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Geometry of the anisotropic minimal surfaces

Iväılo M. Mladenov and Mariana Ts. Hadzhilazova

Abstract

A simple modification of the surface tension in the axisymmetric case

leads to analogues of the Delaunay surfaces. Here we have derived an

explicit parameterization of the most simple case of this new class of

surfaces which can be considered as a generalization of the catenoids.

The geometry of these surfaces depends on two real parameters and has

been studied in some detail.

1 Introduction

In aqueous solution, amphiphilic molecules (e.g., phospholipids) form bilayers,

the hydrophilic heads of these molecules being located in both outer sides of

the bilayer, which are in contact with the liquid, while their hydrophobic tails

remain at the interior. The handbook [7] is a good starting point for learning

more about this phenomena.

A bilayer may form a closed membrane which bear the name vesicle. Vesi-

cles constitute a well-defined and sufficiently simple model system for studying

the basic physical properties of the more complex cell biomembranes which
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differ in form and function. The equilibrium shapes of the lipid vesicles are

determined as the extremals of the functional

F [S] =
kc
2

∫
S

(2H + Ih)2dA+ k̄

∫
S

KdA+ σ

∫
S

dA+ p

∫
S

dV. (1)

Here H,K - denote the mean, respectively the Gaussian curvatures of the

middle surface S and dA,dV - the infinitesimal area and volume elements.

Additionally, in this model the following physical parameters are taken into

account

• the bending rigidity and tensile stress of the membrane

• the spontaneous curvature of the bilayer

• the osmotic pressure difference between both sides of the bilayer.

2 The General Membrane Shape Equation

The corresponding Euler-Lagrange equation (Ou-Yang & Helfrich [13])

2kc∆S
H + kc(2H + Ih)(2H2 − IhH − 2k̄)− 2σH + p = 0 (2)

is often referred to as the general membrane shape equation. Here ∆
S

is the

Laplace-Beltrami operator on the surface S, kc and k̄ - denote the bending and

the Gaussian rigidities of the membrane, σ - the tensile stress of the membrane,

Ih - the spontaneous curvature of the bilayer and p - the osmotic pressure

difference between the external and internal part. Its explicit solutions are

discussed in [1, 4, 5, 6, 9, 10, 14, 16] and in [15] the reader will find a whole

chapter devoted to this subject.

From mathematical point of view the main difficulty in solving (2) is that it

represents a nonlinear fourth order partial differential equation for the position

vector x running on the surface S. A fortunate circumstance is that this

differential equation can be rewritten in the form of a system of four differential

equations of second order. One, namely (2) for the mean curvature H and

three others, namely

∆
S
x = 2Hn (3)
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for the components of the position vector x. Here n stands for the unit normal

vector of S and the formal proof of (3) in the case of orthogonal parameter-

ization can be found either in [11] or [15]. The general form of the surface

Laplacian and its action on scalar and vector functions on S is discussed in

depth in [8].

3 Axisymmetric Membranes

Most of the above mentioned difficulties disappears if we restrict our consider-

ations to the surfaces of revolution. In what follows they will be described by

the position vector x (assuming that the coordinate axis OZ is the symmetry

axis) of the form

x(z, φ) = (r(z) cosφ, r(z) sinφ, z), z ∈ R, φ ∈ [0, 2π). (4)

Let us consider the problem of extremizing the lateral area of such membrane

under the constraint of a fixed volume. The respective functional is

F [r(z)] = 2π

∫ z

0

(
σr
√

1 + ṙ2 − p

2
r2
)

dz (5)

in which ṙ denotes
dr(z)

dz
· The expression under the integral is called a La-

grangian and will be denoted by L. Writing down the Euler-Lagrange equation

for L one gets the equation which is known as a Laplace-Young law

p = 2σH. (6)

In deriving it use has been made of the existence of the first integral

L− ṙ ∂L
∂ṙ

= T̃ , T̃ = constant (7)

which exists in the case when the Lagrangian does not depend explicitly on

the independent variable z. From (6) it is clear also that if p and σ are

constants then the mean curvature H is also a constant. The class of constant

mean curvature surfaces of revolution were introduced and classified by the

French geometer Delaunay [3] and nowadays bears his name. Besides the

plane and the catenoid which are examples of Delaunay surfaces with zero
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Figure 1: The open parts of the cylinder, sphere, catenoid, unduloid and

nodoid.

mean curvatures this class consists of cylinders, spheres, unduloids and nodoids

shown in Fig.1.

Actually, Delaunay has proved also that this latter surfaces can be obtained

by revolving the traces of the foci of quadrics rolling along the symmetry axis

(roulettes in French). The upper part of the Fig.2 show the profile curves

(meridional sections of the surfaces) and the lower one is the list of the quadrics

generating them.

Figure 2: The profile curves and the quadrics generating them.

4 Modified Delaunay Surfaces

In this section we will consider (following [2]) a broader class of functionals

by abandoning the fundamental up to now assumption σ = const about the

surface tension and allowing it to depends on the point of the surface.



GEOMETRY OF THE ANISOTROPIC MINIMAL SURFACES 83

In technical terms this means that we have to replace σ in (5) with the

expression σ +K(r) where the function K(r) could be any even function of r

(the latter requirement follows from the axial symmetry of the problem), i.e.,

F [r(z)] = 2π

∫ z

0

(
(σ +K(r))r

√
1 + ṙ2 − p

2
r2
)

dz, K(−r) = K(r). (8)

Another possible interpretation is that we are considering a membrane which

surface energy is spatially varying. Further on we will analyze the case when

K(r) =
λ̃

r2
which corresponds to the nematic films [2] and respectively we

have

F̃ [r(z)] = 2π

∫ z

0

(
(σ +

λ̃

r2
)r
√

1 + ṙ2 − p

2
r2

)
dz. (9)

The integral of the Euler-Lagrange equation associated with (9) reads

r√
1 + ṙ2

(
σ +

λ̃

r2

)
− p

2
r2 = T̃ . (10)

The general problem presented by (10) will be investigated in the future and

here we will treat only the particular case p = 0 which should be viewed as a

study of the generalized catenoids. In this setting it turns out convenient to

rescale the free parameters in the model as follows

λ =
λ̃

σ
, c =

T̃

σ
· (11)

In this way (10) takes the reduced form

r√
1 + ṙ2

(
1 +

λ

r2

)
= c (12)

which can be solved with respect to ṙ and in this way we end up with the

equation

dr(z)

dz
=

√
r4(z) + (2λ− c2) r2(z) + λ2

cr(z)
· (13)

Introduction of the new variable ξ = r2 transforms it into the form

dξ√
ξ2 + (2λ− c2)ξ + λ2

=
2

c
z (14)
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which can be easily integrated and gives

z =
c

2
arcsinh

2ξ + 2λ− c2

c
√

4λ− c2
(15)

and finally

r(z) =

√
c
√

4λ− c2 sinh (2z/c) + c2 − 2λ
√

2
· (16)

The parameterization of the surface S via z and φ is not quite suitable

for studying the geometry of the generalized catenoids. Instead of z we will

introduce a new coordinate u which is related to the old one by the formula

z =
c

2
arcsinh(u) (17)

and respectively

r(u) =

√
c
√

4λ− c2u+ c2 − 2λ√
2

· (18)

The azimuthal coordinate will be denoted as usual in the classical differen-

tial geometry textbooks [12] by v. In these new coordinates our surface S is

parameterized as follows

x(u, v) = (r(u) cos v, r(u) sin v,
c

2
arcsinh(u)), u ∈ R, v ∈ [0, 2π) (19)

and depicted in Fig.3 along its profile curve.

Having an explicit parameterization of any surface one can obtain finer

details about it say, various kind of curvatures, geodesic, formulas for the

surface area and the volume, etc. For the lack of space we will reproduce

here only the formulas for the mean H and Gaussian K curvatures just to

see that they are of rational type and therefore easily manageable via analytic

and numerical treatment. Introducing ω =
√

4λ− c2 these formulas are of the

form

H =
4λ(c+ ωu)

c (c2 + 2cωu+ ω2u2)
3/2

, K =
4(4λc− c3 + 2ω

(
2λ− c2

)
u− cω2u2)

c (c2 + 2cωu+ ω2u2)
2

(20)
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Figure 3: An open part and the corresponding profile curve of S generated

with parameters λ = 3/5 and c = 1.

from which one easily concludes that for a large values of u they both approach

the zero, i.e., for such values of the parameter the surface becomes a part of

the plane (which can be seen also on the left side of Fig. 3).

A more detailed study of this and the general case (10) is under investigation

and will be reported elsewhere.
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