exponent

amalgam space W
(
L
p(.)
w , Lq

υ

)
consists of all elements f ∈

(
L
p(.)
w (Rn)

)
loc

such

that Ff (z) = ∥fχz+Q∥p(.),w belongs to Lq
υ (Rn); the norm of W

(
L
p(.)
w , Lq

υ

)
is

∥f∥
W

(
L

p(.)
w ,Lq

υ

) = ∥Ff∥q,υ .

Given a discrete family X = (xi)i∈I in Rn and a weighted space Lq
w (Rn) ,

the associated weighted sequence space over X is the appropriate weighted ℓq -
space ℓqw, the discrete w being given by w(i) = w(xi) for i ∈ I, (see Lemma 3.5 in [12]) .

The following theorem, based on Theorem 1 in [10] , describes the basic

properties of W
(
L
p(.)
w , Lq

υ

)
.

Theorem 3.1. (i)W
(
L
p(.)
w , Lq

υ

)
is a Banach space with norm ∥.∥

W
(
L

p(.)
w ,Lq

υ

).
(ii) W

(
L
p(.)
w , Lq

υ

)
is continuously embedded into

(
L
p(.)
w (Rn)

)
loc

.

(iii) The space

Λ0 =
{
f ∈ Lp(.)

w (Rn) : supp (f) is compact
}

is continuously embedded into W
(
L
p(.)
w , Lq

υ

)
.

(iv) W
(
L
p(.)
w , Lq

υ

)
does not depend on the particular choice of Q, i.e. dif-

ferent choices of Q define the same space with equivalent norms.

By (iii) and Proposition 2.3 it is easy to see that Cc (Rn) is continuously

embedded into W
(
L
p(.)
w , Lq

υ

)
.

Now by using the techniques in [14], we prove the following proposition.

Proposition 3.2. W
(
L
p(.)
w , Lq

υ

)
is a BF-space on Rn.

Proposition 3.3. W
(
L
p(.)
w , Lq

υ

)
is strongly character invariant and the

map t → Mtf is continuous from Rn into W
(
L
p(.)
w , Lq

υ

)
.
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Proof. It is known that L
p(.)
w (Rn) is strongly character invariant and the func-

tion t → Mtf is continuous from Rn into L
p(.)
w (Rn) by Proposition 2.4. Hence

the proof is completed by Lemma 1.5. in [24].

Proposition 3.4. w1, w2, w3, υ1, υ2 and υ3 be weight functions. Suppose
that there exist constants C1, C2 > 0 such that

∀h ∈ Lp1(.)
w1

(Rn) , ∀k ∈ Lp2(.)
w2

(Rn) , ∥hk∥p3(.),w3
≤ C1 ∥h∥p1(.),w1

∥k∥p2(.),w2

and

∀u ∈ Lq1
υ1

(Rn) , ∀ϑ ∈ Lq2
υ2

(Rn) , ∥uϑ∥q3,υ3
≤ C2 ∥u∥q1,υ1

∥ϑ∥q2,υ2

Then there exists C > 0 such that

∥fg∥
W

(
L

p3(.)
w3

,L
q3
υ3

) ≤ C ∥f∥
W

(
L

p1(.)
w1

,L
q1
υ1

) ∥g∥
W

(
L

p2(.)
w2

,L
q2
υ2

)

for all f ∈ W
(
L
p1(.)
w1 , Lq1

υ1

)
and g ∈ W

(
L
p2(.)
w2 , Lq2

υ2

)
. In other words

W
(
Lp1(.)
w1

, Lq1
υ1

)
W

(
Lp2(.)
w2

, Lq2
υ2

)
⊂ W

(
Lp3(.)
w3

, Lq3
υ3

)
.

Proof. If f ∈ W
(
L
p1(.)
w1 , Lq1

υ1

)
and g ∈ W

(
L
p2(.)
w2 , Lq2

υ2

)
, then we have

∥fg∥
W

(
L

p3(.)
w3

,L
q3
υ3

) =
∥∥∥∥fgχz+Q∥p3(.),w3

∥∥∥
q3,υ3

=
∥∥∥∥(fχz+Q) (gχz+Q)∥p3(.),w3

∥∥∥
q3,υ3

≤ C1

∥∥∥∥fχz+Q∥p1(.),w1
∥gχz+Q∥p2(.),w2

∥∥∥
q3,υ3

= C1 ∥FfFg∥q3,υ3
≤ C1C2 ∥Ff∥q1,υ1

∥Fg∥q2,υ2

= C ∥f∥
W

(
L

p1(.)
w1

,L
q1
υ1

) ∥g∥
W

(
L

p2(.)
w2

,L
q2
υ2

)
and the proof is complete.

Proposition 3.5. (i) If p1(.) ≤ p2(.), q2 ≤ q1, w1 ≺ w2 and υ1 ≺ υ2, then

W
(
Lp2(.)
w2

, Lq2
υ2

)
⊂ W

(
Lp1(.)
w1

, Lq1
υ1

)
.

(ii) If p1(.) ≤ p2(.), q2 ≤ q1, w1 ≺ w2 and υ1 ≺ υ2, then

W
(
Lp1(.)
w1

∩ Lp2(.)
w2

, Lq2
υ2

)
⊂ W

(
Lp1(.)
w1

, Lq1
υ1

)
.
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Proof. (i) Let f ∈ W
(
L
p2(.)
w2 , Lq2

υ2

)
be given. Since p1(.) ≤ p2(.) and w1 ≺ w2

then L
p2(.)
w2 (z +Q) ↪→ L

p1(.)
w1 (z +Q) and

∥fχz+Q∥p1(.),w1
≤ C (µ (z +Q) + 1) ∥fχz+Q∥p2(.),w2

≤ C (µ (Q) + 1) ∥fχz+Q∥p2(.),w2

for all z ∈ Rn by Theorem 2.8 in [20], where µ is the Lebesgue measure. Hence
by the solidity of Lq2

υ2
(Rn) we have

W
(
Lp2(.)
w2

, Lq2
υ2

)
⊂ W

(
Lp1(.)
w1

, Lq2
υ2

)
.

It is known by Proposition 3.7 in [12], that

W
(
Lp1(.)
w1

, Lq2
υ2

)
⊂ W

(
Lp1(.)
w1

, Lq1
υ1

)
if and only if ℓq2υ2

⊂ ℓq1υ1
, where ℓq2υ2

and ℓq1υ1
are the associated sequence spaces of

Lq2
υ2

(Rn) and Lq1
υ1

(Rn) respectively. Since q2 ≤ q1 and υ1 ≺ υ2, then ℓq2υ2
⊂ ℓq1υ1

[14]. This completes the proof.

(ii) The proof of this part is easy by (i).

The following Proposition was proved by [3].

Proposition 3.6. Let B be any solid space. If q2 ≤ q1 and υ1 ≺ υ2, then
we have

W
(
B,Lq1

υ1
∩ Lq2

υ2

)
= W

(
B,Lq2

υ2

)
.

Corollary 3.7. (i) If p∗1, p
∗
2 < ∞, L

p1(.)
w1 (Rn) ⊂ L

p2(.)
w2 (Rn), q2 ≤ q1,

q4 ≤ q3, q4 ≤ q2, υ1 ≺ υ2, υ3 ≺ υ4 and υ2 ≺ υ4, then

W
(
Lp1(.)
w1

, Lq3
υ3

∩ Lq4
υ4

)
⊂ W

(
Lp2(.)
w2

, Lq1
υ1

∩ Lq2
υ2

)
.

(ii) If p1(x) ≤ p3(x), p2(x) ≤ p4(x), q2 ≤ q1, q4 ≤ q3, q4 ≤ q2, w1 ≺ w3,
w2 ≺ w4, υ1 ≺ υ2, υ3 ≺ υ4 and υ2 ≺ υ4, then

W
(
Lp3(.)
w3

∩ Lp4(.)
w4

, Lq3
υ3

∩ Lq4
υ4

)
⊂ W

(
Lp1(.)
w1

∩ Lp2(.)
w2

, Lq1
υ1

∩ Lq2
υ2

)
.

Proposition 3.8. If 1 ≤ q ≤ ∞ and υ ∈ Lq (Rn), then L
p(.)
w (Rn) ⊂

W
(
L
p(.)
w , Lq

υ

)
.
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Proof. If 1 ≤ q < ∞ and υ ∈ Lq (Rn), we have

∥f∥
W

(
L

p(.)
w ,Lq

υ

) =
∥∥∥∥fχz+Q∥p(.),w

∥∥∥
q,υ

=


∫
Rn

∥fχz+Q∥qp(.),w υq(z)dz


1
q

≤


∫
Rn

∥f∥qp(.),w υq(z)dz


1
q

= ∥f∥p(.),w ∥υ∥q .

Hence L
p(.)
w (Rn) ⊂ W

(
L
p(.)
w , Lq

υ

)
. Similarly, for q = ∞, we obtain

∥f∥
W

(
L

p(.)
w ,L∞

υ

) =
∥∥∥∥fχz+Q∥p(.),w υ

∥∥∥
∞

≤ ∥f∥p(.),w ∥υ∥∞ .

Then L
p(.)
w (Rn) ⊂ W

(
L
p(.)
w , L∞

υ

)
.

Proposition 3.9. Let 1¡q0, q1 < ∞. If p0 (.) and p1 (.) are variable expo-
nents with 1 < pj,∗ ≤ p∗j < ∞, j = 0, 1. Then, for θ ∈ (0, 1) , we have[

W
(
Lp0(.)
w0

, Lq0
υ0

)
,W

(
Lp1(.)
w1

, Lq1
υ1

)]
[θ]

= W
(
Lpθ(.)
w , Lqθ

υ

)
where 1

pθ(x)
= 1−θ

p0(x)
+ θ

p1(x)
, 1

qθ
= 1−θ

q0
+ θ

q1
, w = w1−θ

0 wθ
1 and υ = υ1−θ

0 υθ
1 .

Proof. By Theorem 2.2 in [11] the interpolation space
[
W

(
L
p0(.)
w0 , Lq0

υ0

)
,W

(
L
p1(.)
w1 , Lq1

υ1

)]
[θ]

is W

([
L
p0(.)
w0 , L

p1(.)
w1

]
[θ]

,
[
Lq0
υ0
, Lq1

υ1

]
[θ]

)
. We know that

[
Lq0
υ0
, Lq1

υ1

]
[θ]

= Lqθ
υ and

by Corollary A.2. in [7] that
[
L
p0(.)
w0 , L

p1(.)
w1

]
[θ]

= L
pθ(.)
w . This completes the

proof.
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[8] L. Diening, P. Hästö, and S. Roudenko, Function spaces of variable
smoothness and integrability, J. Funct. Anal., 256(6), (2009), 1731-1768.

[9] D. Edmunds, J. Lang, and A. Nekvinda, On Lp(x) norms, Proc. R. Soc.
Lond., Ser. A, Math. Phys. Eng. Sci., 455, (1999), 219-225.

[10] H. G. Feichtinger, Banach convolution algebras of Wiener type, In: Func-
tions, Series, Operators, Proc. Conf. Budapest 38, Colloq. Math. Soc.
Janos Bolyai, (1980), 509–524.

[11] H. G. Feichtinger, Banach spaces of Distributions of Wiener’s type and
Interpolation, In Proc. Conf. Functional Analysis and Approximation,
Oberwolfach August 1980, Internat. Ser. Numer. Math., 69:153–165.
Birkhauser, Boston, 1981.
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