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On geometric structures associated with triple
systems

Noriaki Kamiya

Abstract

In this paper, we show that geometric phenomena can be charac-
terized using the concept of triple systems. In particular, we study a
complex structure associated with triple systems.

1 Introduction

In future, it is expected that triple systems will be useful for the characteri-
zation of geometric structures in mathematics and physics as well as that of
(classical) Yang-Baxter equations ([10],[19],[22]).

Our aim is to use triple systems to investigate the characterization of dif-
ferential geometry and mathematical physics from the viewpoint of nonas-
sociative algebras that contain a class of Lie algebras or Jordan algebras
([6],[7],[8],[13],[16],[17],[18]). In this paper, we will study about the Lie super-
algebras or Lie algebras associated with triple systems, and the relationship
with several vector subspaces associated with these algebras. We show that
these subspaces have a complex structure as well as differential geometry, and
we provide an algebraic characterization of their subspaces. Furthermore, for
B3-type Lie algebras, we will give some examples of triple systems and their
correspondence with extended Dynkin diagrams.

A (2ν+1)-graded Lie algebra is a Lie algebra of the form g = ⊕νk=−νgk such
that [gk, gl] ⊂ gk+l. It is well known that 3-graded Lie algebras are essentially
bijective with certain theoretic objects called Jordan triple systems or Jordan
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pairs. Kantor remarked that more general graded Lie algebras correspond to
generalized Jordan triple systems. In particular, the graded Lie algebra g (or
L) given by

g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 (or L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2 )

has the structure of a triple product on the subspace g−1, and is known as
a generalized Jordan triple system (GJTS) of the second order or a (-1,1)-
Freudenthal-Kantor triple system (F-K.t.s.)([8],[14]). Also g−1 ⊕ g1 has the
structure of a Lie triple system (in particular, the system over a real number is
known to correspond with a symmetric Riemannian space by means of a totally
geodesic manifold notation). We will discuss the corresponding geometrical
object by using these triple systems. The notation and terminology used for
the geometry can be found in ([4], [5], [21]). We will often use the symbols g
and L to denote a Lie algebra or Lie superalgebra as is conventionally used
([2],[3],[7],[25]).

From the viewpoint of an algebraic study, our purpose is to propose a uni-
fied structural theory for triple systems in nonassociative algebras. In previous
works ([12],[14],[15]), we have studied the Peirce decomposition of a GJTS U
of the second order by employing a tripotent element e of U (for a tripotent
element, {eee} = e).
The Peirce decomposition of U is described as follows:

U = U00 ⊕ U 1
2

1
2
⊕ U11 ⊕ U 3

2
3
2
⊕ U− 1

2 0 ⊕ U01 ⊕ U 1
2 2 ⊕ U13,

where L(a) = {eea} = λa and R(a) = {aee} = µa if a ∈ Uλµ.
These viewpoints as above have formed the basis of our study on triple

systems. However in this note, our consideration will mainly be from a geo-
metrical viewpoint.

We are concerned with triple systems and algebras which have finite dimen-
sionality over a field Φ of characteristic 6= 2 or 3, unless otherwise specified.

2 Definitions and Preamble

To make this paper as self-contained as possible, we first recall the definition
of a generalized Jordan triple system of the second order (hereafter, referred
to as a GJTS of 2nd order), and the construction of Lie algebras associated
with a GJTS of 2nd order.

A vector space V over a field Φ, endowed with a trilinear operation V ×
V × V → V , (x, y, z) 7−→ {xyz}, is said to be a GJTS of 2nd order if the
following two conditions are satisfied:

(J1) {ab{xyz}} = {{abx}yz} − {x{bay}z}+ {xy{abz}} (GJTS)
(K1) K(K(a, b)x, y)− L(y, x)K(a, b)−K(a, b)L(x, y) = 0 (2nd order),
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where L(a, b)c = {abc} and K(a, b)c = {acb} − {bca}.
Remark. If K(a, b) ≡ 0 (identically zero), then this triple system is a

Jordan triple system (JTS), i.e., it satisfies the relations {acb} = {cba} and
GJTS.

We can also generalize the concept of the GJTS of 2nd order as follows
(for examples, see [8],[9],[11],[16] and references therein).

For ε = ±1 and δ = ±1, if the triple product satisfies

(ab(xyz)) = ((abx)yz) + ε(x(bay)z) + (xy(abz)),
K(K(a, b)c, d)− L(d, c)K(a, b) + εK(a, b)L(c, d) = 0,

where L(x, y)z = (xyz) and K(a, b)c = (acb)− δ(bca), then it is said to be an
(ε, δ)-Freudenthal-Kantor triple system (hereafter abbreviated as an (ε, δ)-F-
K.t.s).

If Id ∈ k = {K(a, b)}span, it is said to be unitary.
Furthermore, if the (ε, δ)-F-K.t.s satisfies

dimΦ{K(a, b)}span = dimΦ{< a, b >}span = 1,

where < a, b >∈ Φ∗, then it is said to be balanced.
Remark. We set S(x, y) := L(x, y) + εL(y, x), and A(x, y) := L(x, y) −

εL(y, x), then this S(x, y) (resp. A(x, y) ) is a derivation (resp. anti-derivation)
of U(ε, δ).

Remark. Following the notation of the metasymplectic geometry due to
H.Freudenthal, our concept means that

PxQ · · · · · · derivation S(x, y) of U(ε, δ),

{P,Q} · · · · · · anti derivation A(x, y)( = K(x, y) ) of U(ε.δ) · · · balanced type.

We generally denote the triple products by {xyz}, (xyz), [xyz], and <
xyz >. Bilinear forms are denoted by < x|y >,< x, y >, and B(x, y).

Remark. Note that the concept of a GJTS of 2nd order coincides with
that of a (−1, 1)-F-K.t.s. Thus we can construct simple Lie algebras (δ = 1)or
superalgebras ( δ = −1) from these triple systems with δ = ±1, by means of
the standard embedding method (for example, [2], [3], [8]–[12], [16], [17], [18],
[23]).

Proposition 1([9],[17]). Let U(ε, δ) be an (ε, δ)-F-K.t.s. If J is an
endomorphism of U(ε, δ) such that J < xyz >=< JxJyJz > and J2 = −εδId,
then (U(ε, δ), [xyz]) is a Lie triple system (the case of δ = 1) or an anti-Lie
triple system (the case of δ = −1) with respect to the product

[xyz] :=< xJyz > −δ < yJxz > +δ < xJzy > − < yJzx > .
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Corollary. Let U(ε, δ) be an (ε, δ)-F-K.t.s. Then the vector space
T (ε, δ) = U(ε, δ) ⊕ U(ε, δ) becomes a Lie triple system (the case of δ = 1) or
an anti-Lie triple system (the case of δ = -1) with respect to the triple product
defined by

[

(
a
b

)(
c
d

)(
e
f

)
] =

(
L(a, d)− δL(c, b) δK(a, c)
−εK(b, d) ε(L(d, a)− δL(b, c))

)(
e
f

)
.

Thus we can obtain the standard embedding Lie algebra (the case of δ = 1)
or Lie superalgebra (the case of δ = −1), L(ε, δ) = D(T (ε, δ), T (ε, δ))⊕T (ε, δ),
associated with T (ε, δ), where D(T (ε, δ), T (ε, δ)) is the set of inner derivations
of T (ε, δ). That is, these vector spaces D(T (ε, δ), T (ε, δ)) and T (ε, δ) imply

D(T (ε, δ), T (ε, δ)) :=

(
L(a, b) δK(c, d)
−εK(e, f) εL(b, a)

)
span

and

T (ε, δ) := {
(
x
y

)
|x, y ∈ U(ε, δ)}span, ( denoted by T (U) ).

In fact, we have

L0 = {
(
L(a, b) 0

0 εL(b, a)

)
}span = {L(a, b)}span,

L−2 = {
(

0 δK(c, d)
0 0

)
}span = {K(c, d)}spanand L0 = DerU ⊕Anti−DerU.

Remark. For the standard embedding algebras obtained from these triple
systems, note that

L(ε, δ) := L−2 ⊕ L−1 ⊕ L0 ⊕ L−1 ⊕ L−2

(or g = g−2⊕ g−1⊕ g0⊕ g1⊕ g2) is a 5-graded Lie algebra or Lie superalgebra
such that

L−1 = g−1 = U(ε, δ)

and
DerT (U) := D(T (ε, δ), T (ε, δ)) = L−2 ⊕ L0 ⊕ L−2

with
[Li, Lj ] ⊆ Li+j .

Also, denote L(ε, δ) by L(U).
For the correspondence of the (1,1) F.K.t.s with the (-1,1) F.K.t.s, we

obtain the following.
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Proposition 2. Let (U,< xyz >) be a (1, 1) F-K.t.s. If there is an
endomorphism P of U such that P < xyz >=< PxPyPz > and P 2 = −Id,
then (U, {xyz}) is a GJTS of 2nd order (that is, (-1,1)-F-K.t.s.) with respect
to the new product defined by {xyz} :=< xPyz > .

Proof. Suppose that the product < xyz > is satisfying the two relations;

< ab < xyz >>=<< abx > yz > + < x < bay > z > + < xy < abz >>,

K(K(a, b)c, d)− L(d, c)K(a, b) +K(a, b)L(c, d) = 0,

where L(a, b)c =< abc > and K(a, b)c =< acb > − < bca >.
By means of P 2 = −Id and the definition {xyz} =< xPyz >, it is enough

to show that the triple product {xyz} is satisfied the two identities;

{ab{xyz}} = {{abx}yz} − {x{bay}z}+ {xy{abz}},

K(K(a, b)x, y)− L(y, x)K(a, b)−K(a, b)L(x, y) = 0

where L(x, y)z = {xyz} and K(a, b)c = {acb} − {bca}.
Thus, these relations is obtained by straightforward calculatins, This com-
pletes the proof.

We now give an explicit example of a JTS and a Lie triple system.
Example. Let U be a vector space with a symmetric bilinear form

< , >. Then the triple system (U, [xyz]) is a Lie triple system with respect to
the product

[xyz] =< y, z > x− < z, x > y.

That is, this triple system is induced from the JTS

{xyz} =
1

2
(< x, y > z+ < y, z > x− < z, x > y)

by means of
[xyz] = {xyz} − {yxz}.

3 A complex structure associated with triple systems

In this section, we will discuss with a complex structure on the following vector
space;

T (ε, δ) = g−1 ⊕ g1.

We set

E =

(
0 Id
0 0

)
, F =

(
0 0
Id 0

)
, H =

(
Id 0
0 −Id

)
, J = δE − εF.
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Then we obtain by straightfoward calculations,

H = [E,F ], [H,E] = 2E, [H,F ] = −2F, J2 = −δε
(
Id 0
0 Id

)
,

where J is an operator on T (ε, δ).
Next we define the Nijenhuis operator on T (ε, δ) as below.

N(X,Y ) = [JX, JY ]− J [JX, Y ]− J [X, JY ] + J2[X,Y ], X, Y ∈ T (ε, δ).

We study the cases of εδ = 1, which can be considered to have an almost
complex structure, since J2 = −Id. However, we do not deal with the case
of εδ = −1 called a paracomplex structure, which will be considered in future
work.

By a long but straightfoward calculations, proof omitted, we obtain the
following Proposition.

Proposition 3. Let U be an (ε, δ)- F-K.t.s. and its operations be given
by the above definitions. The following are equivalent:

(i) N(X,Y ) = 0,
(ii) L(y, x)− δL(x, y) = K(x, y).
From these results as well as the differential geometry, we conclude that

there exists a complex structure on T (ε, δ) if L(y, x)− δL(x, y) = K(x, y).
Following [16], we exhibit examples of a (-1,-1)-F-K.t.s with a complex

structure, is known as an antistructurable algebra.
Remark. By the well known fact that the Lie triple systems have a

correspondence with symmetric spaces, T (ε, δ) is closely related to symmetric
space.

By using above J , we may define an operator J̃ on L(ε, δ) as follows:

(
L(a, b) δK(c, d)
−εK(e, f) εL(b, a)

)
⊕
(
x
y

)
−→ J

(
L(a, b) δK(c, d)
−εK(e, f) εL(b, a)

)
J−1 ⊕ J

(
x
y

)
.

Then this J̃ satisfies
J̃ [X,Y ] = [J̃X, J̃Y ],

for all X,Y ∈ L(ε, δ).
Thus J̃ is said to be an automorphism of L(ε, δ) induced from the almost

complex structure J .
Remark. Note that if U is unitary, then L(ε, δ) contains the subalgebra

sl2 = {H,E, F}span, because Id ∈ k = {K(a, b)}span = g−2.

In this section’s final comment,we will introduce a deformed Nijenhuis op-
erator on H(ε, δ) = g0 ⊕ g1 ⊕ g2.

NH(X,Y ) = [JHX, JHY ]− JH [JHX,Y ]− JH [X, JHY ] + J2
H [X,Y ],
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X,Y ∈ H(ε, δ), where JH : (x0, x1, x2)→ (αx0, αx1, αx2).
Proposition 4. For H(ε, δ), if there is a element α ∈ Φ such that α2 =

−1, then the space H(ε, δ) has a complex structure.
Proof. From α2 = −1, it follows that the identity NH(X,Y ) = 0 holds.

Hence, we have a complex structure.

4 Several algebraic structures

In this section, we will study some algebraic structures on (i) T (ε, δ), (ii)
B(ε, δ) =g−2 ⊕ g−1 ⊕ g1 ⊕ g2 and (iii) H(ε, δ).

We denote any element of g−2⊕ g−1⊕ g0⊕ g1⊕ g2 by (x−2, x−1, x0, x1, x2)
or x−2 + x−1 + x0 + x1 + x2.

Before going into further details, we recall the definition of a generalized
structurable algebra A (e.g., [13]) as having a bilinear derivation D(x, y) sat-
isfying

D(x, y)(uv) = (D(x, y)u)v + u(D(x, y)v)

D(xy, z) +D(yz, x) +D(zx, y) = 0.

Example.([13]) Any Lie algebra, Jordan algebra, alternative algebra or struc-
turable algebra is a generalized structurable algebra.

In fact, the derivation in the case of a Lie algebra is ad[x, y] and in the
case of a Jordan algebra is [L(x), R(y)] respectively.

By means of the concept of a generalized structurable algebra, we introduce
the following algebraic structure.

For (i) T (ε, δ), by defining

X ◦ Y = 0 and D(X,Y )Z = [XY Z],

i.e., D(X,Y ) = ad([x−1, y1]+[x1, y−1]), where X = x−1+x1 and Y = y−1+y1,
we obtain a structure with a trivial algebra which bilinear product ◦ is

identically zero. However, this space is a Lie triple system (δ = 1) or an
anti-Lie triple system (δ = −1) (c.f., section 2), that is,

D(X,Y )Z = [XY Z] = −δ[Y XZ] = −δD(Y,X)Z,

D(X,Y )Z +D(Y,Z)X +D(Z,X)Y = 0,

[D(X,Y ), D(U, V )] = D(D(X,Y )U, V ) +D(U, (D(X,Y )V ).

Remark. Note that

D(X,Y ) = −δD(Y,X) for all X, Y ∈ T (ε, δ).

Next, for the case (ii) B(ε, δ), we define as below
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X ◦ Y = [x−1, y−1] + [x−1, y2] + [x−2, y1] + [x1, y−2] + [x1, y1] + [x2, y−1]

and
DB(X,Y ) = ad([x−1, y1] + [x−2, y2] + [x1, y−1] + [x2, y−2]),

where X = x−2 + x−1 + x1 + x2, and Y = y−2 + y−1 + y1 + y2.
This space B(ε, δ) is a generalized structurable algebra with respect to the

above product X ◦ Y and derivation DB(X,Y ).
Remark. Note that

DB(X,Y ) =

{
−δDB(Y,X) if X, Y ∈ g−1 ⊕ g1

−DB(Y,X) if X or Y ∈ g−2 ⊕ g2.

For (iii) H(ε, δ), we define as below

X ◦ Y = [x0, y0] + [x1, y0] + [x2, y0] + [x1, y1] + [x0, y2] + [x0, y1]

DH(X,Y ) = ad([x0, y0]),

where X = x0 + x1 + x2 and Y = y0 + y1 + y2.
This space H(ε, δ) is a generalized structurable algebra with respect to the

above product X ◦ Y and the derivation DH(X,Y ) = ad([x0, y0]).
Remark. Note that

DH(X,Y ) =

{
−δDH(Y,X) if X, Y ∈ g1

−DH(Y,X) if X or Y ∈ g0 ⊕ g2.

5 Construction of B3-type Lie algebras from several triple
systems

In this section, we will discuss the construction of simple B3-type Lie alge-
bras associated with several triple systems (the details will be described in a
forthcoming paper).
a) The case of a JTS,
b) The case of a balanced GJTS,
c) The case of a GJTS of 2nd order,
d) The case of a derivation induced from a JTS.

To consider these cases, we start with an extended Dynkin diagram for a
B3-type Lie algebra.

1 2 2
◦ · · · ◦ => ◦

|
◦
−ρ



ON GEOMETRIC STRUCTURES ASSOCIATED WITH TRIPLE SYSTEMS 51

where we denote −ρ =α1 + 2α2 + 2α3.
For the root system ∆ of B3 = so(7) type and dim B3 = 21 with simple

roots {α1, α2, α3}, it is well known that
∆ = {α1, α2, α3, α1 +α2, α2 +α3, α1 +α2 +α3, α2 +2α3, α1 +α2 +2α3, α1 +

2α2 + 2α3}, and
B3 = g = h⊕ Σα∈∆(gα ⊕ g−α),

where h is the Cartan subalgebra of B3.

5.1 The case of a JTS

First, we study the case of g−1 = U = Mat(1, 5; Φ). (Hereafter, we assume
Φ=C complex number field.)

In this case, g−1 is a JTS with respect to the product

{xyz} = x tyz + y tzx− z txy,

where tx denotes the transpose matrix of x.
By straightforward calculations, the standard embedding Lie algebra L(U) =

g can be shown to be a 3-graded B3-type Lie algebra with g−1⊕g0⊕g1. Thus,
we have

g0 = DerU ⊕Anti−DerU

= B2 ⊕ ΦH, where H :=

(
Id 0
0 −Id

)
Der(g−1 ⊕ g1) ∼= {◦ · · · ◦ =⇒ ◦} = B3, (� omitted).

1 2 2
� · · · ◦ => ◦

|
◦
−ρ

Furthermore, we obtain

DerU = {L(x, y)− L(y, x)}span = B2,
Anti−DerU = {L(x, y) + L(y, x)}span = ΦH,

g0 = {
(
L(x, y) 0

0 −L(y, x)

)
}span = {S(x, y) +A(x, y)}span,

where
S(x, y) = L(x, y)− L(x, y), A(x, y) = L(x, y) + L(y, x).

Here, g−1 corresponds to the root system

{α1, α1 + α2, α1 + α2 + α3, α1 + α2 + 2α3, α1 + 2α2 + 2α3}.
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5.2 The case of a balanced GJTS

Second, we study the case of g−1 = U = Mat(2, 3; Φ).

In this case, g−1 is a balanced GJTS of 2nd order w.r.t. the product

{xyz} := z tyx+ x tyz − zJ3
txyJ3,

where

J3 =

 1
1

1

 .

By straightforward calculations, it can be shown that L(U) = g is a 5-
graded B3-type Lie algebra with g−2 ⊕ · · · ⊕ g2 and dim g−2 = 1. Thus, we
have

g0 = DerU ⊕Anti−DerU = A1 ⊕A1 ⊕ ΦH, where H :=

(
Id 0
0 −Id

)
Der(g1 ⊕ g1) = g−2 ⊕ g0 ⊕ g2 = A1 ⊕A1 ⊕A1(� omitted) ∼= DerT (U).

1 2 2
◦ · · · � => ◦

|
◦
−ρ

Furthermore, we obtain

g−2 = {K(x, y)}span = ΦId · · · this means one dimensional,

i.e., balanced. This g−1 corresponds to the root system

{α2, α1 + α2, α1 + α2 + α3, α2 + α3, α2 + 2α3, α1 + α2 + 2α3},

g−2 corresponds to the highest root

{α1 + 2α2 + 2α3},

and g/(g−2 ⊕ g0 ⊕ g2) ∼= T (= g−1 ⊕ g1) is the tangent space of a quaternion
symmetric space of dimension 12, since T is a Lie triple system associated
with g−1 (e.g., [1]).
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5.3 The case of a GJTS of 2nd order

Third, we study the case of g−1 = U = Mat(1, 3; Φ).
In this case, g−1 is a GJTS of 2nd order with respect to the product

{xyz} = x tyz + z tyx− y txz.

By straightforward calculations, it can be shown that L(U) is a 5-graded B3-
type Lie algebra with g−2 ⊕ · · · ⊕ g2 and dim g−2 = 3,

g0 = DerU ⊕Anti−DerU = A2 ⊕ ΦH, where H :=

(
Id 0
0 −Id

)
Der(g−1 ⊕ g1) = g−2 ⊕ g0 ⊕ g2 = A3(� omitted) ∼= DerT (U).

1 2 2
◦ · · · ◦ => �

|
◦
−ρ

Furthermore, we obtain

g−2 = {K(x, y)}span = Alt(3, 3; Φ).

That is, the triple system g−1(resp. g−2) corresponds to the root system

{α3, α2 +α3, α1 +α2 +α3}(resp. {α2 +2α3, α1 +α2 +2α3, α1 +2α2 +2α3}),

implying that
◦ · · · · · · ◦︸ ︷︷ ︸ · · · =⇒ � (� omitted) and

g0 = A2 ⊕ ΦH.

Remark. Following [9], for the case of a GJT of 2nd order, note that
g−2(∼= k) has the structure of the JTS associated with a GJTS of 2nd order.

5.4 The case of a derivation induced from a JTS

Finally, we study the case of g−1 = U = Mat(1, 7; Φ).
In this case, g−1 is a JTS with respect to the product

{xyz} = x tyz + y tzx− z txy.

For this case, we obtain

DerU = {L(x, y)− L(y, x)}span = Alt(7, 7; Φ) ∼= B3,
Anti−DerU ∼= ΦH, which is one dimensional.
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The standard embedding Lie algebra is a 3-graded B4-type Lie algebra with
g−1 ⊕ g0 ⊕ g1.

Furthermore, we have

� · · · ◦ · · · ◦ =⇒ ◦︸ ︷︷ ︸ (� omitted)

g0 = B3 ⊕ ΦH.

This case is obtained from DerU such that U = Mat(1, 7; Φ) with the JTS
structure.

Remark. In the above constructions, note that there exist four different
constructions for B3-type Lie algebras. These results may be applicable to
mathematical physics, for example, quark theory and gravity theory.

6 Concluding Remarks

To briefly summarize our study, we note the following.

6.1 Geometrical viewpoint

The inner structures of triple systems are closely related to the characterization
of root systems of Lie algebras. In particular, we have the following:

(i) There exists a correspondence between simple balanced (-1,1) -Freudenthal-
Kantor triple systems and quaternionic Riemannian symmetric spaces ([1],[12],[17]).
That is, there exists a correspondence between simple balanced GJTS of 2nd
order and quaternionic Riemannian symmetric spaces.

(ii) There exists a relationship between Lie triple systems and totally
geodesic manifolds ([5],[21]).

(iii) There exists a relationship between symmetric domains and positive
definite Hermitian Jordan triple systems ([24]).

Thus, triple systems appear to be a useful tool and concept for character-
izing geometrical phenomena.

6.2 Another viewpoint

For the theory of Peirce decompositions, we refer the reader to ([12],[14],[15]),
and for the mathematical physics, we refer the reader to ([6],[19],[22]).

For sl2 subalgebras, let U(ε, δ) be an (ε, δ)-F-K.t.s. and L(ε, δ) be the
standard embedding Lie algebra or superalgebra. If P ∈ {K(a, b)}span and
P 2 = µId,

√
µ ∈ Φ , then we have the Lie subalgebras:

sl2(Φ) ≤ D(T (ε, δ)) ≤ L(ε, δ) and sl2(Φ) := {H,E, F}Φ,
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where E = 1√
µ

(
0 P
0 0

)
, F = 1√

µ

(
0 0
P 0

)
, H := [E,F ] =

(
Id 0
0 −Id

)
.

This means that there is a generalization of sl2(Φ) loop algebra in L(ε, δ),
which we will discuss in a future paper.

6.3 7-graded Lie algebra and superalgebra

Let g =
∑3
i=−3 gi be a 7 graded Lie algebra or superalgebra such that [gi, gj ] ⊆

gi+j if |i+ j| ≤ 3 and [gi, gj ] = 0 if |i+ j| ≥ 4.
If we define

A = g−2 ⊕ g−1 ⊕ g1 ⊕ g2,

D(A,A) = g−3 ⊕ g0 ⊕ g3

= ad([g−2, g−1] + [g−1 + g−2] + [g−2, g2] + [g−1, g1] +

+ [g2, g1] + [g1, g2] + [g2, g−2] + [g1, g−1]),

where we denote ad xy = [x, y], then A is a generalized structurable algebra
with respect to the product

X ◦ Y = [x−1, y−1] + [x−2, y1] + [x−1, y2] + [x1, y1] + [x2, y−1] + [x1, y−2]

where X = x−2 +x−1 +x1 +x2 and Y = y−2 +y−1 +y1 +y2, and the derivation
D(X,Y ). That is, we have

D(X ◦ Y,Z) +D(Y ◦ Z,X) +D(Z ◦X,Y ) = 0.

Finally, we emphasize that many mathematical and physical subjects in-
volving geometic phenomena may be characterized by applying concept of
triple systems.
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