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ON A CLASS OF SETS VIA GRILL : A

DECOMPOSITION OF CONTINUITY

Dhananjoy Mandal and M. N. Mukherjee

Abstract

In the present article, a class of sets, called G-semiclosed sets, which
is a subclass of the class of semi-closed sets of Levine [7], is introduced
and studied in a grill topological space (X, τ,G), where G is a grill on X.
Two types of functions are then introduced which ultimately lead us to
achieve a new decomposition of a continuous function.

1. INTRODUCTION AND PRELIMINARIES

As is noticed from the literature, there has been a growing trend among
some topologists to introduce and study different allied or weaker forms of open
sets, motivating the investigation of the corresponding types of continuous-like
functions between topological spaces. This again has given rise to different
decompositions of continuous function. A classical example towards decom-
position of continuity is the paper of N. Levine [6], whereas a very recent
attempt by Hatir and Jafari [5] with the same motivation has culminated in
the introduction and study of Φ-open sets, where Φ is a suitable operator.
This operator Φ : P (X) → P (X), where X is a topological space was first
defined in [9] in terms of grill; the latter concept being defined by Choquet [4]
several decades back. Interestingly, it is found from subsequent investigations
that the notion of grills as an appliance like nets and filters, turns out to be ex-
tremely useful towards the study of certain specific topological problems (see
for instance [2], [3] and [12]). The definition of grill on a topological space, as
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given by Choquet [4], goes as follows: A non-null collection G of subsets of a
topological spaces X is said to be a grill on X if
(i) φ 6∈ G, (ii) A ∈ G and A ⊆ B ⊆ X ⇒ B ∈ G, and (iii) A,B ⊆ X and
A
⋃

B ∈ G ⇒ A ∈ G or B ∈ G.

For a grill G on a topological space (X, τ), an operator Φ from the power
set P (X) of X to P (X) was defined in [9] in the following manner : For any
A ∈ P (X), Φ(A) = {x ∈ X : U

⋂
A ∈ G, for each open neighbourhood U of

x}. Then the operator Ψ : P (X) → P (X), given by Ψ(A) = A
⋃
Φ(A) (for

A ⊆ X), was also shown in [9] to be a Kuratowski closure operator, defining
a unique topology τG ( say ) on X such that τ ⊆ τG.

As mentioned above, Hatir and Jafari [5] utilized the operator Φ to accom-
plish their decomposition of continuity. Our intention in the present article is
to pursue the trend. To that end, we introduce to start with, a kind of closed
set, termed G-semiclosed, defined in terms of a grill G and the said operator
Φ. Among other things it is shown in Section 2 that every G-semiclosed set
is semi-closed [7], but is independent of the concept of G-closedness ([5], [11]).
We then take up the task of decomposition of continuity in Section 3. For
that we have defined a type of sets, dubbed GS-sets, and this has enabled
us to achieve finally the desired decomposition. In the process we obtain a
decomposition of openness of subsets in a grill topological space.

In what follows in this paper, a space X will always be taken to stand for a
topological space (X, τ). If A ⊆ X, we shall adhere to the usual convention to
write int(A) and cl(A) respectively for interior and closure of a set A in (X, τ).
Whenever we say that a subset A of a space X is open (resp. closed), it will
mean that A is open (resp. closed) in (X, τ). For open and closed sets with
respect to any other topology on X, e.g. τG, we would write ‘τG-open’ and
‘τG-closed’. A subset A of (X, τ) is said to be semi-open [7] if A ⊆ cl(int(A)).
A topological space (X, τ) with a grill G on X, denoted by (X, τ,G), will be
called a grill topological space. We now recall a few results from [9] to be used
in the sequel.

Theorem 1.1. Let (X, τ) be a topological space and G be grill on X. Then
for any A,B ⊆ X the following hold:
(a) A ⊆ B ⇒ Φ(A) ⊆ Φ(B).
(b) Φ(A

⋃
B) = Φ(A)

⋃
Φ(B).

(c) Φ(Φ(A)) ⊆ Φ(A) = cl((Φ(A))) ⊆ cl(A).

Theorem 1.2. Let G be grill on a topological space (X, τ). If U ∈ τ , then
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U
⋂

Φ(A) = U
⋂
Φ(U

⋂
A), for any A ⊆ X.

2. SEMI-OPEN SETS WITH RESPECT TO A GRILL

We begin by introducing a generalized class of semi-open sets in terms of
grills as follows.

Definition 2.1. A subset A of a grill topological space (X, τ,G) is said to
be semi-open with respect to the grill G or simply G-semiopen (resp. G-open
[11] or Φ-open[5]) if A ⊆ Ψ(int(A)) (resp. A ⊆ int(Φ(A))). The complement
of a G-semiopen (resp. G-open or Φ-open) set is called a G-semiclosed (resp.
G-closed or Φ-closed) set.

Remarks 2.2.
(a) The Example 2.1 in [5] for showing the mutual independence of the concept
of openness and Φ-openness is wrong. Actually the collection G taken in the
said example is not at all a grill. We give an example here (see Example 2.3)
to establish the mutual independence of openness and Φ-openness.
(b) Every G-semiopen set is semi-open. In fact, let A be G-semiopen in
(X, τ,G). Then A ⊆ Ψ(int(A))= int(A) ∪ Φ(intA)) ⊆int(A)∪ cl(int(A))(by
Theorem 1.1)= cl(int(A)). This shows that A is semi-open. That the converse
is false is shown below (see Example 2.4).
(c) The concepts of G-semiopen and G-open sets are independent of each other
(see Example 2.5).

Examples 2.3.
(i) Let X = {a, b, c}, τ = {φ, {a}, {b, c}, X} and G = {{a}, {a, c}, {a, b}, X}.
Then (X, τ) is a topological space and G is a grill on X. Take U = {b, c} ∈ τ .
But Φ(U)= φ so that U is not Φ-open.
(ii) Let X = {a, b, c}, τ = {φ, {a}, {b, c}, X} and G = {{a}, {c}, {a, c}, {a, b},
{b, c}, X}. Then (X, τ) is a topological space and G is a grill on X. Take A =
{a, c}. Then Φ(A) = X, so that A is Φ-open but A is not open in (X, τ).

Example 2.4. Let X = {a, b, c}, τ = {φ, {b}, {c}, {b, c}, X} and G = {{a},
{a, b}, {a, c}, X}. Then (X, τ) is a topological space and G is a grill on X.
Suppose A = {a, c}. Then A is semi-open but it is not G-semiopen. In fact,
int(A) = {c} and Φ(int(A)) = φ, so that Ψ(int(A)) = {c} 6⊇ A.

Examples 2.5.
(i) Consider the grill topological space (X, τ,G) where X = {a, b, c}, τ =
{φ, {a}, {b}, {a, b}, X} and G = {{c}, {a, c}, {b, c}, X}. Suppose A = {a, b}.
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Then Φ(A) = φ so that A is not Φ-open. But A is G-semiopen as int(A)=
{a,b} and Φ(int({a, b})) = φ, so that Ψ(int({a, b})) = {a, b}= A.
(ii) LetX = {a, b, c}, τ = {φ, {a}, {b, c}, X} and consider the grill G={{a}, {c},
{a, b}, {a, c}, {b, c}, X} on X. Suppose A= {a, c}. Then A is G-open but not
G-semiopen. In fact, Φ(A) = {a, b, c} = X ⇒ A ⊆ int(Φ(A)) ⇒ A is G-open;
again, int(A) = {a}, Φ({a}) = {a} and Ψ (int({a})) = {a} 6⊇ A ⇒ A is not
G-semiopen.

Definition 2.6. [10] Let X be a nonempty set and (φ 6=)A ⊆ X. Then

[A] = {B ⊆ X : A
⋂

B 6= φ}

is a grill on X, called the principal grill generated by A.

Remark 2.7. In the case of the principal grill [X] generated by X, it is known
[10] that τ = τ[X], so that any [X]-semiopen set becomes simply a semi-open
set and vice-versa.

Theorem 2.8. Let (X, τ) be a topological space and G be a grill on X. Then
a subset A of X is G-semiopen iff Ψ(A) = Ψ(int(A)).
Proof. Let A be G-semiopen. Then as Ψ is monotonic and idempotent,
Ψ(A) ⊆ Ψ(Ψ(int(A)))= Ψ(int(A)) ⊆ Ψ(A) ⇒ Ψ(A) = Ψ(int(A)).
The converse is trivial.

Theorem 2.9. Let (X, τ) be a topological space and G be a grill on X. If a
subset A of X is G-semiclosed , then int(Ψ(A)) ⊆ A.
Proof. Suppose A is G-semiclosed. Then X \ A is G-semiopen and hence
X \ A ⊆ Ψ(int(X \ A)) ⊆ cl(int(X \ A)) = X\ int(cl(A)) ⊆ X\ int(Ψ(A)) ⇒
int(Ψ(A)) ⊆ A.

Remark 2.10. The converse of the above theorem is false as shown in the
following example.

Example 2.11. Consider the grill topological space (X, τ,G) where X =
{a, b, c}, τ = {φ, {a}, {b, c}, X} and G = {{a}, {a, b}, {a, c}, X}. Suppose A =
{a, c}. Then A is not G-semiclosed but int(Ψ(A)) ⊆ A. In fact, Φ(A) = {a}.
Thus Ψ(A) = A ∪ Φ(A) = {a, c} and hence int(Ψ(A)) ⊆ A. Again X \ A =
{b}. Thus int({b}) = φ so that Ψ(int{b}) = φ 6⊇ {b} = X \A and hence X \A
is not G-semiopen ⇒ A is not G-semiclosed.
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Theorem 2.12. Let (X, τ,G) be a grill topological space and A be a subset
of X such that X\int(Ψ(A)) = Ψ(int(X \ A)). Then A is G-semiclosed iff
int(Ψ(A)) ⊆ A.
Proof. One part follows from Theorem 2.9.
Conversely, suppose that int(Ψ(A)) ⊆ A. Then X \ A ⊆ X\ int(Ψ(A)) =
Ψ(int(X \A)) ⇒ X \A is G-semiopen ⇒ A is G-semiclosed.

Theorem 2.13. Let (X, τ) be a space and G be a grill on X. Then a subset
A of X is G-semiopen iff there exists a U ∈ τ such that U ⊆ A ⊆ Ψ(U).
Proof. Suppose A is G-semiopen. Then A ⊆ Ψ(int(A)). Put int(A) = U .
Then U ⊆ A ⊆ Ψ(U), where U ∈ τ .
Conversely, let U ⊆ A ⊆ Ψ(U) for some U ∈ τ . Now U ⊆ A ⇒ U ⊆ int(A) ⇒
Ψ(U) ⊆ Ψ(int(A)) ⇒ A ⊆ Ψ(int(A)) ⇒ A is G-semiopen.

Remark 2.14. At this point it is quite pertinent to raise the question whether
the semi-openness of a set in (X, τG) is same as the G-semiopenness of the set
in (X, τ,G). The following example answers the question in the negative.

Example 2.15. Consider the grill topological space (X, τ,G), where X =
{a, b, c}, τ = {φ, {a}, {b, c}, X} and G = {{a}, {c}, {a, c}, {a, b}, {b, c},X}.
Then τG = {φ, {a}, {c}, {a, c}, {b, c}, X}. Here A = {a, c} is open and hence
semi-open in (X, τG). But A is not G-semiopen in (X, τ,G).

Theorem 2.16. Let (X, τ) be a space and G be a grill on X. Let A, B be
subsets of X such that A ⊆ B ⊆ Ψ(A). If A is G-semiopen , then B is also
G-semiopen.
Proof. Let A be G-semiopen. Then there exists U ∈ τ such that U ⊆ A ⊆
Ψ(U) ⇒ U ⊆ A ⊆ B ⊆ Ψ(A) ⊆ Ψ(Ψ(U)) = Ψ(U) and hence U ⊆ B ⊆ Ψ(U)
for some U ∈ τ ⇒ B is G-semiopen.

Theorem 2.17. Let (X, τ) be a space and G be a grill on X.
(a) If {Uα : α ∈ Λ} is a family of G-semiopen sets, then

⋃
{Uα : α ∈ Λ} is

G-semiopen.
(b) If A(⊆ X) is G-semiopen and U ∈ τ , then A

⋂
U is G-semiopen.

Proof. (a) Suppose Uα is G-semiopen, for each α ∈ Λ. Then Uα ⊆ Ψ(int(Uα)),

for each α ∈ Λ ⇒
⋃

α∈Λ

Uα ⊆
⋃

α∈Λ

Ψ(int(Uα)) ⊆ Ψ(int
⋃

α∈Λ

(Uα)). This shows that

⋃
{Uα : α ∈ Λ} is G-semiopen.

(b) Let A be G-semiopen and U ∈ τ . Then A ⊆ Ψ( int(A)). Now, A
⋂

U ⊆
Ψ(int(A))

⋂
U = (int(A)

⋃
Φ(int(A)))

⋂
U = (int(A)

⋂
U)

⋃
(Φ(int(A))

⋂
U) ⊆

int(A
⋂

U)
⋃
Φ(int(A)

⋂
U) (using Theorem 1.2) = int(A

⋂
U)

⋃
Φ(int(A

⋂
U))
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= Ψ(int(A
⋂

U)) ⇒ A
⋂

U is G-semiopen.

3. G-SEMICONTINUOUS AND G-SEMICLOSED FUNCTIONS

Definition 3.1. A function f : (X, τ,G) → (Y, σ) is said to be G-semicontinuous
(resp. semi-continuous [7]) if f−1(V ) is G-semiopen (resp. semi-open) for each
V ∈ σ.

Remark 3.2. It is easy to see that

continuity ⇒ G-semicontinuity ⇒ semi-continuity.

But the reverses of the above implications are false as is shown below.

Examples 3.3.
(i) Let X = {a, b, c, d}, τ = {φ, {d}, {a, c}, {a, c, d}, X}
and G = {{d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}, X}.
We define a function f : (X, τ,G) → (X, τ) as follows:

f(a) = f(b) = f(c) = d and f(d) = c.

Then it is easy to see that f is semi-continuous but not G-semicontinuous (in
fact, A = {d} ∈ τ and f−1({d}) = {a, b, c} is not G-semiopen).
(ii) Let X = {a, b, c, d}, τ = {φ, {a}, {b, d}, {a, b, d}, X}
and G = {{a}, {a, b}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d}, X}; Y = {x, y}
and σ = {φ, {x}, Y }. We define a function f : (X, τ,G) → (Y, σ) as

f(a) = f(c) = x and f(b) = f(d) = y.

Then f is not continuous but it is G-semicontinuous. In fact, it is easy to check
that A ⊆ Ψ(int(A)), where A = f−1({x}).

Theorem 3.4. For a function f : (X, τ,G) → (Y, σ), the following are equiv-
alent:
(a) f is G-semicontinuous.
(b) The inverse image of each closed subset of Y is G-semiclosed.
(c) For each x ∈ X and each V ∈ σ containing f(x), there exists a G-semiopen
set U containing x such that f(U) ⊆ V .
Proof. (a)⇔(b): It is clear.
(a)⇒(c): Let V ∈ σ and f(x) ∈ V (x ∈ X). Then by (a), f−1(V ) is a G-
semiopen set containing x. Taking f−1(V ) = U , we have x ∈ U and f(U) ⊆ V .
(c)⇒(a): Let V be any open set in Y and x ∈ f−1(V ). Then f(x) ∈ V ∈ σ

and hence by (c), there exists a G-semiopen set U containing x such that
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f(U) ⊆ V . Now x ∈ U ⊆ Ψ(int(U)) ⊆ Ψ (int (f−1(V ))). This shows that
f−1(V ) ⊆ Ψ(int(f−1(V ))). Thus f is G-semicontinuous.

Theorem 3.5. A function f : (X, τ,G) → (Y, σ) is G-semicontinuous iff the
graph function g : X → X × Y , defined by g(x) = (x, f(x)), for each x ∈ X,
is G-semicontinuous.
Proof. Suppose that f is G-semicontinuous. Let x ∈ X and W be any open
set in X × Y containing g(x). Then there exist U ∈ τ and V ∈ σ such that
g(x) = (x, f(x)) ∈ U × V ⊆ W . Since f is G-semicontinuous, there exists a
G-semiopen set G of X containing x such that f(G) ⊆ V . By Theorem 2.17
(b), G

⋂
U is G-semiopen and g(G

⋂
U) ⊆ U × V ⊆ W . This shows that g is

G-semicontinuous.
Conversely, suppose that g is G-semicontinuous. Let x ∈ X and V be any
open set in Y containing f(x). Then X × V is open in X × Y and by G-
semicontinuity of g, there exists a G-semiopen set U containing x such that
g(U) ⊆ X × V . Thus we have f(U) ⊆ V and hence f is G-semicontinuous.

Definition 3.6. Let (X, τ) be a topological space and (Y, σ,G) a grill topo-
logical space. A function f : (X, τ) → (Y, σ,G) is said to be G-semiopen (resp.
G-semiclosed) if for each U ∈ τ (resp. closed set U in (X, τ)), f(U) is G-
semiopen (resp. G-semiclosed) in (Y, σ,G).

Definition 3.7.[1] A function f : (X, τ) → (Y, σ) is said to be semi-open
(resp. semi-closed) if for each U ∈ τ (resp. for each closed set U in (X, τ)),
f(U) is semi-open (resp. semi-closed) in (Y, σ).

Remarks 3.8.
(a) Every open function is G-semiopen, but the converse is false as is shown
in Example 3.9 .
(b) Every G-semiopen (resp. G-semiclosed) function is semi-open (resp. semi-
closed); that the converses are false is shown in Example 3.10.

Example 3.9. LetX = {a, b, c}, τ = {φ, {a, b}, X}, σ = {φ, {a}, {c}, {a, c}, X}
and G = {{a}, {a, b}, {a, c}, X}. Then the identity function f : (X, τ) →
(X,σ,G) is G-semiopen but it is not open.

Examples 3.10.
(i) Let X = {a, b, c}, τ = {φ, {a, b}, X} and σ = {φ, {a}, X}, G = {{b}, {a, b},
{b, c}, X}. Then the identity function f : (X, τ) → (X,σ,G) is semi-open, but
not G-semiopen.
(ii) Let X = {a, b, c}, τ = {φ, {a}, X} and σ = {φ, {b}, {c}, {b, c}, X}, G =
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{{a}, {a, b}, {a, c}, X}. We define a function f : (X, τ) → (X,σ,G) as follows:

f(a) = a, f(b) = f(c) = b.

Then f is semi-closed, but it is not G-semiclosed.

Theorem 3.11. A function f : (X, τ) → (Y, σ,G) is G-semiopen iff for each
x ∈ X and each neighbourhood U of x, there exists a G-semiopen set V in Y

such that f(x) ∈ V ⊆ f(U).
Proof. Suppose that f is a G-semiopen function and let x ∈ X. Also let U

be any neighbourhood of x. Then there exists G ∈ τ such that x ∈ G ⊆ U .
Since f is G-semiopen, f(G) = V ( say) is G-semiopen and f(x) ∈ V ⊆ f(U).
Conversely, suppose that U is any open set in X. Then for each x ∈ U , there
exists a G-semiopen set Vx such that f(x) ∈ Vx ⊆ f(U). Thus f(U) =

⋃
{Vx :

x ∈ U} and hence by Theorem 2.17 (a), f(U) is G-semiopen. This shows that
f is G-semiopen.

Theorem 3.12. Let f : (X, τ) → (Y, σ,G) be a G-semiopen function. If V is
any subset of Y and F is a closed subset of X containing f−1(V ), then there
exists a G-semiopen set H in (Y, σ,G) containing V such that f−1(H) ⊆ F .
Proof. Suppose that f is G-semiopen. Let V be any subset of Y and F be a
closed subset of X containing f−1(V ). Then X \F is open in (X, τ) and hence
by G-semiopenness of f , f(X \ F ) is G-semiopen. Thus H = Y \ f(X \ F ) is
G-semiclosed and consequently f−1(V ) ⊆ F implies that V ⊆ H. Further we
obtain that f−1(H) ⊆ F .

If we set G = [X] in the above theorem , we have the following result which
incidentally proves Theorem 3.1 of [8] (refer to Remark 2.7).

Corollary 3.13. Suppose a function f : X → Y is semi-open. Then for any
subset V of Y and for any closed set F of X containing f−1(V ), there exists
a semi-closed set H of Y containing V such that f−1(H) ⊆ F .

Theorem 3.14. For any bijection f : (X, τ) → (Y, σ,G) the following are
equivalent:
(a) f−1 : (Y, σ,G) → (X, τ) is G-semicontinuous.
(b) f is G-semiopen.
(c) f is G-semiclosed.
Proof. Obvious.

To accomplish the desired decomposition of continuity, we now define a
type of sets and a kind of functions in terms of such sets.
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Definition 3.15. A subset A of a grill topological space (X, τ,G) is said to
be a GS-set if A = U

⋂
V , where U ∈ τ and Ψ(intV )= int V .

The above definition incidentally gives a decomposition of openness of sets
in a grill topological space as follows.

Theorem 3.16. Let (X, τ,G) be a grill topological space. Then a subset A
of X is open in X iff it is G-semiopen and a GS-set in (X, τ,G).
Proof. Let A be open in X. Then A is G-semiopen as A ⊆ Ψ( int(A)). Also
A can be expressed as A = A

⋂
X, where A is open in X and Ψ(intX)= intX.

Thus A is a GS-set.
Conversely, let A be G-semiopen and a GS-set. Thus A ⊆ Ψ(int (A))=
Ψ( int(U

⋂
V )) where U ∈ τ and Ψ(intV )= int V . Now A ⊆ U

⋂
A ⊆

U
⋂

Ψ(int(U
⋂
V )) = U

⋂
Ψ(U

⋂
int(V )) ⊆ U

⋂
Ψ(U)

⋂
Ψ(int(V )) = U

⋂
int(V )

= int(A). Hence A is open in X.

Definition 3.17. A function f : (X, τ,G) → (Y, σ) is said to be GS-continuous
if for each V ∈ σ, f−1(V ) is a GS-set in (X, τ,G).

Using Theorem 3.16 , we obtain the following decomposition of continuity:
Theorem 3.18. Let (X, τ,G) be a grill topological space. Then for a function
f : (X, τ,G) → (Y, σ), the following are equivalent:
(a) f is continuous.
(b) f is G-semicontinuous and GS-continuous.
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