

ON VARIABLE EXPONENT AMALGAM SPACES

İSMAİL AYDIN

Abstract

We derive some of the basic properties of weighted variable exponent Lebesgue spaces $L_w^{p(.)}(\mathbb{R}^n)$ and investigate embeddings of these spaces under some conditions. Also a new family of Wiener amalgam spaces $W(L_w^{p(.)}, L_v^q)$ is defined, where the local component is a weighted variable exponent Lebesgue space $L_w^{p(.)}(\mathbb{R}^n)$ and the global component is a weighted Lebesgue space $L_v^{p(.)}(\mathbb{R}^n)$. We investigate the properties of the spaces $W(L_w^{p(.)}, L_v^q)$. We also present new Hölder-type inequalities and embeddings for these spaces.

1 Introduction

A number of authors worked on amalgam spaces or some special cases of these spaces. The first appearance of amalgam spaces can be traced to N.Wiener [26]. But the first systematic study of these spaces was undertaken by F. Holland [18], [19]. The *amalgam* of L^p and l^q on the real line is the space $(L^p, l^q)(\mathbb{R})$ (or shortly (L^p, l^q)) consisting of functions f which are locally in L^p and have l^q behavior at infinity in the sense that the norms over [n, n + 1] form an l^q -sequence. For $1 \leq p, q \leq \infty$ the norm

$$\|f\|_{p,q} = \left[\sum_{n=-\infty}^{\infty} \left[\int_{n}^{n+1} |f(x)|^{p} dx\right]^{\frac{q}{p}}\right]^{\frac{1}{q}} < \infty$$

Key Words: Variable exponent Lebesgue spaces, Amalgam spaces, embedding, Fourier transform

transform 2010 Mathematics Subject Classification: Primary 46E30; Secondary 43A25. Received: April, 2011.

Revised: April, 2011.

Accepted: January, 2012.

makes (L^p, l^q) into a Banach space. If p = q then (L^p, l^q) reduces to L^p . A generalization of Wiener's definition was given by H.G. Feichtinger in [10], describing certain Banach spaces of functions (or measures, distributions) on locally compact groups by global behaviour of certain local properties of their elements. C. Heil [17] gave a good summary of results concerning amalgam spaces with global components being weighted $L^{q}(\mathbb{R})$ spaces. For a historical background of amalgams see [16]. The variable exponent Lebesgue spaces (or generalized Lebesgue spaces) $L^{p(.)}$ appeared in literature for the first time already in a 1931 article by W. Orlicz [22]. The major study of this spaces was initiated by O. Kovacik and J. Rakosnik [20], where basic properties such as Banach space, reflexivity, separability, uniform convexity, Hölder inequalities and embeddings of type $L^{p(.)} \hookrightarrow L^{q(.)}$ were obtained in higher dimension Euclidean spaces. Also there are recent many interesting and important papers appeared in variable exponent Lebesgue spaces (see, [4], [5], [6] [8], [9]). The spaces $L^{p(.)}$ and classical Lebesgue spaces L^{p} have many common properties, but a crucial difference between this spaces is that $L^{p(.)}$ is not invariant under translation in general (Ex. 2.9 in [20] and Lemma 2.3 in [6]). Moreover, the Young theorem $||f * g||_{p(.)} \leq ||f||_{p(.)} ||g||_1$ is not valid for $f \in L^{p(.)}(\mathbb{R}^n)$ and $g \in L^1(\mathbb{R}^n)$. But the Young theorem was proved in a special form and derived more general statement in [25]. Aydın and Gürkanlı [3] defined the weighted variable Wiener amalgam spaces $W(L^{p(.)}, L^q_w)$ where the local component is a variable exponent Lebesgue space $L^{p(.)}(\mathbb{R}^n)$ and the global component is a weighted Lebesgue space $L^q_w(\mathbb{R}^n)$. They proved new Hölder-type inequalities and embeddings for these spaces. They also showed that under some conditions the Hardy-Littlewood maximal function does not map the space $W(L^{p(.)}, L^q_w)$ into itself.

Let $0 < \mu(\Omega) < \infty$. It is known that $L^{q(.)}(\Omega) \hookrightarrow L^{p(.)}(\Omega)$ if and only if $p(x) \leq q(x)$ for a.e. $x \in \Omega$ by Theorem 2.8 in [20]. This paper is concerned with embeddings properties of $L_w^{p(.)}(\mathbb{R}^n)$ with respect to variable exponents and weight functions. We will discuss the continuous embedding $L_{w_2}^{p_2(.)}(\mathbb{R}^n) \hookrightarrow L_{w_1}^{p_1(.)}(\mathbb{R}^n)$ under different conditions. We investigate the properties of the spaces $W(L_w^{p(.)}, L_v^q)$. We also present new Hölder-type inequalities and embeddings for these spaces.

2 Definition and Preliminary Results

In this paper all sets and functions are Lebesgue measurable. The Lebesgue measure and the characteristic function of a set $A \subset \mathbb{R}^n$ will be denoted by $\mu(A)$ and χ_A , respectively. Let $(X, \|.\|_X)$ and $(Y, \|.\|_Y)$ be two normed linear spaces and $X \subset Y$. $X \hookrightarrow Y$ means that X is a subspace of Y and the iden-

tity operator I from X into Y is continuous. This implies that there exists a constant C>0 such that

$$\|u\|_Y \leq C \, \|u\|_X$$

for all $u \in X$.

The space $L^1_{loc}(\mathbb{R}^n)$ consists of all (classes of) measurable functions f on \mathbb{R}^n such that $f\chi_K \in L^1(\mathbb{R}^n)$ for any compact subset $K \subset \mathbb{R}^n$. It is a topological vector space with the family of seminorms $f \to ||f\chi_K||_{L^1}$. A Banach function space (shortly BF-space) on \mathbb{R}^n is a Banach space $(B, ||.||_B)$ of measurable functions which is continously embedded into $L^1_{loc}(\mathbb{R}^n)$, i.e. for any compact subset $K \subset \mathbb{R}^n$ there exists some constant $C_K > 0$ such that $||f\chi_K||_{L^1} \leq C_K ||f||_B$ for all $f \in B$. A BF-space $(B, ||.||_B)$ is called solid if $g \in L^1_{loc}(\mathbb{R}^n)$, $f \in B$ and $||g||_B \leq ||f||_B$. A BF- space $(B, ||.||_B)$ is solid iff it is a $L^\infty(\mathbb{R}^n)$ -module. We denote by $C_c(\mathbb{R}^n)$ and $C^\infty_c(\mathbb{R}^n)$ the space of all continuos, complex-valued functions with compact support and the space of infinitely differentiable functions with compact support in \mathbb{R}^n respectively. The character operator M_t is defined by $M_t f(y) = \langle y, t \rangle f(y), y \in \mathbb{R}^n, t \in \mathbb{R}^n$. $(B, ||.||_B)$ is strongly character invariant if $M_t B \subseteq B$ and $||M_t f||_B = ||f||_B$ for all $f \in B$ and $t \in \mathbb{R}^n$.

We denote the family of all measurable functions $p : \mathbb{R}^n \to [1, \infty)$ (called the variable exponent on \mathbb{R}^n) by the symbol $\mathcal{P}(\mathbb{R}^n)$. For $p \in \mathcal{P}(\mathbb{R}^n)$ put

$$p_* = \operatorname{ess inf}_{x \in \mathbb{R}^n} p(x), \qquad p^* = \operatorname{ess sup}_{x \in \mathbb{R}^n} p(x)$$

For every measurable functions f on \mathbb{R}^n we define the function

$$\varrho_p(f) = \int_{\mathbb{R}^n} |f(x)|^{p(x)} \, dx$$

The function ϱ_p is a convex modular; that is, $\varrho_p(f) \ge 0$, $\varrho_p(f) = 0$ if and only if f = 0, $\varrho_p(-f) = \varrho_p(f)$ and ϱ_p is convex. The variable exponent Lebesgue space $L^{p(.)}(\mathbb{R}^n)$ is defined as the set of all μ -measurable functions f on \mathbb{R}^n such that $\varrho_p(\lambda f) < \infty$ for some $\lambda > 0$, equipped with the Luxemburg norm

$$\|f\|_{p(.)} = \inf\left\{\lambda > 0 : \varrho_p(\frac{f}{\lambda}) \le 1\right\}.$$

If $p^* < \infty$, then $f \in L^{p(.)}(\mathbb{R}^n)$ iff $\varrho_p(f) < \infty$. If p(x) = p is a constant function, then the norm $\|.\|_{p(.)}$ coincides with the usual Lebesgue norm $\|.\|_p$. The space $L^{p(.)}(\mathbb{R}^n)$ is a particular case of the so-called Orlicz-Musielak space [20]. The function p always denotes a variable exponent and we assume that $p^* < \infty$.

Definition 2.1. Let w be a measurable, positive a.e. and locally μ integrable function on \mathbb{R}^n . Such functions are called weight functions. By a
Beurling weight on \mathbb{R}^n we mean a measurable and locally bounded function w on \mathbb{R}^n satisfying $1 \leq w(x)$ and $w(x+y) \leq w(x)w(y)$ for all $x, y \in \mathbb{R}^n$. Let $1 \leq p < \infty$ be given. By the classical weighted Lebesgue space $L^p_w(\mathbb{R}^n)$ we
denote the set of all μ -measurable functions f for which the norm

$$\|f\|_{p,w} = \|fw\|_p = \left(\int_{\mathbb{R}^n} |f(x)w(x)|^p dx\right)^{1/p} < \infty$$

We say that $w_1 \prec w_2$ if and only if there exists a C > 0 such that $w_1(x) \leq Cw_2(x)$ for all $x \in \mathbb{R}^n$. Two weight functions are called equivalent and written $w_1 \approx w_2$, if $w_1 \prec w_2$ and $w_2 \prec w_1$ [13], [15].

Lemma 2.2. (a) A Beurling weight function w is also weight function in general.

(b) For each $p \in \mathcal{P}(\mathbb{R}^n)$, both $w^{p(.)}$ and $w^{-p(.)}$ are locally integrable.

Proof. (a) Let any compact subset $K \subset \mathbb{R}^n$ be given. Since w is locally bounded function, then we write

$$\sup_{x \in K} w(x) < \infty.$$

Hence

$$\int\limits_{K} w(x) dx \leq \left(\sup_{x \in K} w(x) \right) \mu(K) < \infty$$

(b) Since $w(x) \ge 1$, then

$$\int_{K} w(x)^{p(x)} dx \leq \int_{K} w(x)^{p^*} dx \leq \left(\sup_{x \in K} w(x)^{p^*} \right) \mu(K) < \infty.$$

Also $w(x) \neq 0$ and $w(x)^{-1} \leq 1$

$$\int_{K} w(x)^{-p(x)} dx \leq \int_{K} w(x)^{-p_*} dx \leq \left(\sup_{x \in K} w(x)^{-p_*} \right) \mu(K) < \infty.$$

Let w be a Beurling weight function on \mathbb{R}^n and $p \in \mathcal{P}(\mathbb{R}^n)$. The weighted variable exponent Lebesgue space $L_w^{p(.)}(\mathbb{R}^n)$ is defined as the set of all measurable functions f, for which

$$||f||_{p(.),w} = ||fw||_{p(.)} < \infty.$$

The space $\left(L_w^{p(.)}(\mathbb{R}^n), \|.\|_{p(.),w}\right)$ is a Banach space. Throughout this paper we assume that w is a Beurling weight.

Proposition 2.3. (i) The embeddings $L_w^{p(.)}(\mathbb{R}^n) \hookrightarrow L^{p(.)}(\mathbb{R}^n)$ is continous and the inequality

$$||f||_{p(.)} \le ||f||_{p(.),w}$$

is satisfied for all $f \in L_w^{p(.)}(\mathbb{R}^n)$.

(ii) $C_c(\mathbb{R}^n) \subset L^{p(.)}_w(\mathbb{R}^n).$

(iii) $C_c(\mathbb{R}^n)$ is dense in $L^{p(.)}_w(\mathbb{R}^n)$.

(iv) $L_w^{p(.)}(\mathbb{R}^n)$ is a BF-space.

(v) $L_w^{p(.)}$ is a Banach module over L^{∞} with respect to pointwise multiplication.

Proof. (i) Assume $f \in L_w^{p(.)}(\mathbb{R}^n)$. Since $w(x)^{p(x)} \ge 1$, then

$$\begin{aligned} |f(x)|^{p(x)} &\leq |f(x)w(x)|^{p(x)} \\ \varrho_p(f) &\leq \varrho_{p,w}(f) < \infty. \end{aligned}$$

This implies that $L_w^{p(.)}(\mathbb{R}^n) \subset L^{p(.)}(\mathbb{R}^n)$. Also by using the inequality $|f(x)| \leq |f(x)w(x)|$ and definition of $\|.\|_{p(.)}$, then

$$||f||_{p(.)} \le ||fw||_{p(.)} = ||f||_{p(.),w}.$$

(ii) Let $f \in C_c(\mathbb{R}^n)$ be any function such that $\operatorname{supp} f = K$ compact. For $p^* < \infty$ it is known that $C_c(\mathbb{R}^n) \subset L^{p(.)}(\mathbb{R}^n)$ by Lemma 4 in [1] and $\varrho_p(f) < \infty$. Hence we have

$$\varrho_{p,w}(f) = \varrho_p(fw) = \int_K |f(x)|^{p(x)} w(x)^{p(x)} dx$$
$$\leq \left(\sup_{x \in K} w(x)^{p^*} \right) \varrho_p(f) < \infty$$

and $C_c(\mathbb{R}^n) \subset L_w^{p(.)}(\mathbb{R}^n)$.

(iii) It is known that $C_c^{\infty}(\mathbb{R}^n)$ is dense in $L_w^{p(.)}(\mathbb{R}^n)$ by Corollary 2.5 in [2]. Hence $C_c(\mathbb{R}^n)$ is dense in $L_w^{p(.)}(\mathbb{R}^n)$.

(iv) Let $K \subset \mathbb{R}^n$ be a compact subset and $\frac{1}{p(.)} + \frac{1}{q(.)} = 1$. By Hölder inequality for generalized Lebesgue spaces [20], we write

$$\int_{K} |f(x)| dx \leq C \|\chi_{K}\|_{q(.)} \|f\|_{p(.)}$$

$$\leq C \|\chi_{K}\|_{q(.),w} \|f\|_{p(.),u}$$

for all $f \in L_w^{p(.)}(\mathbb{R}^n)$, where χ_K is the charecteristic function of K. It is known that $\|\chi_K\|_{q(.),w} < \infty$ if and only if $\varrho_{q,w}(\chi_K) < \infty$ for $q^* < \infty$. Then we have

$$\varrho_{q,w}(\chi_K) = \int\limits_K w(x)^{q(x)} dx = \left(\sup_{x \in K} w(x)^{q^*}\right) \mu(K) < \infty$$

That means $L_w^{p(.)}(\mathbb{R}^n) \hookrightarrow L_{loc}^1(\mathbb{R}^n)$. (v) We know that $L_w^{p(.)}(\mathbb{R}^n)$ is a Banach space. Also it is known that $L^{\infty}(\mathbb{R}^n)$ is a Banach algebra with respect to pointwise multiplication. Let $(f,g) \in L^{\infty}(\mathbb{R}^n) \times L^{p(.)}_w(\mathbb{R}^n)$. Then

$$\begin{split} \varrho_{p,w}(fg) &= \int\limits_{\mathbb{R}} \left| f(x)g\left(x\right) \right|^{p(x)} w(x)^{p(x)} dx \\ &\leq \max\left\{ 1, \left\| f \right\|_{\infty}^{p^*} \right\} \int\limits_{\mathbb{R}} \left| g\left(x\right) w(x) \right|^{p(x)} dx < \infty. \end{split}$$

We also have

$$\begin{split} \varrho_{p,w}(\frac{fg}{\|f\|_{\infty} \|g\|_{p(.),w}}) &\leq \int_{\mathbb{R}} \frac{|f(x)g(x)|^{p(x)}}{\|f\|_{\infty}^{p(x)} \|g\|_{p(.),w}^{p(x)}} dx \leq \int_{\mathbb{R}} \frac{\|f\|_{L^{\infty}}^{p(x)} |g(x)|^{p(x)}}{\|f\|_{\infty}^{p(x)} \|g\|_{p(.),w}^{p(x)}} dx \\ &= \varrho_{p,w}(\frac{g}{\|g\|_{p(.),w}}) \leq 1. \end{split}$$

Hence by the definition of the norm $\|.\|_{p(.),w}$ of the weighted variable exponent Lebesgue space, we obtain $\|fg\|_{p(.),w} \leq \|f\|_{L^{\infty}} \|g\|_{p(.),w}$. The remaining part of the proof is easy.

Proposition 2.4. (i) The space $L_w^{p(.)}(\mathbb{R}^n)$ is strongly character invariant. (ii) The function $t \to M_t f$ is continuous from \mathbb{R}^n into $L_w^{p(.)}(\mathbb{R}^n)$.

Proof. (i) Let take any $f \in L^{p(.)}_w(\mathbb{R}^n)$. We define a function g such that $g(x) = M_t f(x)$ for all $t \in \mathbb{R}^n$. Hence we have

$$|g(x)| = |M_t f(x)| = |\langle x, t \rangle f(x)| = |f(x)|$$

and

$$||M_t f||_{p(.),w} = ||g||_{p(.),w} = ||f||_{p(.),w}$$

(ii) Since $C_c(\mathbb{R}^n)$ is dense in $L_w^{p(.)}(\mathbb{R}^n)$ by Proposition 2.3, then given any $f \in L^{p(.)}_w(\mathbb{R}^n)$ and $\varepsilon > 0$, there exists $g \in C_c(\mathbb{R}^n)$ such that

$$\|f-g\|_{p(.),w} < \frac{\varepsilon}{3}.$$

Let assume that $\operatorname{supp} g = K$. Thus for every $t \in \mathbb{R}^n$, we have $\operatorname{supp}(M_t g - g) \subset$ K. If one uses the inequality

$$\begin{aligned} |M_t g(x) - g(x)| &= |\langle x, t \rangle g(x) - g(x)| = |g(x)| \, |\langle x, t \rangle - 1| \\ &\leq |g(x)| \sup_{x \in K} |\langle x, t \rangle - 1| = |g(x)| \, \|\langle ., t \rangle - 1\|_{\infty, K} \,, \end{aligned}$$

we have

$$\|M_tg - g\|_{p(.),w} \le \| < ., t > -1 \|_{\infty,K} \|g\|_{p(.),w}.$$

It is known that $\| < ., t > -1 \|_{\infty, K} \to 0$ for $t \to 0$. Also, we have

$$\|M_t f - f\|_{p(.),w} \leq \|M_t f - M_t g\|_{p(.),w} + \|M_t g - g\|_{p(.),w} + \|f - g\|_{p(.),w}$$

= $2 \|f - g\|_{p(.),w} + \| < ., t > -1\|_{\infty,K} \|g\|_{p(.),w}.$

Let us take the neighbourhood U of $0 \in \mathbb{R}^n$ such that

$$\|<.,t>-1\|_{\infty,K}<\frac{\varepsilon}{3\,\|g\|_{p(.),w}}$$

for all $t \in U$. Then we have

$$\|M_t f - f\|_{p(.),w} < \frac{2\varepsilon}{3} + \frac{\varepsilon}{3 \|g\|_{p(.),w}} \|g\|_{p(.),w} = \varepsilon$$

for all $t \in U$.

Definition 2.5. Let $p_1(.)$ and $p_2(.)$ be exponents on \mathbb{R}^n . We say that $p_2(.)$ is non-weaker than $p_1(.)$ if and only if $\Phi_{p_2}(x,t) = t^{p_2(x)}$ is non-weaker than $\Phi_{p_1}(x,t) = t^{p_1(x)}$ in the sense of Musielak [21], i.e. there exist constants $K_1, K_2 > 0$ and $h \in L^1(\mathbb{R}^n), h \ge 0$, such that for a.e. $x \in \mathbb{R}^n$ and all $t \ge 0$

$$\Phi_{p_1}(x,t) \le K_1 \Phi_{p_2}(x,K_2t) + h(x)$$

We write $p_1(.) \leq p_2(.)$.

Let $p_1(.) \preceq p_2(.)$. Then the embedding $L^{p_2(.)}(\mathbb{R}^n) \hookrightarrow L^{p_1(.)}(\mathbb{R}^n)$ was proved by Lemma 2.2 in [6].

Proposition 2.6. (i) If $w_1 \prec w_2$, then $L_{w_2}^{p(.)}(\mathbb{R}^n) \hookrightarrow L_{w_1}^{p(.)}(\mathbb{R}^n)$. (ii) If $w_1 \approx w_2$, then $L_{w_1}^{p(.)}(\mathbb{R}^n) = L_{w_2}^{p(.)}(\mathbb{R}^n)$. (iii) Let $0 < \mu(\Omega) < \infty, \ \Omega \subset \mathbb{R}^n$. If $w_1 \prec w_2$ and $p_1(.) \le p_2(.)$, then $L_{w_2}^{p_2(.)}(\Omega) \hookrightarrow L_{w_1}^{p_1(.)}(\Omega)$.

Proof. (i) Let $f \in L_{w_2}^{p(\cdot)}(\mathbb{R}^n)$. Since $w_1 \prec w_2$, there exists a C > 0 such that $w_1(x) \leq Cw_2(x)$ for all $x \in \mathbb{R}^n$. Hence we write

$$|f(x)w_1(x)| \le C |f(x)w_2(x)|.$$

This implies that

$$||f||_{p(.),w_1} \le C ||f||_{p(.),w_2}$$

for all $f \in L_{w_2}^{p(.)}(\mathbb{R}^n)$. (ii) Obvious.

(iii) Let $f \in L^{p_2(.)}_{w_2}(\Omega)$ be given. By using (i), we have $f \in L^{p_2(.)}_{w_1}(\Omega)$ and $fw_1 \in L^{p_2(.)}(\Omega)$. Since $p_1(.) \leq p_2(.)$, then $L^{p_2(.)}(\Omega) \hookrightarrow L^{p_1(.)}(\Omega)$ by Theorem 2.8 in [20] and

$$\begin{aligned} \|fw_1\|_{p_1(.)} &\leq C_1 \|fw_1\|_{p_2(.)} \\ &\leq C_1 C_2 \|f\|_{p_2(.),w_2} \end{aligned}$$

Hence $L_{w_2}^{p_2(.)}(\Omega) \hookrightarrow L_{w_1}^{p_1(.)}(\Omega)$.

Proposition 2.7. If $p_1(.) \leq p_2(.)$ and $w_1 \prec w_2$, then $L^{p_2(.)}_{w_2}(\mathbb{R}^n) \hookrightarrow$ $L^{p_1(.)}_{w_1}(\mathbb{R}^n).$

Proof. Since $p_1(.) \leq p_2(.)$, then $L^{p_2(.)}_{w_2}(\mathbb{R}^n) \hookrightarrow L^{p_1(.)}_{w_2}(\mathbb{R}^n)$ by Theorem 8.5 of [21]. Also by using Proposition 2.6, we have $L^{p_1(.)}_{w_2}(\mathbb{R}^n) \hookrightarrow L^{p_1(.)}_{w_1}(\mathbb{R}^n)$. \Box

Remark 2.8. By the closed graph theorem in Banach space, to prove that there is a continuous embedding $L_{w_2}^{p_2(.)}(\mathbb{R}^n) \hookrightarrow L_{w_1}^{p_1(.)}(\mathbb{R}^n)$, one need only prove $L_{w_2}^{p_2(.)}(\mathbb{R}^n) \subset L_{w_1}^{p_1(.)}(\mathbb{R}^n).$

Let w_1, w_2 be weights on \mathbb{R}^n . The space $L_{w_1}^{p_1(.)}(\mathbb{R}^n) \cap L_{w_2}^{p_2(.)}(\mathbb{R}^n)$ is defined as the set of all measurable functions f, for which

$$\|f\|_{w_1,w_2}^{p_1(.),p_2(.)} = \|f\|_{p_1(.),w_1} + \|f\|_{p_2(.),w_2} < \infty.$$

Proposition 2.9. Let w_1, w_2, w_3 and w_4 be weights on \mathbb{R}^n . If $w_1 \prec w_3$ and $w_2 \prec w_4$, then $L_{w_3}^{p_1(.)}(\mathbb{R}^n) \cap L_{w_4}^{p_2(.)}(\mathbb{R}^n) \hookrightarrow L_{w_1}^{p_1(.)}(\mathbb{R}^n) \cap L_{w_2}^{p_2(.)}(\mathbb{R}^n)$.

Proof. Obvious.

Corollary 2.10. If $w_1 \approx w_3$ and $w_2 \approx w_4$, then $L_{w_3}^{p_1(.)}(\mathbb{R}^n) \cap L_{w_4}^{p_2(.)}(\mathbb{R}^n) =$ $L_{w_1}^{p_1(.)}\left(\mathbb{R}^n\right) \cap L_{w_2}^{p_2(.)}\left(\mathbb{R}^n\right).$

Proposition 2.11. If $p_1(x) \le p_2(x) \le p_3(x)$ and $w_2 \prec w_1$, then

$$L_{w_1}^{p_1(.)}(\mathbb{R}^n) \cap L_{w_1}^{p_3(.)}(\mathbb{R}^n) \hookrightarrow L_{w_2}^{p_2(.)}(\mathbb{R}^n).$$

Proof. Since $p_1(x) \le p_2(x) \le p_3(x)$, then we write

$$|f(x)w_{1}(x)|^{p_{2}(x)} \leq |f(x)w_{1}(x)|^{p_{1}(x)} \chi_{\{x:|f(x)w_{1}(x)|\leq 1\}} + |f(x)w_{1}(x)|^{p_{3}(x)} \chi_{\{x:|f(x)w_{1}(x)|\geq 1\}}.$$

Hence $L_{w_1}^{p_1(.)}(\mathbb{R}^n) \cap L_{w_1}^{p_3(.)}(\mathbb{R}^n) \hookrightarrow L_{w_1}^{p_2(.)}(\mathbb{R}^n)$. Also by using Proposition 2.6, we have $L_{w_1}^{p_2(.)}(\mathbb{R}^n) \hookrightarrow L_{w_2}^{p_2(.)}(\mathbb{R}^n)$.

Corollary 2.12. Let $1 \le p_* \le p(x) \le p^* < \infty$ for all $x \in \mathbb{R}^n$ and $w_2 \prec w_1$, then

$$L_{w_1}^{p_*}\left(\mathbb{R}^n\right)\cap L_{w_1}^{p^*}\left(\mathbb{R}^n\right)\hookrightarrow L_{w_2}^{p(.)}\left(\mathbb{R}^n\right).$$

Proof. The proof is completed by Proposition 2.11.

For any $f \in L^1(\mathbb{R}^n)$, the Fourier transform of f is denoted by \hat{f} and defined by

$$\widehat{f}(x) = \int\limits_{\mathbb{R}^n} e^{-it.x} f(t) dt.$$

It is known that \widehat{f} is a continuos function on \mathbb{R}^n , which vanishes at infinity and the inequality $\|\widehat{f}\|_{\infty} \leq \|f\|_1$ is satisfied. Let the Fourier algebra $\{\widehat{f}: f \in L^1(\mathbb{R}^n)\}$ with by $A(\mathbb{R}^n)$ and is given the norm $\|\widehat{f}\|_A = \|f\|_1$.

Let ω be an arbitrary Beurling's weight function on $\mathbb{R}^{n'}$. We next introduce the homogeneous Banach space

$$A^{\omega}\left(\mathbb{R}^{n}\right) = \left\{\widehat{f}: f \in L^{1}_{\omega}(\mathbb{R}^{n})\right\}$$

with the norm $\|\hat{f}\|_{\omega} = \|f\|_{1,\omega}$. It is known that $A^{\omega}(\mathbb{R}^n)$ is a Banach algebra under pointwise multiplication [23]. We set $A_0^{\omega}(\mathbb{R}^n) = A^{\omega}(\mathbb{R}^n) \cap C_c(\mathbb{R}^n)$ and equip it with the inductive limit topology of the subspaces $A_K^{\omega}(\mathbb{R}^n) = A^{\omega}(\mathbb{R}^n) \cap C_K(\mathbb{R}^n)$, $K \subset \mathbb{R}^n$ compact, equipped with their $\|.\|_{\omega}$ norms. For every $h \in A_0^{\omega}(\mathbb{R}^n)$ we define the semi-norm q_h on $A_0^{\omega}(\mathbb{R}^n)'$ by $q_h(h') = |\langle h, h' \rangle|$, where $A_0^{\omega}(\mathbb{R}^n)'$ is the topological dual of $A_0^{\omega}(\mathbb{R}^n)$. The locally convex topology on $A_0^{\omega}(\mathbb{R}^n)'$ defined by the family $(q_h)_{h \in A_0^{\omega}(\mathbb{R}^n)}$ of seminorms is called the topology $\sigma \left(A_0^{\omega}(\mathbb{R}^n)', A_0^{\omega}(\mathbb{R}^n)\right)$ or the weak star topology.

is called the topology $\sigma\left(A_{0}^{\omega}\left(\mathbb{R}^{n}\right)', A_{0}^{\omega}\left(\mathbb{R}^{n}\right)\right)$ or the weak star topology. **Lemma 2.13.** Let $r^{*} < \infty$. Then $A_{K}^{\omega}\left(\mathbb{R}^{n}\right)$ is continuously embedded into $L_{w}^{r(.)}\left(\mathbb{R}^{n}\right)$ for every compact subsets $K \subset \mathbb{R}^{n}$, i.e. $A_{K}^{\omega}\left(\mathbb{R}^{n}\right) \hookrightarrow L_{w}^{r(.)}\left(\mathbb{R}^{n}\right)$.

Proof. Using the classical result $A_K^{\omega}(\mathbb{R}^n) \hookrightarrow L_w^{r_*}(\mathbb{R}^n) \cap L_w^{r^*}(\mathbb{R}^n)$ and $L_w^{r_*}(\mathbb{R}^n) \cap L_w^{r^*}(\mathbb{R}^n) \hookrightarrow L_w^{r(.)}(\mathbb{R}^n)$ by Corollary 2.12, then $A_K^{\omega}(\mathbb{R}^n) \hookrightarrow L_w^{r(.)}(\mathbb{R}^n)$.

Theorem 2.14. $L_w^{p(.)}(\mathbb{R}^n)$ is continuously embedded into $A_0^{\omega}(\mathbb{R}^n)'$.

Proof. Let $f \in L_w^{p(.)}(\mathbb{R}^n)$ and $h \in A_0^{\omega}(\mathbb{R}^n)$. By definition of $A_0^{\omega}(\mathbb{R}^n)$, there exists a compact subset $K \subset \mathbb{R}^n$ such that $h \in A_K^{\omega}(\mathbb{R}^n)$. Suppose that $\frac{1}{p(.)} + \frac{1}{r(.)} = 1$. Then by Hölder inequality for variable exponent Lebesgue spaces and by Lemma 2.13, there exists a C > 0 such that

$$< f,h > | = \left| \int_{\mathbb{R}^n} f(x)h(x)dx \right| \le \int_{\mathbb{R}^n} |f(x)h(x)| dx \le C \|f\|_{p(.)} \|h\|_{r(.)} \le C \|f\|_{p(.),w} \|h\|_{r(.),\omega} < \infty.$$
 (1)

Hence the integral

$$< f, h > = \int\limits_{\mathbb{R}^n} f(x)h(x)dx$$

is well defined. Now define the linear functional $\langle f, . \rangle : A_0^{\omega}(\mathbb{R}^n) \to \mathbb{C}$ for $f \in L_w^{p(.)}(\mathbb{R}^n)$ such that

$$\langle f,h \rangle = \int_{\mathbb{R}^n} f(x)h(x)dx.$$

It is known that the functional $\langle f, . \rangle$ is continuous from $A_0^{\omega}(\mathbb{R}^n)$ into \mathbb{C} if and only if $\langle f, . \rangle |_{A_K^{\omega}}$ is continuous from $A_K^{\omega}(\mathbb{R}^n)$ into \mathbb{C} for all compact subsets $K \subset \mathbb{R}^n$. By Lemma 2.13, there exists a $M_K > 0$ such that

$$\|h\|_{r(.),w} \le M_K \|h\|_{\omega}$$
 (2)

By (1) and (2),

$$|\langle f, h \rangle| \leq C ||f||_{p(.),w} ||h||_{r(.),\omega} \leq CM_K ||f||_{p(.),w} ||h||_{\omega} = D_K ||h||_{\omega}$$
(3)

where $D_K = CM_K \|f\|_{p(.),w}$. Then we have the inclusion $L_w^{p(.)}(\mathbb{R}^n) \subset A_0^{\omega}(\mathbb{R}^n)'$. Define the unit map $I : L_w^{p(.)}(\mathbb{R}^n) \to A_0^{\omega}(\mathbb{R}^n)'$. Let $h \in A_0^{\omega}(\mathbb{R}^n)$ be given. Then there exists a compact subset $K \subset \mathbb{R}^n$ such that $h \in A_K^{\omega}(\mathbb{R}^n)$. Take any semi-norm $q_h \in (q_h)$, $h \in A_0^{\omega}(\mathbb{R}^n)$ on $A_0^{\omega}(\mathbb{R}^n)'$. By using (3) we obtain

$$q_h(I(f)) = q_h(f) = |\langle f, h \rangle| \le B_K ||f||_{p(.),w},$$

where $B_K = CM_K ||h||_{\omega}$. Then *I* is continuous map from $L_w^{p(.)}(\mathbb{R}^n)$ into $A_0^{\omega}(\mathbb{R}^n)'$. The proof is completed.

3 Weighted Variable Exponent Amalgam Spaces $W(L_w^{p(.)}, L_v^q)$

The space $(L_w^{p(.)}(\mathbb{R}^n))_{loc}$ consists of all (classes of) measurable functions f on \mathbb{R}^n such that $f\chi_K \in L^{p(.)}(\mathbb{R}^n)$ for any compact subset $K \subset \mathbb{R}^n$, where χ_K is the characteristic function of K. Since the general hypotheses for the amalgam space $W(L_w^{p(.)}, L_v^q)$ are satisfied by Lemma 2.13 and Theorem 2.14, then $W(L_w^{p(.)}, L_v^q)$ is well defined as follows as in [10].

Let us fix an open set $Q \subset \mathbb{R}^n$ with compact closure. The variable exponent amalgam space $W\left(L_w^{p(.)}, L_v^q\right)$ consists of all elements $f \in \left(L_w^{p(.)}(\mathbb{R}^n)\right)_{loc}$ such that $\mathcal{F}_f(z) = \|f\chi_{z+Q}\|_{p(.),w}$ belongs to $L_v^q(\mathbb{R}^n)$; the norm of $W\left(L_w^{p(.)}, L_v^q\right)$ is

$$\left\|f\right\|_{W\left(L^{p(.)}_{w},L^{q}_{v}\right)}=\left\|\mathcal{F}_{f}\right\|_{q,v}.$$

Given a discrete family $X = (x_i)_{i \in I}$ in \mathbb{R}^n and a weighted space $L^q_w(\mathbb{R}^n)$, the associated weighted sequence space over X is the appropriate weighted ℓ^q space ℓ^q_w , the discrete w being given by $w(i) = w(x_i)$ for $i \in I$, (see Lemma 3.5 in [12]).

The following theorem, based on Theorem 1 in [10], describes the basic properties of $W\left(L_w^{p(.)}, L_v^q\right)$.

Theorem 3.1. (i) $W\left(L_w^{p(.)}, L_v^q\right)$ is a Banach space with norm $\|.\|_{W\left(L_w^{p(.)}, L_v^q\right)}$. (ii) $W\left(L_w^{p(.)}, L_v^q\right)$ is continuously embedded into $\left(L_w^{p(.)}\left(\mathbb{R}^n\right)\right)_{loc}$. (iii) The space

$$\Lambda_{0} = \left\{ f \in L_{w}^{p(.)}\left(\mathbb{R}^{n}\right) : \operatorname{supp}\left(f\right) \text{ is compact} \right\}$$

is continuously embedded into $W\left(L_w^{p(.)}, L_v^q\right)$.

(iv) $W\left(L_w^{p(.)}, L_v^q\right)$ does not depend on the particular choice of Q, i.e. different choices of Q define the same space with equivalent norms.

By (iii) and Proposition 2.3 it is easy to see that $C_c(\mathbb{R}^n)$ is continuously embedded into $W\left(L_w^{p(.)}, L_v^q\right)$.

Now by using the techniques in [14], we prove the following proposition. **Proposition 3.2.** $W\left(L_w^{p(.)}, L_v^q\right)$ is a BF-space on \mathbb{R}^n .

Proposition 3.3. $W\left(L_w^{p(.)}, L_v^q\right)$ is strongly character invariant and the map $t \to M_t f$ is continuous from \mathbb{R}^n into $W\left(L_w^{p(.)}, L_v^q\right)$.

Proof. It is known that $L_w^{p(.)}(\mathbb{R}^n)$ is strongly character invariant and the function $t \to M_t f$ is continuous from \mathbb{R}^n into $L_w^{p(.)}(\mathbb{R}^n)$ by Proposition 2.4. Hence the proof is completed by Lemma 1.5. in [24].

Proposition 3.4. w_1, w_2, w_3, v_1, v_2 and v_3 be weight functions. Suppose that there exist constants $C_1, C_2 > 0$ such that

 $\forall h \in L_{w_1}^{p_1(.)}\left(\mathbb{R}^n\right), \forall k \in L_{w_2}^{p_2(.)}\left(\mathbb{R}^n\right), \quad \|hk\|_{p_3(.),w_3} \le C_1 \, \|h\|_{p_1(.),w_1} \, \|k\|_{p_2(.),w_2}$ and

 $\forall u \in L^{q_1}_{\upsilon_1}\left(\mathbb{R}^n\right), \forall \vartheta \in L^{q_2}_{\upsilon_2}\left(\mathbb{R}^n\right), \quad \left\|u\vartheta\right\|_{q_3,\upsilon_3} \le C_2 \left\|u\right\|_{q_1,\upsilon_1} \left\|\vartheta\right\|_{q_2,\upsilon_2}$

Then there exists C > 0 such that

$$\|fg\|_{W\left(L^{p_{3}(.)}_{w_{3}},L^{q_{3}}_{v_{3}}\right)} \leq C \,\|f\|_{W\left(L^{p_{1}(.)}_{w_{1}},L^{q_{1}}_{v_{1}}\right)} \,\|g\|_{W\left(L^{p_{2}(.)}_{w_{2}},L^{q_{2}}_{v_{2}}\right)}$$

for all $f \in W\left(L_{w_1}^{p_1(.)}, L_{v_1}^{q_1}\right)$ and $g \in W\left(L_{w_2}^{p_2(.)}, L_{v_2}^{q_2}\right)$. In other words

$$W\left(L_{w_{1}}^{p_{1}(.)}, L_{\upsilon_{1}}^{q_{1}}\right) W\left(L_{w_{2}}^{p_{2}(.)}, L_{\upsilon_{2}}^{q_{2}}\right) \subset W\left(L_{w_{3}}^{p_{3}(.)}, L_{\upsilon_{3}}^{q_{3}}\right)$$

Proof. If $f \in W\left(L_{w_1}^{p_1(.)}, L_{v_1}^{q_1}\right)$ and $g \in W\left(L_{w_2}^{p_2(.)}, L_{v_2}^{q_2}\right)$, then we have

$$\begin{split} \|fg\|_{W\left(L^{p_{3}(.)}_{w_{3}},L^{q_{3}}_{v_{3}}\right)} &= \left\| \|fg\chi_{z+Q}\|_{p_{3}(.),w_{3}} \right\|_{q_{3},v_{3}} \\ &= \left\| \|(f\chi_{z+Q})\left(g\chi_{z+Q}\right)\|_{p_{3}(.),w_{3}} \right\|_{q_{3},v_{3}} \\ &\leq C_{1} \left\| \|f\chi_{z+Q}\|_{p_{1}(.),w_{1}} \left\|g\chi_{z+Q}\right\|_{p_{2}(.),w_{2}} \right\|_{q_{3},v_{3}} \\ &= C_{1} \left\|\mathcal{F}_{f}\mathcal{F}_{g}\right\|_{q_{3},v_{3}} \leq C_{1}C_{2} \left\|\mathcal{F}_{f}\right\|_{q_{1},v_{1}} \left\|\mathcal{F}_{g}\right\|_{q_{2},v_{2}} \\ &= C \left\|f\right\|_{W\left(L^{p_{1}(.)}_{w_{1}},L^{q_{1}}_{v_{1}}\right)} \left\|g\right\|_{W\left(L^{p_{2}(.)}_{w_{2}},L^{q_{2}}_{v_{2}}\right)} \end{split}$$

and the proof is complete.

Proposition 3.5. (i) If $p_1(.) \le p_2(.)$, $q_2 \le q_1$, $w_1 \prec w_2$ and $v_1 \prec v_2$, then

$$W\left(L_{w_{2}}^{p_{2}(.)}, L_{v_{2}}^{q_{2}}\right) \subset W\left(L_{w_{1}}^{p_{1}(.)}, L_{v_{1}}^{q_{1}}\right).$$

(ii) If $p_1(.) \leq p_2(.)$, $q_2 \leq q_1$, $w_1 \prec w_2$ and $v_1 \prec v_2$, then

$$W\left(L_{w_{1}}^{p_{1}(.)}\cap L_{w_{2}}^{p_{2}(.)}, L_{v_{2}}^{q_{2}}\right) \subset W\left(L_{w_{1}}^{p_{1}(.)}, L_{v_{1}}^{q_{1}}\right).$$

Proof. (i) Let $f \in W\left(L_{w_2}^{p_2(.)}, L_{v_2}^{q_2}\right)$ be given. Since $p_1(.) \leq p_2(.)$ and $w_1 \prec w_2$ then $L_{w_2}^{p_2(.)}(z+Q) \hookrightarrow L_{w_1}^{p_1(.)}(z+Q)$ and

$$\|f\chi_{z+Q}\|_{p_1(.),w_1} \leq C(\mu(z+Q)+1) \|f\chi_{z+Q}\|_{p_2(.),w_2} \leq C(\mu(Q)+1) \|f\chi_{z+Q}\|_{p_2(.),w_2}$$

for all $z \in \mathbb{R}^n$ by Theorem 2.8 in [20], where μ is the Lebesgue measure. Hence by the solidity of $L^{q_2}_{v_2}(\mathbb{R}^n)$ we have

$$W\left(L_{w_2}^{p_2(.)}, L_{v_2}^{q_2}\right) \subset W\left(L_{w_1}^{p_1(.)}, L_{v_2}^{q_2}\right).$$

It is known by Proposition 3.7 in [12], that

$$W\left(L_{w_1}^{p_1(.)}, L_{v_2}^{q_2}\right) \subset W\left(L_{w_1}^{p_1(.)}, L_{v_1}^{q_1}\right)$$

if and only if $\ell_{v_2}^{q_2} \subset \ell_{v_1}^{q_1}$, where $\ell_{v_2}^{q_2}$ and $\ell_{v_1}^{q_1}$ are the associated sequence spaces of $L_{v_2}^{q_2}(\mathbb{R}^n)$ and $L_{v_1}^{q_1}(\mathbb{R}^n)$ respectively. Since $q_2 \leq q_1$ and $v_1 \prec v_2$, then $\ell_{v_2}^{q_2} \subset \ell_{v_1}^{q_1}$ [14]. This completes the proof.

(ii) The proof of this part is easy by (i). \Box

The following Proposition was proved by [3].

Proposition 3.6. Let B be any solid space. If $q_2 \leq q_1$ and $v_1 \prec v_2$, then we have

$$W\left(B, L_{\upsilon_{1}}^{q_{1}} \cap L_{\upsilon_{2}}^{q_{2}}\right) = W\left(B, L_{\upsilon_{2}}^{q_{2}}\right)$$

Corollary 3.7. (i) If $p_1^*, p_2^* < \infty$, $L_{w_1}^{p_1(.)}(\mathbb{R}^n) \subset L_{w_2}^{p_2(.)}(\mathbb{R}^n)$, $q_2 \leq q_1$, $q_4 \leq q_3, q_4 \leq q_2, v_1 \prec v_2, v_3 \prec v_4$ and $v_2 \prec v_4$, then

$$W\left(L_{w_1}^{p_1(.)}, L_{v_3}^{q_3} \cap L_{v_4}^{q_4}\right) \subset W\left(L_{w_2}^{p_2(.)}, L_{v_1}^{q_1} \cap L_{v_2}^{q_2}\right).$$

(ii) If $p_1(x) \leq p_3(x)$, $p_2(x) \leq p_4(x)$, $q_2 \leq q_1$, $q_4 \leq q_3$, $q_4 \leq q_2$, $w_1 \prec w_3$, $w_2 \prec w_4$, $v_1 \prec v_2$, $v_3 \prec v_4$ and $v_2 \prec v_4$, then

$$W\left(L^{p_3(.)}_{w_3}\cap L^{p_4(.)}_{w_4}, L^{q_3}_{v_3}\cap L^{q_4}_{v_4}\right)\subset W\left(L^{p_1(.)}_{w_1}\cap L^{p_2(.)}_{w_2}, L^{q_1}_{v_1}\cap L^{q_2}_{v_2}\right).$$

Proposition 3.8. If $1 \leq q \leq \infty$ and $v \in L^q(\mathbb{R}^n)$, then $L^{p(.)}_w(\mathbb{R}^n) \subset W\left(L^{p(.)}_w, L^q_v\right)$.

Proof. If $1 \leq q < \infty$ and $v \in L^q(\mathbb{R}^n)$, we have

$$\begin{split} \|f\|_{W\left(L_{w}^{p(.)},L_{v}^{q}\right)} &= \left\| \|f\chi_{z+Q}\|_{p(.),w} \right\|_{q,v} \\ &= \left\{ \int_{\mathbb{R}^{n}} \|f\chi_{z+Q}\|_{p(.),w}^{q} v^{q}(z) dz \right\}^{\frac{1}{q}} \\ &\leq \left\{ \int_{\mathbb{R}^{n}} \|f\|_{p(.),w}^{q} v^{q}(z) dz \right\}^{\frac{1}{q}} \\ &= \|f\|_{p(.),w} \|v\|_{q} \,. \end{split}$$

Hence $L_w^{p(.)}(\mathbb{R}^n) \subset W\left(L_w^{p(.)}, L_v^q\right)$. Similarly, for $q = \infty$, we obtain

$$\|f\|_{W(L^{p(.)}_{w},L^{\infty}_{v})} = \left\|\|f\chi_{z+Q}\|_{p(.),w} v\right\|_{\infty} \le \|f\|_{p(.),w} \|v\|_{\infty}.$$

Then $L_w^{p(.)}(\mathbb{R}^n) \subset W\left(L_w^{p(.)}, L_v^{\infty}\right)$.

Proposition 3.9. Let $1_i q_0, q_1 < \infty$. If $p_0(.)$ and $p_1(.)$ are variable exponents with $1 < p_{j,*} \le p_j^* < \infty$, j = 0, 1. Then, for $\theta \in (0, 1)$, we have

$$\begin{bmatrix} W\left(L_{w_{0}}^{p_{0}(.)}, L_{v_{0}}^{q_{0}}\right), W\left(L_{w_{1}}^{p_{1}(.)}, L_{v_{1}}^{q_{1}}\right) \end{bmatrix}_{[\theta]} = W\left(L_{w}^{p_{\theta}(.)}, L_{v}^{q_{\theta}}\right)$$
where $\frac{1}{p_{\theta}(x)} = \frac{1-\theta}{p_{0}(x)} + \frac{\theta}{p_{1}(x)}, \frac{1}{q_{\theta}} = \frac{1-\theta}{q_{0}} + \frac{\theta}{q_{1}}, w = w_{0}^{1-\theta}w_{1}^{\theta}$ and $v = v_{0}^{1-\theta}v_{1}^{\theta}$.
Proof. By Theorem 2.2 in [11] the interpolation space $\left[W\left(L_{w_{0}}^{p_{0}(.)}, L_{v_{0}}^{q_{0}}\right), W\left(L_{w_{1}}^{p_{1}(.)}, L_{v_{1}}^{q_{1}}\right)\right]_{[\theta]}$
is $W\left(\left[L_{w_{0}}^{p_{0}(.)}, L_{w_{1}}^{p_{1}(.)}\right]_{[\theta]}, \left[L_{v_{0}}^{q_{0}}, L_{v_{1}}^{q_{1}}\right]_{[\theta]}\right)$. We know that $\left[L_{v_{0}}^{q_{0}}, L_{v_{1}}^{q_{1}}\right]_{[\theta]} = L_{v}^{q_{\theta}}$ and
by Corollary A.2. in [7] that $\left[L_{w_{0}}^{p_{0}(.)}, L_{w_{1}}^{p_{1}(.)}\right]_{[\theta]} = L_{w}^{p_{\theta}(.)}$. This completes the proof.

References

[1] I. Aydın and A.T.Gürkanlı, On some properties of the spaces $A_{\omega}^{p(x)}(\mathbb{R}^n)$. Proceedings of the Jangieon Mathematical Society, 12 (2009), No.2, pp.141-155.

- [2] I. Aydın, Weighted variable Sobolev spaces and capacity, Journal of Function Spaces and Applications, Volume 2012, Article ID 132690, 17 pages, doi:10.1155/2012/132690.
- [3] I.Aydın and A.T.Gürkanlı, Weighted variable exponent amalgam spaces $W(L^{p(x)}, L_w^q)$, Glasnik Matematicki, Vol.47(67), (2012), 167-176.
- [4] D. Cruz Uribe and A. Fiorenza, LlogL results for the maximal operator in variable L^p spaces, Trans. Amer. Math. Soc., 361 (5), (2009), 2631-2647.
- [5] D. Cruz Uribe, A. Fiorenza, J. M. Martell and C. Perez Moreno, The boundedness of classical operators on variable L^p spaces, Ann. Acad. Sci. Fenn., Math., 31(1), (2006), 239-264.
- [6] L. Diening, Maximal function on generalized Lebesgue spaces L^{p(.)}, Mathematical Inequalities and Applications, 7(2004), 245-253.
- [7] L. Diening, P. Hästö and A. Nekvinda, Open problems in variable exponent Lebesgue and Sobolev spaces. In FSDONA04 Proceedings (Milovy, Czech Republic, 2004), 38-58.
- [8] L. Diening, P. Hästö, and S. Roudenko, Function spaces of variable smoothness and integrability, J. Funct. Anal., 256(6), (2009), 1731-1768.
- [9] D. Edmunds, J. Lang, and A. Nekvinda, On $L^{p(x)}$ norms, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 455, (1999), 219-225.
- [10] H. G. Feichtinger, Banach convolution algebras of Wiener type, In: Functions, Series, Operators, Proc. Conf. Budapest 38, Colloq. Math. Soc. Janos Bolyai, (1980), 509–524.
- [11] H. G. Feichtinger, Banach spaces of Distributions of Wiener's type and Interpolation, In Proc. Conf. Functional Analysis and Approximation, Oberwolfach August 1980, Internat. Ser. Numer. Math., 69:153–165. Birkhauser, Boston, 1981.
- [12] H. G. Feichtinger and K. H. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions I, J. Funct. Anal., 86(1989), 307–340.
- [13] H. G. Feichtinger and A. T. Gürkanli, On a family of weighted convolution algebras, Internat. J. Math. and Math. Sci., 13 (1990), 517-526.
- [14] R. H. Fischer, A. T. Gürkanlı and T. S. Liu, On a Family of Wiener type spaces, Internat. J. Math. and Math. Sci., 19 (1996), 57–66.

- [15] R. H. Fischer, A. T. Gürkanlı and T. S. Liu, On a family of weighted spaces, Math. Slovaca, 46(1996), 71-82.
- [16] J. J. Fournier and J. Stewart, Amalgams of L^p and ℓ^q , Bull. Amer. Math. Soc., **13** (1985), 1–21.
- [17] C. Heil, An introduction to weighted Wiener amalgams, In: Wavelets and their applications (Chennai, January 2002), Allied Publishers, New Delhi, (2003), p. 183–216.
- [18] F. Holland, Square-summable positive-definite functions on the real line, Linear Operators Approx. II, Proc. Conf. Oberwolfach, ISNM 25, (1974), 247-257.
- [19] F. Holland, Harmonic analysis on amalgams of L^p and ℓ^q , J. London Math. Soc. (2), 10, (1975), 295–305.
- [20] O. Kovacik and J. Rakosnik, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czech. Math. J., 41(116), (1991), 592-618.
- [21] J. Musielak, Orlicz spaces and modular spaces, Springer-Verlag, Lecture Notes in Math., 1983.
- [22] W. Orlicz, Über konjugierte exponentenfolgen, Studia Math. 3, (1931), 200–212.
- [23] H. Reiter, Classical harmonic analysis and locally compact groups, Oxford University Press, Oxford, 1968.
- [24] B. Sağır: On functions with Fourier transforms in W(B, Y), Demonstratio Mathematica, Vol. XXXIII, No.2, 355-363, (2000).
- [25] S. G. Samko, Convolution type operators in $L^{p(x)}$, Integr. Transform. and Special Funct., 7(1998), 123-144.
- [26] N. Wiener, Generalized Harmonic Analysis Tauberian Theorems, The M.I.T. Press, 1964.

İSMAİL AYDIN, Department of Mathematics, Faculty of Arts and Sciences, Sinop University Email: iaydin@sinop.edu.tr