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On infinitesimal conformal transformations
with respect to the Cheeger-Gromoll metric

Aydin Gezer, Lokman Bilen

Abstract

The present paper deals with the classification of infinitesimal fibre-
preserving conformal transformations on the tangent bundle, equipped
with the Cheeger-Gromoll metric.

1 Introduction

Let M be an n−dimensional manifold and TM its tangent bundle. We denote
by ℑr

s(M) the set of all tensor fields of type (r, s) on M . Similarly, we denote
by ℑr

s(TM) the corresponding set on TM . We also note that in the present
paper everything will be always discussed in the C∞−category, and manifolds
will be assumed to be connected and of dimension n > 1.

Let M be a Riemannian manifold with a Riemannian metric g and X be
a vector field on M . Let us consider the local one-parameter group {ϕt} of
local transformations of M generated by X. The vector field X is called an
infinitesimal conformal transformation if each ϕt is a local conformal transfor-
mation of M . As is well known, the vector field X is an infinitesimal conformal
transformation or conformal vector field onM if and only if there exist a scalar
function ρ on M satisfying LXg = 2ρg, where LX denotes the Lie derivation
with respect to X. Especially, the vector field X is called an infinitesimal
homothetic one when ρ is constant.

Let TM be the tangent bundle over M and Φ be a transformation of
TM . If the transformation Φ preserves the fibres, it is called a fibre-preserving
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transformation. Consider a vector field X̃ on TM and the local one-parameter
group {Φt} of local transformations of TM generated by X̃. The vector field
X̃ is called an infinitesimal fibre-preserving transformation if each Φt is a
local fibre-preserving transformation of TM . An infinitesimal fibre-preserving
transformation X̃ on TM is called an infinitesimal fibre-preserving conformal
transformation if each Φt is a local fibre-preserving conformal transformation
of TM . Let g̃ be a Riemannian or pseudo-Riemannian metric on TM . X̃
is an infinitesimal conformal transformation of TM if and only if there exist
a scalar function Ω on TM such that LX̃ g̃ = 2Ωg̃, where LX̃ denotes the

Lie derivation with respect to X̃. An infinitesimal conformal transformation
X̃ is called essential if Ω depends only on (yi) with respect to the induced
coordinates (xi, yi) on TM , and is called inessential if Ω depends only (xi),
that is, Ω is a constant on each fibre of TM . In this case, Ω induces a function
on M .

The geometry of tangent bundles goes back to the fundamental paper [27]
of Sasaki published in 1958. He uses a given Riemannian metric g on a dif-
ferentiable manifold M to construct a metric g̃ on the tangent bundle TM of
M . Today this metric is a standard notion in the differential geometry called
the Sasaki metric ( or the metric I+III). For a given Riemannian metric g
on a differentiable manifold M , there are well known Riemannian or pseudo-
Riemannian metrics on TM , constructed from the metric g, as follows:

1. The complete lift metric or the metric II

2. The metric I + II

3. The Sasaki metric or the metric I + III

4. The metric II + III

where I = gijdx
idxj , II = 2gijdx

iδyj , III = gijδy
iδyj are all quadratic

differential forms defined globally on the tangent bundle TM over M(for de-
tails, see [[33], p.137-177]). Yamauchi [30] proved that every infinitesimal
fibre-preserving conformal transformation on TM with the metric I + III is
homothetic and it induces an infinitesimal homothetic transformation on M .
Also, in the case when M is a complete, simply connected Riemannian mani-
fold with a Riemannian metric, Hasegawa and Yamauchi [11] showed that the
Riemannian manifold M is isometric to the standard sphere when the tangent
bundle TM equipped with the metric I + II admits an essential infinitesi-
mal conformal transformation. In [9], the first author has studied the similar
problem in [30, 31] with respect to the synectic lift metric on the tangent
bundle.

All the preceding metrics belong to the wide class of the so-called g−natural
metrics on the tangent bundle, initially classified by Kowalski and Sekizawa
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[13] and fully characterized by Abbassi and Sarih [1, 2, 3, 4] (see also [12, 6]
for other presentation of the basic result from [13] and for more details about
the concept of naturality). Another well-known g−natural Riemannian metric
gCG had been defined, some years before, by Muso and Tricerri [15] who, in-
spired by the paper [7] of Cheeger and Gromoll, called it the Cheeger-Gromoll
metric. The metric was defined by Cheeger and Gromoll; yet, there were
Musso and Tricerri who wrote down its expression, constructed it in a more
”comprehensible” way, and gave it the name. The Levi-Civita connection of
gCG and its Riemannian curvature tensor are calculated by Sekizawa in [28]
(for more details see [10]). In [4], Abbassi and Sarih classified Killing vector
fields on (TM, gCG); that is, they found general forms of all Killing vector
fields on (TM, gCG). Also, they showed that if (TM, gCG) is the tangent
bundle with the Cheeger-Gromoll metric gCG of a Riemannian, compact and
orientable manifold (M, g) with vanishing first and second Betti numbers,
then the Lie algebras of Killing vector fields on (M, g) and on (TM, gCG) are
isomorphic. Finally, they showed that the sectional curvature of the tangent
bundle (TM, gCG) with the Cheeger-Gromoll metric gCG of a Riemannian
manifold (M, g) is never constant. In [26], Salimov and Kazimova investi-
gated geodesics on the tangent bundle with respect to the Cheeger-Gromoll
metric gCG. Different types of metrics on the tangent bundle of a Riemannian
manifold were also studied in [5, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]

The purpose of the present paper is to characterize infinitesimal fibre-
preserving conformal transformations with respect to the Cheeger-Gromoll
metric gCG on the tangent bundle TM of a Riemannian manifold M . In The-
orem 3.2, we give a necessary and sufficient condition for the vector field X̃ on
the tangent bundle with the Cheeger-Gromoll metric gCG to be an infinitesi-
mal fibre-preserving conformal transformation. This condition is represented
by a set of relations involving certain tensor fields on M of type (1, 0) and
(1, 1). We obtain these relations by giving the formula LX̃gCG = 2Ω gCG in
an adapted frame. The paper ends two Corollaries which follow immediately
from Theorem 3.2 and its Proof.

2 Preliminaries

2.1 Cheeger-Gromoll metric on the tangent bundle

Let TM be the tangent bundle over an n-dimensional manifold M , and π
the natural projection π : TM → M . Let the manifold M be covered by a
system of coordinate neighborhoods (U, xi), where (xi), i = 1, ..., n is a local
coordinate system defined in the neighborhood U . Let (yi) be the Cartesian
coordinates in each tangent space TPM at P ∈ M with respect to the natural
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base
{

∂
∂xi |P

}
, P being an arbitrary point in U whose coordinates are (xi).

Then we can introduce local coordinates (xi, yi) on open set π−1 (U) ⊂ TM .
We call them induced coordinates on π−1 (U) from (U, xi). The projection π is
represented by (xi, yi) → (xi). We use the notions xI = (xi, xī) and xī = yi.
The indices i, j, ... run from 1 to n, the indices ī, j̄, ... run from n + 1 to 2n.
Summation over repeated indices is always implied.

Let X = Xi ∂
∂xi be the local expression in U of a vector field X on M .

Then the vertical lift V X, the horizontal lift HX and the complete lift CX of
X are given, with respect to the induced coordinates, by

V X = Xi∂ī, (2.1)

HX = Xi∂i − ysΓi
skX

k∂ī, (2.2)

and
CX = Xi∂i + ys∂sX

i∂ī, (2.3)

where ∂i = ∂
∂xi , ∂ī = ∂

∂yi and Γi
sk are the coefficients of the Levi-Civita

connection ∇ of g.
Suppose that we are given a tensor field S ∈ ℑp

q(M), q > 1, on M . We
define a tensor field γS ∈ ℑp

q−1(TM) on π−1 (U) by

γS = (yeS
j1...jp
ei2...iq

)∂j̄1 ⊗ ...⊗ ∂j̄p ⊗ dxi2 ⊗ ...⊗ dxiq

with respect to the induced coordinates (xi, yi)([33],p.12). The tensor field γS
defined on each π−1 (U) determines a global tensor field on TM . We easily
see that γA has components, with respect to the induced coordinates (xi, yi),

(γA) =

(
0

yiAj
i

)
for any A ∈ ℑ1

1(M)and (γA)(V f) = 0, f ∈ ℑ0
0(M), i.e. γA is a vertical vector

field on TM .
Explicit expression for the Lie bracket [, ] of the tangent bundle TM is

given by Dombrowski [8]. The bracket products of vertical and horizontal
vector fields are given by the formulas:[

HX,H Y
]
=H [X,Y ]− γ(R(X,Y ))[

HX,V Y
]
=V (∇XY )[

V X,V Y
]
= 0

for all vector fields X and Y on M , where R is the Riemannian curvature of g
defined by R (X,Y ) = [∇X ,∇Y ]−∇[X,Y ] and γ(R(X,Y )) is a tensor field of
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type (1,0) on TM , which is locally expressed as γ(R(X,Y )) = ysR i
jksX

jY k∂ī
with respect to the induced coordinates.

Let us consider a vector field X = Xi∂i and the corresponding covector
field gX = gijX

idxj on U . Then γgX ∈ ℑ0
0(M) is a function on π−1 (U)

defined by γgX = yigijX
j with respect to the induced coordinates (xi, yi).

Now, denote by r the norm a vector y = (yi), i.e. r2 = gjiy
jyi. The Cheeger-

Gromoll metric gCG on the tangent bundle TM is given by

gCG(
HX,HY ) = V (g(X,Y )),

gCG(
HX, V Y ) = 0,

gCG(
V X, V Y ) =

1

1 + r2
[
V (g(X,Y )) + (γgX)(γgY )

]
,

for all X, Y ∈ ℑ1
0(M), where V (g(X,Y ))=(g(X,Y )) ◦ π.

2.2 Basic formulas in adapted frames

With a torsion-free affine connection ∇ given on M , we can introduce on
each induced coordinate neighborhood π−1(U) of TM a frame field which is
very useful in our computation. In each local chart U ⊂ M , we put X(j) =
∂

∂xj
, j = 1, ..., n. Then from (2.1) and (2.2), we see that these vector fields

have, respectively, local expressions

HX(j) = δhj ∂h + (−ysΓh
sj)∂h̄

V X(j) = δhj ∂h̄

with respect to the natural frame {∂h, ∂h̄}, where δhj -Kronecker delta. These
2n vector fields are linear independent and generate, respectively, the horizon-
tal distribution of ▽ and the vertical distribution of TM . We have call the
set

{
HX(j),

V X(j)

}
the frame adapted to the affine connection ▽ in π−1(U) ⊂

TM . On putting

Ej = HX(j),

Ej̄ = V X(j),

we write the adapted frame as {Eλ} =
{
Ej , Ej̄

}
.
{
dxh, δyh

}
is the dual frame

of {Ei, Eī}, where δyh = dyh + ybΓh
badx

a. By the straightforward calculation,
we have the following:

2.3 Lemma. The Lie brackets of the adapted frame of TM satisfy the follow-
ing identities: 

[Ej , Ei] = ybR a
ijbEā

[Ej , Eī] = Γa
jiEā[

Ej̄ , Eī

]
= 0
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where R a
ijb denote the components of the curvature tensor of M [31].

Using (2.1), (2.2) and (2.3), we have

HX =

(
Xjδhj

−XjΓh
sjy

s

)
= Xj

(
δhj
−Γh

sjy
s

)
= XjEj

V X =

(
0
Xh

)
=

(
0
Xjδhj

)
= Xj

(
0
δhj

)
= XjEj̄ ,

and

CX =

(
Xjδhj
ys∂sX

j

)
= Xj

(
δhj
−Γh

sjy
s

)
+ ym∇mXj

(
0
δhj

)
= XjEj + ym∇mXjEj̄

with respect to the adapted frame {Eλ}.
We shall need a new lift of vector fields on M . For any vector field Y ∈

ℑ1
0(M) with the components (Y h), V ′

Y is a vector field on TM defined by

V ′
Y = {(1− r2)Y a + gkrY

kyrya}Eā,

with respect to the adapted frame {Eλ}. Clearly the lift V ′
Y is a smooth

vector field on TM . Remark that V ′
Y is a vertical vector field on TM . In

fact, f ∈ ℑ0
0(M); V ′

Y V (f) = 0.
Let X̃ be a vector field on TM with components (vh, vh̄) with respect to

the adapted frame {Eh, Eh̄}. Then X̃ is a fibre-preserving vector field on TM
if and only if vh depend only on the variables

(
xh

)
. Therefore, every fibre-

preserving vector field X̃ on TM induces a vector field X = vh ∂
∂xh on M .

Also, it is well-known that CX, V X, V ′
X and HX are fibre-preserving vector

fields on TM .
Let LX̃ be the Lie derivation with respect to the fibre-preserving vector

field X̃, then we have the following Lemma:

2.4 Lemma. (see [30, 31]) The Lie derivations of the adapted frame and its
dual basis with respect to X̃ = vhEh + vh̄Eh̄ are given as follows:

(1) LX̃Eh = −∂hv
aEa +

{
ybvcR a

hcb − vb̄Γa
b h − Eh(v

ā)
}
Eā

(2) LX̃Eh̄ =
{
vbΓa

b h − Eh̄(v
ā)
}
Eā

(3) LX̃dxh = ∂mvhdxm

(4) LX̃δyh = −
{
ybvcR h

mcb − vb̄Γh
bm − Em(vh̄)

}
dxm

−
{
vbΓh

bm − Em̄(vh̄)
}
δym.
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3 Results

If g = gijdx
idxj is the expression of the Riemannian metric g, the Cheeger-

Gromoll metric gCG is expressed in the adapted local frame by

gCG = gijdx
idxj + hijδy

iδyj

where hij is the function on π−1(U) defined by hij = 1
1+r2 (gij + ysytgisgtj).

For shortness we set G1 = gijdx
idxj and G2 = hijδy

iδyj . Therefore the
Cheeger-Gromoll metric gCG can be expressed as follows:

gCG = G1 +G2.

We shall first state the following Lemma which is needed later on.

3.1 Lemma. The Lie derivatives LX̃G1 and LX̃G2 with respect to the fibre-

preserving vector field X̃ are given as follows:

(1) LX̃G1 = (LXgij)dx
idxj

(2) LX̃G2 = −2hmj

{
ybvcR m

icb − vb̄Γm
b i − Ei(v

m̄)
}
dxiδyj

+
{
LXhij − 2hmj∇iv

m + 2hmjEī(v
m̄)

+
1

1 + r2
vm̄ys(−2gmshij + gmjgis + gsjgim)

}
δyiδyj

where LXgij denote the components of the Lie derivative LXg, and also ∇iv
m

denote the components of the covariant derivative of X.

Proof. Proof of this Lemma is similar to proof of the Proposition 2.3 of Ya-
mauchi [31].

3.2 Theorem. Let (TM, gCG) be the tangent bundle with the Cheeger-Gromoll
metric of a Riemannian manifold (M, g). Let

(i) X be an infinitesimal homothetic transformation on (M, g), with LXg =
Ωg, for some constant Ω;

(ii) Y be a parallel vector field on (M, g);
(iii) A be a (1, 1)-tensor field on M which satisfies the followings

(A1) gikA
k
j + gkjA

k
i = 2Ωgij ,

(A2) ∇iA
k
j +X lRk

lij = 0.

Then the vector field X̃ on TM defined by

(♯) X̃ = CX + γA+ V ′
Y
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is an infinitesimal fibre-preserving conformal transformation on (TM, gCG).
Conversely, every infinitesimal fibre-preserving conformal transformation

on (TM, gCG) is of the form (♯).

Let TM be the tangent bundle over M with the Cheeger-Gromoll metric
gCG, and let X̃ be an infinitesimal fibre-preserving conformal transformation
on (TM, gCG) such that

LX̃gCG = 2Ω gCG. (3.1)

By means of Lemma 3.1, we have

(LXgij)dx
idxj − 2hmj

{
ybvcR m

icb − vb̄Γm
b i − Ei(v

m̄)
}
dxiδyj

+ [LXhij − 2hmj∇iv
m + 2hmjEī(v

m̄)

+
1

1 + r2
vm̄ys(−2gmshij + gmjgis + gsjgim)]δyiδyj

= 2Ωgijdx
idxj + 2Ωhijδy

iδyj .

Comparing both sides of the above equation, we obtain the following three
relations:

LXgij = 2Ωgij (3.2)

ybvcR m
icb − vb̄Γm

b i − Ei(v
m̄) = 0 (3.3)

LXhij − 2hmj∇iv
m + 2hmjEī(v

m̄) (3.4)

+
1

1 + r2
vm̄ys(−2gmshij + gmjgis + gsjgim) = 2Ωhij .

First all, we shall study the particular cases CX, γA, V ′
Y . Using (3.2)-

(3.4) and the local expressions of CX, γA, V ′
Y with respect to the adapted

frame, one easily proves, by direct computation, the following Lemmas.

3.3 Lemma. In order that a complete lift CX to TM of a vector field X on M
be an infinitesimal fibre-preserving conformal transformation of (TM, gCG), it
is necessary and sufficient that X is an infinitesimal homothetic transforma-
tion of (M, g).

3.4 Lemma. Let A be a (1, 1)-tensor field on (M, g) satisfying the conditions
(A1) and (A2) in Theorem 3.2. Then γA is an infinitesimal fibre-preserving
conformal transformation on (TM, gCG).

3.5 Lemma. Let Y be a vector field on (M, g) which is parallel with respect to
the Levi-Civita connection of g. Then V ′

Y is an infinitesimal fibre-preserving
conformal transformation on (TM, gCG).
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Proof. Since sufficiency is shown by Lemma 3.3, Lemma 3.4 and Lemma 3.5,
we now show necessity. We consider the 0-section (yi = 0) in the coordinate
neighborhood π−1(U) in TM and its neighborhood W . For a vector field
X̃ = viEi+ vīEī on TM , and (x, y) = (xi, yi) in W , we can write, by Taylor’s
theorem,

vi(x, y) = vi(x, 0) + (∂r̄v
i)(x, 0)yr +

1

2
(∂r̄∂s̄v

i)(x, 0)yrys + ...+ [∗]iλ, (3.5)

vī(x, y) = vī(x, 0) + (∂r̄v
ī)(x, 0)yr +

1

2
(∂r̄∂s̄v

ī)(x, 0)yrys + ...+ [∗]īλ, (3.6)

where [∗]Iλ (I = 1, 2, ..., 2n) is of the form:

[∗]Iλ =
1

λ!
(∂

λvI
/
∂yi1∂yi2 ...∂yiλ)(x

a, θ(x, y)yb)yi1yi2 ...yiλ ; 1 ≤ i1, ..., iλ ≤ n.

The following lemma is valid.

3.6 Lemma. In the above situation, the following

X = (Xi(x)) = (vi(x, 0)),

Y = (Y i(x)) = (vī(x, 0)),
K = (Ki

r(x)) = ((∂r̄v
i)(x, 0)),

E = (Ei
rs(x)) = ((∂r̄∂s̄v

i)(x, 0)),

P = (P i
r(x)) = ((∂r̄v

ī)(x, 0)− (∂rv
i)(x, 0))

are tensor fields on M [29].

For a fibre-preserving vector field X̃ = viEi + vīEī on TM , with the
notations of Lemma 3.6, we can write:

vi(x, y) = Xi (3.7)

vī(x, y) = Y i + P̃ i
ry

r +
1

2
Qi

rsy
rys + ...+ [∗]īλ, (3.8)

where P̃ i
r and Qi

rs are given by P̃ i
r = (∂r̄v

ī)(x, 0) and Qi
rs = (∂r̄∂s̄v

ī)(x, 0).
Substituting (3.7) into (3.2), we have

Xm∂mgij + (∂iX
m)gmj + (∂jX

m)gim = 2Ωgij . (3.9)

The equation (3.9) reduces to

∇iXj +∇jXi = 2Ωgij . (3.10)
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Raising j and contracting with i in (3.10), it is easily seen that

Ω =
1

n
(∇iX

i),

i.e. the scalar function Ω on TM depends only on the variables (xi) with
respect to the induced coordinates (xi, yi). Further, the vector fieldX with the
components (Xi) is an infinitesimal conformal transformation on M . Since, by
Lemma 3.3, CX = XaEa + (ym∇mXa)Eā is an infinitesimal fibre-preserving
conformal transformation on (TM, gCG), X̃−CX is also an infinitesimal fibre-
preserving conformal transformation. Therefore, in the following, denoting
X̃ − CX by the same letter X̃, one may assume that Xi = 0 in (3.7). Then
(P̃ r

i ) = (P r
i ) is a tensor field on M by lemma 3.6.

Putting (3.7) and (3.8) into (3.3) [from now on, we omit this statement]
and taking the part which does not contain yr, we get

∇iY
m = 0. (3.11)

Taking the part which does not contain yr in (3.4), we get

gmjP̃
m
i + gimP̃m

j = 2Ωgij . (3.12)

On differentiating ∂k̄ to the both sides of the equation (3.12), we obtain

gim∂k̄P̃
m
j̄ + gmj∂k̄P̃

m
ī = 0. (3.13)

Using (3.13) and the last equation in Lemma 2.3, we have

gim∂k̄∂j̄(v
m̄) = −gmj∂k̄∂ī(v

m̄)gmj = −gmj∂ī∂k̄(v
m̄)

= gmk∂ī∂j̄(v
m̄) = gmk∂j̄∂ī(v

m̄)

= −gmi∂j̄∂k̄(v
m̄) = −gmi∂k̄∂j̄(v

m̄),

which gives
∂k̄P̃

m
j = 0.

This shows that P̃m
j depends only on the variables (xh). Hence P̃m

j can be
written as

P̃m
j = Am

j , (3.14)

where Am
j is a certain function which depends only on the variables (xh).

The coefficient of yr in (3.3), by (3.14), gives

XcRm
icr −∇iA

m
r = 0
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or equivalently
XcRicrl −∇iArl = 0. (3.15)

By (3.14), (3.12) is written as

gmjA
m
i + gimAm

j = 2Ωgij (3.16)

Applying the covariant derivative ∇k to the both sides of the last equation,
we obtain

∇k(Aij) +∇k(Aji) = 2(∇kΩ)gij .

Combining the last identity with (3.15), we get∇kΩ = ∂kΩ = 0. This together
with connectedness of M shows that the scalar function Ω is constant.

Taking the coefficient of yr in (3.4), we get

Y m(−2gmrgij + gmjgir + grjgim) + gmjQ
m
ri + gmiQ

m
rj = 0. (3.17)

We put Qi
rs = −2Y igrs+(Y kgkrδ

i
s+Y kgksδ

i
r)+T i

rs. By a simple calculation,
using (3.17), we can verify that gmjT

m
ir +gmiT

m
jr = 0. If we put Tirj = gmjT

m
ir ,

then Tirj is symmetric in i and r, and skew-symmetric i and j. Hence Tirj = 0.
That is

Qi
rs = −2Y igrs + (Y kgkrδ

i
s + Y kgksδ

i
r). (3.18)

Finally, we consider the coefficient of yrys in (3.3), we get by virtue of
(3.18)

−2(∇iY
m)grs + (∇iY

k)gkrδ
m
s + (∇iY

k)gksδ
m
r = 0.

In view of (3.11), the last equation holds.
Now, by (3.15) and (3.16), we see that γA is an infinitesimal fibre-preserving

conformal transformation on (TM, gCG) by Lemma 3.4. By (3.11) and Lemma
3.5, V

′
Y is an infinitesimal fibre-preserving conformal transformation on (TM, gCG).

Summing up we find that X̃ ∈ ℑ1
0(TM) is an infinitesimal fibre-preserving

conformal transformation with respect to the Chegeer-Gromoll metric iff

X̃ = XiEi + (Y i + P̃ i
sy

s +
1

2
Qi

sry
syr)Eī

= XiEi + (Y i + ys(∇sX
i +Ai

s) + (1− r2)Y i + gksY
kysyi)Eī

= CX + γA+ V ′
Y

for each local coordinate systems (xi), i = 1, ..., n on M . This proves the
assertion and the conditions (i), (ii) and (iii) are direct consequences of (3.9),
(3.11), (3.15), (3.16).
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The result follows immediately from Theorem 3.2 and from its Proof.

3.7 Corollary. Every infinitesimal fibre-preserving conformal transformation
on (TM, gCG) is homothetic and it induces an infinitesimal homothetic trans-
formation. Consequently, it is of the form (♯).

It is known that an infinitesimal homothetic transformation in a compact
Riemannian manifold is a Killing vector field [32]. Theorem 3.2 and Corollary
3.7 deliver a simple and surprising result on compact manifolds:

3.8 Corollary. Let (M, g) be a compact Riemannian manifold and TM be
the tangent bundle of M . X̃ ∈ ℑ1

0(TM) is an infinitesimal fibre-preserving
conformal transformation with respect to the Chegeer-Gromoll metric on TM
iff X̃ is a Killing vector field with respect to the the Chegeer-Gromoll metric
on TM .
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