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SPHERICAL PRODUCT SURFACES IN E4

Betül Bulca, Kadri Arslan, Bengü (Kılıç) Bayram, Günay Öztürk

Abstract

In the present study we calculate the coefficients of the second fun-
damental form and curvature ellipse of spherical product surfaces in E4.
Otsuki rotational surfaces and Ganchev-Milousheva rotational surfaces
are the special type of spherical product surfaces in E4. Further, we
give necessary and sufficient condition for the origin of NpM to lie on
the curvature ellipse of such surfaces. Finally we get the necessary con-
dition for Ganchev-Milousheva rotational surfaces in E4 to become flat
or Chen type. We also give some examples of the projections of these
surfaces in E3.

1 Introduction

Let M be a smooth surface embedded by X(u, v) in E4. Given p ∈ M consider
the unit circle in TpM parametrized by the angle θ ∈ [0, 2π] . Denote by γ

θ
, the

curve obtained by intersecting M with the hyperplane (3-space) at p composed
by the direct sum of the normal plane NpM and the straight line in tangent
direction represented by θ. Such a curve is called normal section of M in the
direction of θ. The curvature vector η

θ
of γ

θ
in M lies in NpM . Varying θ

from 0 to 2π, this vector describes an ellipse in NpM , called the curvature
ellipse of M at p. A point p in M is said to be hyperbolic, parabolic or elliptic
according to whether p lies outside or inside the curvature ellipse of M at p.
This ellipse may degenerate on a radial segment of straight line, in which case
p is known as an inflection point of the surface. The inflection point is of real
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type when p belongs to the curvature ellipse, and of imaginary type when it
does not. An inflection point is flat when p is an end point of the curvature
ellipse [14].

In [3] B.Y. Chen defined the allied vector field a(v) of a normal vector field
v. In particular, the allied mean curvature vector field is orthogonal to H.
Further, B.Y. Chen defined the A-surface to be the surfaces for which a(H)
vanishes identically. Such surfaces are also called Chen surfaces [7]. The class
of Chen surfaces contains all minimal and pseudo-umbilical surfaces, and also
all surfaces for which dimN1 ≤ 1, where N1 is the first normal space of M ,
in particular it includes all hypersurfaces. These Chen surfaces are said to be
Trivial A-surfaces [8]. For more details, see also [4], [9], [12] and [16].

Rotational embeddings are special products which are introduced first by
N.H. Kuiper in 1970 [11]. Recently the second and third authors studied with
these type of embeddings [1]. Spherical products X = α⊗ β of two 2D curves
are the special type of rotational embeddings [10]. Surface of revolution is a
simple example of spherical product which is also a rotational embedding. All
quadratics and superquadrics can be considered as spherical products of two
2D curves. Actually, superquadrics are solid models that can fairly simple
parametrization of representing a large variety of standard geometric solids,
as well as smooth shapes in between. This makes them much more convenient
for representing rounded, blob-like shape parts, typical for object formed by
natural process [10].

In the present study we define spherical product X = α⊗β of a 3D (space)
curve α(u) = (f1(u), f2(u), f3(u)) with a 2D curve β(v) = (g1(v), g2(v)) in
E4. For the case f1(u) = 0 or f2(u) = 0, the patch X = α ⊗ β : E2 −→ E3

becomes a spherical product of two 2D curves [2]. In [15], T. Otsuki considered
the special case α(u) = (f1(u), f2(u), sinu) and β(v) = (cos v, sin v) such that
X = α ⊗ β : S2 −→ E4 is a surface patch in E4. Recently, G. Ganchev and
V. Milousheva considered the special case α(u) = (f1(u), f2(u), f3(u)) and
β(v) = (cos v, sin v) which is a rotational embedding in E4 [6]. We calculate the
coefficient of the second fundamental form and curvature ellipse of Ganchev-
Milousheva surface. Further, we give necessary and sufficient condition for the
origin ofNpM to lie on the curvature ellipse of such surfaces. We give necessary
condition for the Ganchev-Milousheva surface to become flat or nontrivial
Chen surface. Finally, we give some examples of the projections of these
surfaces in E3.

2 Basic Concepts

Let M be a smooth surface immersed in E4 with the Riemannian metric in-
duced by the standard Riemannian metric of E4. For each p ∈ M, consider
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the decomposition TpE4 = TpM ⊕ NpM where NpM is the orthogonal com-

plement of TpM in E4. Let ∇̃ be the Riemannian connection of E4. Given
local vector fields e1, e2 on M . The induced connection on M is defined by

∇e1e2 =
(
∇̃e1e2

)T

.

Let χ(M) and N(M) be the space of the smooth vector fields tangent to M
and the space of the smooth vector fields normal to M, respectively. Consider
the second fundamental map:

h : χ(M)× χ(M) → N(M), h(e1, e2) = ∇̃e1e2 −∇e1e2. (1)

This map is well defined, symmetric and bilinear. Recall the shape operator

Av : TpM → TpM, Ave1 = −
(
∇̃e1e2

)T

(2)

where v is the normal vector field at p ∈ M and T means the tangent compo-
nent. This operator is bilinear, self-adjoint and for any e1, e2 ∈ TpM satisfies
⟨Ave1, e2⟩ = ⟨h(e1, e2), v⟩ . We choose a local field of orthonormal frame e1, e2,
e3, e4 on M such that, restricted to e1, e2 are tangent and e3, e4 are normal
to M . It is well-known that the coefficients of the second fundamental form h
satisfy

hr
ij = ⟨h(ei, ej), er⟩ , i, j = 1, 2, r = 3, 4. (3)

Recall that a submanifold of a Riemannian manifold is said to be minimal
if its mean curvature vector H =1

2 (h(e1, e1) + h(e2, e2)) vanishes identically
(see, for instance, [3]). In the case under consideration, X(u, v) is minimal if
and only if h(e1, e1) + h(e2, e2) = 0, where h denotes the second fundamental
form of M , or equivalently < h(e1, e1) + h(e2, e2), er >= 0, r = 3, 4.

For a smooth surface M in E4, let γθ be the normal section of M in the
direction of θ. Given an orthonormal basis {e1, e2} of the tangent space TpM
at p ∈ M denote γ′

θ = X = cos θe1 + sin θe2 the unit vector of the normal
section. The subset of the normal space defined as

{h(X,X) : X ∈ TpM, ∥X∥ = 1}

is called the curvature ellipse of M and denoted by E(p), where h is the second
fundamental form of the surface patch X(u, v). To see that this is an ellipse,
we just have to look at the following formula for:

X = cos θe1 + sin θe2

the unit vector that

h(X,X) = H + cos2θB + sin 2θC, (4)
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where H = 1
2 (h(e1, e1)+h(e2, e2)) is the mean curvature vector of M at p and

B =
1

2
(h(e1, e1)− h(e2, e2)), C = h(e1, e2), (5)

are the normal vectors. This shows that when X goes once around the unit
tangent circle, the vector h(X,X) goes twice around an ellipse centered at
H, the curvature ellipse E(p) of X(u, v) at p. Clearly E(p) can degenerate
into a line segment or a point. It follows from (4) that E(p) is a circle if and
only if for some (and hence for any) orthonormal basis of TpM it holds that
< B,C >= 0 and ∥B∥ = ∥C∥ [5]. General aspects of the curvature ellipse of
surfaces in E4 studied by Wong [17]. For more details see also [13], [14], and
[16].

We have the following functions associated to the coefficients of the second
fundamental form :

∆(p) =
1

4
det


h3
11 2h3

12 h3
22 0

h4
11 2h4

12 h4
22 0

0 h3
11 2h3

12 h3
22

0 h4
11 2h4

12 h4
22

 (p) (6)

K(p) =
1

4
(h3

11h
3
22 − (h3

12)
2 + h4

11h
4
22 − (h4

12)
2)(p). (7)

(Gaussian curvature of M) and the matrix

α(p) =

[
h3
11 h3

12 h3
22

h4
11 h4

12 h4
22

]
(p). (8)

By identifying p with the origin of NpM it can be shown that:

a) ∆(p) < 0 ⇒ p lies outside of the curvature ellipse (such a point is said
to be a hyperbolic point of M),

b) ∆(p) > 0 ⇒ p lies inside the curvature ellipse (elliptic point),

c) ∆(p) = 0 ⇒ p lies on the curvature ellipse (parabolic point).

More detailed study of this case allows us to distinguish among the follow-
ing possibilities:

d) ∆(p) = 0, K(p) > 0 ⇒ p is an inflection point of imaginary type,

e) ∆(p) = 0, K(p) < 0 and

 rankα(p) = 2 ⇒ ellipse is non-degenerate
rankα(p) = 1 ⇒ p is an inflection point
of real type,

f) ∆(p) = 0, K(p) = 0 ⇒ p is an inflection point of flat type [14].
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3 Spherical Product Surfaces in E4

Let f : M −→ Em+d be an embedding of an m-dimensional manifold M into
(m+ d)-dimensional Euclidean space Em+d and g : Sn −→ En+1 be standard
embedding on n-sphere . We define an embedding x : M× Sn −→ Em+n+d

by
X(u, v) = (f1(u), f2(u), .., fm+d−1(u), fm+d(u)g(v)) (9)

(f1(u) ̸= 0 for all u ∈ M), v ∈ Sn. We call it rotational embedding. Here X
is obtained from f by rotating En about Em+d−1 in Em+n+d [11].

Definition 3.1. Let α, β: R −→ E2 be Euclidean plane curves. Put α(u) =
(f1(u), f2(u)) and β(v) = (g1(v), g2(v)). Then their spherical product patch is
given by

X = α⊗ β : E2 −→ E3; X(u, v) = (f1(u), f2(u)g1(v), f2(u)g2(v)); (10)

u ∈ I = (u0, u1), v ∈ J = (v0, v1), which is a surface in E3.

Superquadrics are a family of shapes that includes not only superellipsoids,
but also superhyperboloids of one piece and superhyperboloids of two pieces,
as well as supertoroids [10]. In computer vision literature, it is common to refer
to superellipsoids by the more generic terms of superquadrics. The following
position vector X defines a superquadric surface (see, [2]):

X(u, v) = α(u)⊗ β(v) =

[
a1 sin

ϵ1 u
cosϵ1 u

]
⊗

[
a2 cos

ϵ2 v
a3 sin

ϵ2 v

]

=

 a1 sin
ϵ1 u

a2 cos
ϵ1 u cosϵ2 v

a3 cos
ϵ1 u sinϵ2 v

 ,−π

2
< u <

π

2
, − π ≤ v < π. (11)

where a1, a2 and a3 are scaling factors along the three coordinate axes.
ϵ1 and ϵ2 are derived from the exponents of the two original superellipses. ϵ2
determines the shape of the superellipsoid cross section parallel to the (x, y)
plane, while ϵ1 determines the shape of the superellipsoid cross section in a
plane perpendicular to the (x, y) plane and containing z axis. Similarly, we
define the spherical product patch of E4 as follows;

Definition 3.2. Let α : R −→ E3 be an Euclidean space curve and β : R
−→ E2 Euclidean plane curve. Put α(u) = (f1(u), f2(u), f3(u)) and β(v) =
(g1(v), g2(v)). Then their spherical product patch is given by

X = α⊗β : E2 −→ E4; X(u, v) = (f1(u), f2(u), f3(u)g1(v), f3(u)g2(v)); (12)

u ∈ I = (u0, u1), v ∈ J = (v0, v1), which is a surface in E4. For the case
f1(u) = 0 or f2(u) = 0, the patch X = α⊗ β : E2 −→ E3 becomes a spherical
product of two 2D curves.
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Example 3.3. In 1966, T. Otsuki considered the special case α(u) = (f1(u),
f2(u), sinu) and β(v) = (cos v, sin v) such that

X = α⊗ β : S2 −→ E4; X(u, v) = (f1(u), f2(u), sinu cos v, sinu sin v); (13)

( u ∈ I, 0 ≤ v < 2π) is a surface patch in E4, where (f1
′)2 + (f2

′)2 = sin2 u.
In the same paper T. Otsuki consider the following cases;

a) f1(u) =
4

3
cos3(

u

2
), f2(u) =

4

3
sin3(

u

2
), f3(u) = sinu, (14)

b) f1(u) =
1

2
sin2 u cos(2u), f2(u) =

1

2
sin2 u sin(2u), f3(u) = sinu.(15)

For the case a) the patch X is called Otsuki (non-round) sphere in E4 which
does not lie in a 3-dimensional subspace of E4. It has been shown that these
surfaces have constant Gaussian curvature [15].

Example 3.4. Recently, G. Ganchev and V. Milousheva considered the gen-
eral product of the space curve α(u) = (f1(u), f2(u), f3(u)) with the circle
β(v) = (cos v, sin v) such that

X(u, v) = α(u)⊗ β(v) = (f1(u), f2(u), f3(u) cos v, f3(u) sin v); (16)

u ∈ I, 0 ≤ v < 2π, where α(u) is parametrized with respect to the arc-length,
i.e. (f1

′)2 + (f2
′)2 + (f3

′)2 = 1 and f3(u) > 0, [6].

We give an extension of the superquadrics in E4.

Example 3.5. The following position vector X defines a superquadric surface
in E4.

X(u, v) = α(u)⊗ β(v) =

 a1 cos
2ϵ1 u

a2 cos
ϵ1 u sinϵ1 u
sinϵ1 u

⊗
[

a3 cos
ϵ2 v

a4 sin
ϵ2 v

]

=


a1 cos

2ϵ1 u
a2 cos

ϵ1 u sinϵ1 u
a3 sin

ϵ1 u cosϵ2 v
a4 sin

ϵ1 u sinϵ2 v

 ,−π

2
< u <

π

2
, − π ≤ v < π (17)

By eliminating parameter u and v using equality cos2α + sin2α = 1, the
following implicit equation can be obtained∣∣∣∣x3

a3

∣∣∣∣ 2
ϵ2

+

∣∣∣∣x4

a4

∣∣∣∣
2

ϵ2


ϵ2
ϵ1

+

∣∣∣∣x1

a1

∣∣∣∣ 2
ϵ1

+

∣∣∣∣x2

a2

∣∣∣∣ 2
ϵ1

= 1 (18)

where a4 is a positive real number.
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Consequently we have the following result.

Theorem 3.6. Let M Ganchev-Milousheva rotation surface given by the
parametrization (16).

i) If κ1 ̸= 0 then p lies outside of the curvature ellipse (such a point is said
to be a hyperbolic point of M),

ii) If κ1 = 0 then p lies on the curvature ellipse (parabolic point), which is
an inflection point of real type ,

iii) If κ1 = 0 and f3
′′(u) = 0 then p is an inflection point of flat type,

where p is the origin of NpM and κ1 = f1
′f2

′′(u) − f1
′′f2

′(u) is the
curvature of the projection of the curve α on the Oe1e2- plane .

Proof. The tangent space of Im(X) = M is spanned by the vector fields

∂X

∂u
= (f ′

1 (u), f
′

2 (u), f
′

3 (u) cos v, f
′

3 (u) sin v),

∂X

∂v
= (0, 0,−f3(u) sin v, f3(u) cos v).

We choose a moving frame e1, e2, e3, e4 such that e1, e2 are tangent to M
and e3, e4 are normal to M as given the following:

e1 =
∂X
∂u∥∥∂X
∂u

∥∥ , e2 =
∂X
∂v∥∥∂X
∂v

∥∥
e3 =

1

κ
(f1

′′(u), f2
′′(u), f3

′′(u) cos v, f3
′′(u) sin v)

e4 =
1

κ
(f2

′f3
′′(u)− f2

′′f3
′(u), f1

′′f3
′(u)− f1

′f3
′′(u),

(f1
′f2

′′(u)− f1
′′f2

′(u)) cos v, (f1
′f2

′′(u)− f1
′′f2

′(u)) sin v

where κ =
√
(f1′′)2 + (f2′′)2 + (f3′′)2 is the curvature of the space curve α(u).

Hence, the coefficients of the first fundamental form of the surface are

E = < Xu(u, v), Xu(u, v) > = 1,

F = < Xu(u, v), Xv(u, v) > = 0,

G = < Xv(u, v), Xv(u, v) > = f 2
3 (u),

where ⟨, ⟩ is the standard scalar product in E4. Since EG− F 2 = f 2
3 (u) does

not vanishes then the surface patch X(u, v) is regular.
The second partial derivatives of X(u, v) are expressed as follows

Xuu(u, v) = (f1
′′(u), f2

′′(u), f3
′′(u) cos v, f3

′′(u) sin v),

Xuv(u, v) = (0, 0,−f3
′(u) sin v, f3

′(u) cos v),

Xvv(u, v) = (0, 0,−f3(u) cos v,−f3(u) sin v).
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Using (1) and (3) we can get that the coefficients of the second fundamental
form h are as follows:

h3
11 =

< Xuu(u, v), e3 >

E
= κ , h3

12 =
< Xuv(u, v), e3 >√

EG
= 0,

h3
22 =

< Xvv(u, v), e3 >

G
=

−f ′′
3

κf3
, (19)

h4
11 =

< Xuu(u, v), e4 >

E
= 0, h4

12 =
< Xuv(u, v), e4 >√

EG
= 0,

h4
22 =

< Xvv(u, v), e4 >

G
=

−κ1

κf3
,

where κ is the curvature of the curve α and κ1 = f1
′f2

′′(u)− f1
′′f2

′(u) is the
curvature of the projection of the curve α on the Oe1e2- plane.

Thus, by the use of equations (6)-(8), we have

∆(p) = −1

4

κ2
1

f2
3

, K(p) =
−f ′′

3

f3
; f3(u) ̸= 0, (20)

and

α(p) =

[
κ 0

−f ′′
3

κf3

0 0 −κ1

κf3

]
(p). (21)

So, κ1 = 0 implies ∆(p) = 0, ( and rank (α(p)) = 1), and f ′′
3 = 0 implies

K = 0. Hence, by identifying p with the origin of NpM and using (20) with
(21) we get the result.

Definition 3.7. Let M be an n-dimensional smooth submanifold of m-dimensional
Riemannian manifold N and ζ be a normal vector field of M. Let ξx be m−n
mutually orthogonal unit normal vector fields of M such that ζ = ∥ζ∥ ξ1. In [3]
B.Y. Chen defined the allied vector field a(ζ) of a normal vector field ζ by the
formula

a(v) =
∥ζ∥
n

m−n∑
x=2

{tr(A1Ax)} ξx

where Ax = Aξx is the shape operator. In particular, the allied mean curvature
vector field of the mean curvature vector H is a well-defined normal vector field
orthogonal to H. If the allied mean vector a(H) vanishes identically, then the
submanifold M is called A-submanifold of N . Furthermore, A-submanifolds
are also called Chen submanifolds [7]

For the case M is a smooth surface of E4 the allied vector a(H) becomes

a(H) =
∥H∥
2

{
tr(Ae3

Ae4)
}
e4 (22)
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where {e3, e4} is an orthonormal basis of NpM .

Theorem 3.8. [9] Let M be a non-trivial A-surface in E4 with e3 in the
direction of H and e1, e2 are principal directions of Ae3

.

i) If the coefficients h3
11 and h3

22 are the same sign (resp. different sign)
then the origin of NpM lies outside (resp. inside) of the curvature ellipse of
M .

ii) If one of the coefficients h3
11 or h3

22 is identically zero then the origin of
NpM lies on the curvature ellipse of M .

We prove the following result.

Theorem 3.9. Let M be Ganchev-Milousheva surface given by the parametriza-
tion (16). If M is a nontrivial Chen surface then the following equation fulfilled

κ1(κ
4f3

2 − κ2
1 − (f3

′′)2) = 0. (23)

Proof. Suppose M is a Ganchev-Milousheva rotational surface given by the
parametrization (16). The mean curvature vector of M becomes

H =
1

2
(h(e1, e1) + h(e2, e2)) =

1

2

{
(κ− f3

′′

κf3
)e3 −

κ1

κf3
e4

}
. (24)

SinceH is not parallel e3, we can define another orthogonal frame field {n1, n2}
of M such that

n1 = (κ− f3
′′

κf3
)e3 −

κ1

κf3
e4, n2 =

κ1

κf3
e3 + (κ− f3

′′

κf3
)e4.

For simplicity let us denote,

λ = κ− f3
′′

κf3
, µ =

κ1

κf3
,W 2 = λ2 + µ2. (25)

So, we can get the orthonormal frame field {ẽ3, ẽ4} of M

ẽ3 =
n1

∥n1∥
=

λe3 − µe4
W

, ẽ4 =
n2

∥n2∥
=

µe3 + λe4
W

.

Using (1) and (3) we can get that the coefficients of the second fundamental
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form h are as following:

h̃3
11 =

< Xuu(u, v), ẽ3 >

E
=

λκ

W
, h̃3

12 =
< Xuv(u, v), ẽ3 >√

EG
= 0,

h̃4
11 =

< Xuu(u, v), ẽ4 >

E
=

µκ

W
, h̃4

12 =
< Xuv(u, v), ẽ4 >√

EG
= 0, (26)

h̃3
22 =

< Xvv(u, v), ẽ3 >

G
=

−λf ′′
3

Wκf3
+

µ2

W
= β,

h̃4
22 =

< Xvv(u, v), ẽ4 >

G
=

−µf ′′
3

Wκf3
− λµ

W
= γ.

By the use of (26) the shape operator matrices with respect to {ẽ3, ẽ4}
become

Aẽ3
=

[
λκ
W 0
0 β

]
, Aẽ4

=

[
µκ
W 0
0 γ

]
.

Further, the trace of the product matrix becomes

tr(Aẽ3
Aẽ4

) = βγ +
λµκ2

W 2
. (27)

Suppose, M is a nontrivial Chen surface then tr(Aẽ3
Aẽ4

) = 0. So, using
the equations (26) with (22) we get

β(
−µf ′′

3

Wκf3
− λµ

W
) +

λµκ2

W 2
= 0 (28)

Hence, substituting (25) and (26) into (28) we obtain (23).

Consequently, by the use of (23) we get the following result.

Corollary 3.10. Let M be Ganchev-Milousheva (rotational) surface given by
the parametrization (16).

i) If κ1 = 0 and κ2 = f3
′′

f3
then M is a trivial Chen surface (i.e. M is

minimal),

ii) If κ1 = 0 and κ2 ̸= f3
′′

f3
then M is a non-trivial Chen surface,

iii) If κ1 ̸= 0 and κ2 = ∓k1

f3
then M is a non-trivial Chen surface of flat

type (i.e. K(p) = 0).

4 Visualization

The geometric modeling of the 3D-surfaces are very important in surface mod-
eling systems such as; CAD/CAM systems and NC-processing. In this paper,
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a method of spherical product surface in E4 of a 3D curve with a 2D curve is
investigated. For demonstrating the performance of the proposed method, the
projection of Otsuki surfaces were constructed in E3. In fact, these projections
can be considered as the spherical product surface in E3 which are the simple
parametrization of representing a large variety of standard geometric solids as
well as smooth shapes in between. This makes them much more convenient
for representing rounded, blob-like shape parts, typical for object formed by
natural process.

In the sequel we construct some 3D geometric shape models by using spher-
ical product surfaces given in the Equation (13). First, we construct the geo-
metric model of the Otsuki surfaces defined in Example 3.3 as follows;

a) f1(u) =
4

3
cos3(

u

2
), f2(u) =

4

3
sin3(

u

2
), f3(u) = sinu,

b) f1(u) =
1

2
sin2 u cos(2u), f2(u) =

1

2
sin2 u sin(2u), f3(u) = sinu.

We plot the graph of the projection of these surfaces in E3 by the use of
following plotting command respectively (see Figure 1) ;

plot3d([f1(x) + f2(x), f3(x) cos(y), f3(x)sin(y)], x = a..b, y = c..d]); (29)

Further, we construct a geometric model of the following Ganchev-Milousheva

Figure 1: The projections of Otsuki surfaces in E3
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rotation surfaces in E4;

c) f1(x) = exp(x), f2(x) = cosx, f3(x) = 3x+ 1,

d) f1(x) = sin(x), f2(x) = 3 sin(x) + 5, f3(x) = 3x+ 5,

e) f1(x) = 3 sin(x), f2(x) = x+ 5, f3(x) = 3x+ 5.

By Theorem 3.6, the above surfaces satisfy the conditions κ1 = 0 and
K ̸= 0 (case a), κ1 = 0 and K = 0 (case b), or κ1 ̸= 0 and K = 0 (case c). So
by Corollary 3.10 all of them are non-trivial Chen surfaces.

We plot the graph of the projection of these surfaces in E3 by the use of
plotting command (29) respectively, (see Figure 2);

Figure 2: The projections of Ganchev-Milousheva rotation surfaces in E3
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Bengü (Kılıç) Bayram,
Balıkesir University, Department of Mathematics,
Balıkesir, TURKEY.
Email: benguk@balikesir.edu.tr

Günay Öztürk,
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