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Topological properties of the attractors of
iterated function systems

Dan Dumitru

Abstract

In this paper we investigate necessary conditions for an attractor of
an iterated function system to have a finite number of connected com-
ponents. Then we prove that each connected component of an attractor
of an iterated function system which has a finite number of connected
components is also arcwise connected. We also emphasize by a coun-
terexample, that the result does not hold when the attractor has an
infinite number of connected components.

1 Introduction

Iterated function systems were conceived in the present form by John Hutchin-
son in ([4]), popularized by Michael Barnsley in ([1]) and are one of the most
common and general ways to generate fractals. Many of the important exam-
ples of functions and sets with special and unusual properties turn out to be
fractal sets or functions whose graphs are fractal sets and a great part of them
are attractors of iterated function systems. There is a current effort to extend
the classical Hutchinson’s framework to more general spaces and infinite it-
erated function systems or, more generally, to multifunction systems and to
study them ([2], [6], [7], [8], [9]). A recent such example can be found in ([6]),
where the Lipscomb’s space, which was an important example in dimension
theory, can be obtain as an attractor of an infinite iterated function system.
The topological properties of fractal sets have a great importance in analysis
on fractals as we can see in ([5], [6]). In this article we study attractors of
iterated function systems which have a finite number of connected components
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and we prove that each of these components is also arcwise connected. The
result does not hold when the attractor has an infinite number of connected
components.

For a metric space (X, d) we denote by K(X) the set of nonempty compact
subsets of X and by P(X) the set of nonempty subsets of X.

Definition 1.1. Let (X, d) be a metric space and K(X) the set of all
nonempty compact subsets of X. The application h : K(X) × K(X) −→
[0,+∞) defined by h(A,B) = max(d(A,B), d(B,A)), where d(A,B) = sup

x∈A
d(x,B) =

sup
x∈A

( inf
y∈B

d(x, y)) is called the Hausdorff-Pompeiu metric. When h : P(X) ×

P(X) −→ [0,+∞], then it is called the Hausdorff-Pompeiu semimetric.
Definition 1.2. Let (X, d) be a metric space. For a function f : X −→

X, the constant Lip(f) = sup
x,y∈X ; x ̸=y

d(f(x), f(y))

d(x, y)
∈ [0,+∞] is called the

Lipschitz constant associated to f. We also say that f is a Lipschitz function
if Lip(f) < +∞ and a contraction if Lip(f) < 1.

Proposition 1.1. ([1]) The Hausdorff-Pompeiu semimetric, h, has the
following properties:

1). If H and K are two nonempty subsets of X then h(H,K) = h(H,K);
2). If (Hi)i∈I are (Ki)i∈I are two famillies of nonempty subsets of X

then:

h( ∪
i∈I

Hi, ∪
i∈I

Ki) = h( ∪
i∈I

Hi, ∪
i∈I

Ki) ≤ sup
i∈I

h(Hi,Ki).

3). If H and K are two nonempty subsets of X and f : X −→ Y is a
function then

hX(f(K), f(H)) ≤ Lip(f) · hY (K,H).

Remark 1.1. ([1], [3]) If (X, d) is a complete metric space then (K(X), h)
is a complete metric space and if (X, d) is a compact metric space then
(K(X), h) is a compact metric space.

Definition 1.3. An iterated function system on a metric space (X, d) con-
sists of a finite family of contractions (fk)k=1,n on X and it is denoted by
S = (X, (fk)k=1,n).

Definition 1.4. For an iterated function system S = (X, (fk)k=1,n), the

function FS : K(X) −→ K(X) defined by FS(B) =
n
∪

k=1
fk(B) is called the

fractal operator associated with the iterated function system S.
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Proposition 1.2. ([1], [3]) Let S = (X, (fk)k=1,n) be an iterated func-
tion system. Then the function FS is a contraction satisfying Lip(FS) ≤
max
k=1,n

Lip(fk) < 1.

Using Banach’s contraction theorem there exists, for an iterated function
system S = (X, (fk)k=1,n), a unique set A such that FS(A) = A. More pre-
cisely we have the following well-known result:

Theorem 1.1. ([1], [5]) Let (X, d) be a complete metric space and S =
(X, (fk)k=1,n) an iterated function system with c = max

k=1,n
Lip(fk) < 1. Then

there exists a unique set A ∈ K(X) such that FS(A) = A. Moreover, for any
H0 ∈ K(X) the sequence (Hn)n≥1 defined by Hn+1 = FS(Hn) is convergent
to A. For the speed of the convergence we have the following estimation:

h(Hn, A) ≤ cn

1− c
h(H0,H1).

Definition 1.5. The unique set A ∈ K(X) from theorem 1.1. is called the
attractor of iterated function system S = (X, (fk)k=1,n).

Definition 1.6. A metric space (X, d) is arcwise connected if for every
x, y ∈ X there exists a continuous function φ : [0, 1] −→ X such that φ(0) = x
and φ(1) = y.

Definition 1.7. LetX be a nonempty set and (Ai)i∈I a family of nonempty
subsets ofX. Then the family (Ai)i∈I is said to be connected if for every i, j ∈ I
there exists (ik)k=1,n ⊂ I such that i1 = i, in = j and Aik ∩ Aik+1

̸= ∅ for
every k ∈ {1, 2, ..., n− 1}. If a family (Ai)i∈I is not connected we say that it
is disconnected.

Definition 1.8. LetX be a nonempty set. OnX we consider the following
relation: xRy if and only daca there exists a connected set B ⊂ X such that
x, y ∈ B. The relation R is a equivalence relation. The equivalence classes are
called the connected components of X.

Concerning the connectedness of the attractor of an iterated function sys-
tem we have the following result:

Theorem 1.2. ([5], Theorem 1.6.2., page 33.) Let (X, d) be a com-
plete metric space, S = (X, (fk)k=1,n) an iterated function system with c =
max
k=1,n

Lip(fk) < 1 and A the attractor of S. Then the following are equivalent:

1) The family (Ai)i=1,n is connected, where Ai = fi(A) for every k ∈
{1, ..., n}.

2) A is arcwise connected.
3) A is connected.
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Next we briefly present the shift space of an iterated function system. For
more details one can see ([5]). We start with some set notations: N denotes
the natural numbers, N∗ = N − {0}, N∗

n = {1, 2, ..., n}. For two nonempty
sets A and B, BA denotes the set of functions from A to B. By Λ = Λ(B)
we will understand the set BN∗

and by Λn = Λn(B) we will understand the
set BN∗

n . The elements of Λ = Λ(B) = BN∗
will be written as infinite words

ω = ω1ω2...ωmωm+1... , where ωm ∈ B and the elements of Λn = Λn(B) =
BN∗

n will be written as finite words ω = ω1ω2...ωn. By λ we will understand
the empty word. Let us remark that Λ0(B) = {λ}. By Λ∗ = Λ∗(B) we
will understand the set of all finite words Λ∗ = Λ∗(B) = ∪

n≥0
Λn(B). For

α ∈ Λn(B) and β ∈ Λm(B) or β ∈ Λ(B) by αβ we will understand the
joining of the words α and β namely αβ = α1α2...αnβ1β2...βm and respectively
αβ = α1α2...αnβ1β2...βmβm+1....

On Λ = Λ(N∗
n) = (N∗

n)
N∗

we can consider the metric ds(α, β) =
∞∑
k=1

1−δ
βk
αk

3k
,

where δyx =

{
1 if x = y
0 if x ̸= y

and α = α1α2... and β = β1β2... .

Let (X, d) be a complete metric space, S = (X, (fk)k=1,n) an iterated func-
tion system on X and A the attractor of S. For an element ω = ω1ω2...ωm ∈
Λm(N∗

n), fω denotes fω1 ◦fω2 ◦...◦fωm and Hω denotes fω (H) for a any subset
H ⊂ X. By Hλ we will understand the set H. In particular Aω = fω (A).

2 Main results

We prove some neccesary conditions for an attractor of an iterated function
systems to have a finite number of connected components.

Theorem 2.1. Let (X, d) be a complete metric space, S = (X, (fk)k=1,n)
an iterated function system with c = max

k=1,n
Lip(fk) < 1 and A the attractor of

S. We denote by Ai = fi(A) for every i ∈ {1, ..., n}. Then the following are
equivalent:

1). The set Ai is arcwise connected for every i ∈ {1, ..., n}.
2). The set Ai is connected for every i ∈ {1, ..., n}.
3). The set Aω is arcwise connected for every ω ∈ Λm and m ∈ N∗.
4). The set Aω is connected for every ω ∈ Λm and m ∈ N∗.

Proof: Obviously 3).=⇒1).=⇒2). and 3).=⇒4).=⇒2).
1).=⇒3). If m = 1 the statement is true. Suppose now that m ≥ 2.

Let ω ∈ Λm, ω = i1i2...im where ij ∈ {1, ..., n} and j ∈ {1, ...,m}. Then
Aω = fω(A) = fi1i2...im−1(fim(A)) = fi1i2...im−1(Aim) and hence Aω is arcwise
connected, because Aim is arcwise connected and fi1i2...im−1

is continuous.
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2).=⇒4). If m = 1 the statement is true. Suppose now that m ≥ 2. Let
ω ∈ Λm, ω = i1i2...im where ij ∈ {1, ..., n} and j ∈ {1, ...,m}. Then Aω =
fω(A) = fi1i2...im−1

(fim(A)) = fi1i2...im−1
(Aim) and hence Aω is connected,

because Aim is connected and fi1i2...im−1 is continuous.

2).=⇒1). We have thatA =
n
∪

j=1
Aj which impliesAi = fi(A) = fi

(
n
∪

j=1
Aj

)
=

n
∪

j=1
fi(Aj) =

n
∪

j=1
Aij . We also have that Ai is a connected set for every i ∈

{1, ...,m}. That means that the family of sets (Aij)j=1,n is connected for ev-
ery i ∈ {1, ..., n}.

We define now the following set: P = {f : A × A × [0, 1] −→ A such
that f(Ai × Ai × [0, 1]) ⊂ Ai , f(p, q, 0) = p and f(p, q, 1) = q for every
(p, q) ∈ Ai ×Ai and i ∈ {1, ..., n}}. On P we define the following metric:

dP (f, g) = sup
(x,t,y)∈A×A×[0,1]

d(f(x, y, t), g(x, y, t)) for every f, g ∈ P.

In that way (P, dP ) becomes a complete metric space. Let i ∈ {1, ..., n} be
fixed. For every (p, q) ∈ Ai×Ai there exist np,q ∈ {1, ..., n}, {ip,qk }k=0,np,q−1 ⊂
{1, ..., n} and {xp,q

k }k=0,np,q ⊂ Ai such that p = xp,q
0 , q = xp,q

np,q and xp,q
k , xp,q

k+1 ∈
Aiip,qk

for every k ∈ {0, ..., np,q−1}. Now for every f ∈ P we define the function

Tf ∈ P in the following way: Tf(p, q, t) = fi(f(y
p,q
k , zp,qk , np,qt− k)) for every

t ∈ [ k
np,q ,

k+1
np,q ], where yp,qk ∈ fi

−1(xp,q
k ) ∈ Aip,qk

, zp,qk ∈ fi
−1(xp,q

k+1) ∈ Aip,qk

for every k ∈ {0, ..., np,q − 1}. We will make some notations: T 0f = f and
Tmf = Tf ◦ Tf ◦ ... ◦ Tf︸ ︷︷ ︸

m times

, where m ∈ N∗. Then dP (Tf, Tg) ≤ c · dP (f, g) and

inductively it results that dP (T
mf, Tmg) ≤ cm · dP (f, g)

m→∞−→ 0 for every

f, g ∈ P. Hence there exists f∗ ∈ P such that Tmf
m→∞−→ f∗ in P. We denote

now by ωt(f) = lim
ε→0

sup
x,y∈(t−ε,t+ε)

d(f(x), f(y)) the oscilation of a function f ∈ P

in the point t ∈ [0, 1], by fp,q(t) = f(p, q, t), where (p, q, t) ∈ Ai × Ai × [0, 1]
and by Ω(Tf) = sup

(p,q,t)∈Ai×Ai×[0,1]

ωt(Tfp,q). Hence we obtain that Ω(Tf) =

sup
(p,q,t)∈Ai×Ai×[0,1]

ωt(Tfp,q) ≤ Lip(fi) · sup
(p,q,t)∈Ai×Ai×[0,1]

ωt(fp,q) ≤ c · Ω(f) and

inductively Ω(Tmf) ≤ cm ·Ω(f) m→∞−→ 0. Thus Ω(f∗) = 0 and so f∗ is contin-
uous with respect to t. Hence as f∗ is a continuous function between p and q,
Ai is arcwise connected.

Remark 2.1. Let (X, d) be a complete metric space, S = (X, (fk)k=1,n)
an iterated function system with c = max

k=1,n
Lip(fk) < 1 and A the attractor
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of S. We denote by Ai = fi(A) for every i ∈ {1, ..., n}. If Ai is connected
for every i ∈ {1, ..., n}, then the attractor A has a finite number of connected

components. Indeed, because A =
n
∪
i=1

Ai and Ai is connected for every i ∈
{1, ..., n}, it follows that A has a finite number of connected components.

We prove now that each connected component of an attractor with a finite
number of connected components is also arcwise connected. The result does
not remain true when the attractor has an infinite number of components.

Theorem 2.2. Let (X, d) be a complete metric space, S = (X, (fi)i=1,n)
an iterated function system with c = max

k=1,n
Lip(fk) < 1 and A the attractor

of S. If A has a finite number of connected components then each connected
component is arcwise connected.

Proof: Let K1,K2, ...,Km be the connected components of A. Since Ki ⊂
A for every i ∈ {1, ...,m} is a closed set included in a compact one, we obtain
that each connected component is compact. We consider now the functions
F j
i : Kj −→ X, F j

i (x) = fi(x) for every x ∈ Kj , i ∈ {1, ..., n} and j ∈
{1, ...,m}. Because the functions F j

i are continuous and Kj is connected for

every i ∈ {1, ..., n} and j ∈ {1, ...,m}, we have that F j
i (Kj) is a connected set

in X and hence has to be included in one connected component.

We consider the product spaceK =
m
⊓
i=1

Ki and for every (x1, ..., xm), (y1, ..., ym) ∈
K we define the metric:

dmax((x1, ..., xm), (y1, ..., ym)) = max{d(x1, y1), ..., d(xm, ym)}.

Thus (K, dmax) becomes a metric space. Because K1,K2, ...,Km are com-
pact sets, it follows that (K, dmax) is a compact metric space, hence it is
complete.

We introduce now some notations:
a). p1 : {1, ..., n} × {1, ...,m} −→ {1, ..., n} , p1(x, y) = x is the projection

on the first component and p2 : {1, ..., n}×{1, ...,m} −→ {1, ...,m} , p2(x, y) =
y is the projection on the second component.

b). J = {φ : {1, ...,m} −→ {1, ..., n} × {1, ...,m} | θ(φ(j)) = j for every
j ∈ {1, ...,m}, where θ : {1, ..., n} × {1, ...,m} −→ {1, ...,m} is the unique
indice such that F j

i (Kj) = fi(Kj) ⊂ Kθ(i,j)}.
c). Mr = {(i, j) ∈ {1, ..., n} × {1, ...,m}| r = θ(i, j)} for every r ∈

{1, ...,m}.
d). For φ ∈ J we define the functions Fφ : K −→ K for every (x1, ..., xm) ∈

K by:



Topological properties of the attractors of iterated function systems 123

Fφ(x1, ..., xm) = (F
p2(φ(1))
p1(φ(1)) (xp2(φ(1))), ..., F

p2(φ(m))
p1(φ(m)) (xp2(φ(m)))) =

(fp1(φ(1))(xp2(φ(1))), ..., fp1(φ(m))(xp2(φ(m))))

With these notations we have that:

Lip(Fφ) = sup
max{d(x1,y1),...,d(xm,ym)}>0

d(Fφ(x1, x2, ..., xm), Fφ(y1, y2, ..., ym))

max{d(x1, y1), ..., d(xm, ym)}
≤

n
max
i=1

Lip(fi) = c < 1.

Thus Fφ is a contraction for every φ ∈ J and we can consider now the
iterated function system S1 = (K, (Fφ)φ∈J). We will prove that K is the
attractor of S1. It is obvious that Fφ(K) ⊂ K for every φ ∈ J. Hence ∪

φ∈J

Fφ(K) ⊂ K.
On the other hand, let x = (xj)j=1,m ∈ K. We remark that Fφ(K) =

m
⊓

j=1
fp1(φ(j))(Kp2(φ(j))). Then

m
∪

j=1
Kj = A =

n
∪
i=1

fi(A) =
n
∪
i=1

m
∪

j=1
fi(Kj),

which implies that Kr = ∪
(i,j)∈Mr

fi(Kj) for every r ∈ {1, ...,m}. Hence there

exist ir, jr ∈ {1, .., n} such that xr ∈ fir (Kjr ) for all r ∈ {1, ...,m}. Let φx :
{1, ...,m} −→ {1, ..., n} × {1, ...,m} be a function defined by φx(r) = (ir, jr).
It results that x ∈ Fφx

(K) and hence K ⊂ ∪
φ∈J

Fφ(K).

In this way we proved that K is the attractor of S1. Since K is connected,
it follows from theorem 1.3. that K is arcwise connected. Thus Ki is arcwise
connected for every i ∈ {1, ...,m}.

3 Examples

We give now some examples of attractors with a finite number of connected
components.

Example 3.1. Let n ∈ N, n ≥ 3. We consider the function f : [0, 1] −→
[0, 1] defined by

f(x) =


x
2 , if x ∈ [0, 1

n ]
1
2n , if x ∈ [ 1n ,

n−1
n ]

nx−n+2
2n , if x ∈ [n−1

n , 1]
.

Then Lip(f) = 1
2 . Let g : [0, 1] −→ [0, 1] be a function defined by g(x) =

1 − f(1 − x). Then Lip(g) = 1
2 . We consider now the following iterated

function system S = ([0, 1], {f, g}). Then A = [0, 1
n ] ∪ [n−1

n , 1] is the attractor
of S. Indeed:
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f(A) = f([0, 1
n ] ∪ [n−1

n , 1]) = f([0, 1
n ]) ∪ f([n−1

n , 1]) =
[0, 1

2n ] ∪ [ 1
2n ,

1
n ] = [0, 1

n ]

and

g(A) = g([0, 1
n ] ∪ [n−1

n , 1]) = g([0, 1
n ]) ∪ g([n−1

n , 1]) =
(1− f([n−1

n , 1])) ∪ (1− f([0, 1
n ])) =

(1− [ 1
2n ,

1
n ]) ∪ (1− [0, 1

2n ] =
[n−1

n , 2n−1
2n ] ∪ [ 2n−1

2n , 1] = [n−1
n , 1].

So FS(A) = A. Thus the attractor of S is the set A = [0, 1
n ] ∪ [n−1

n , 1].
We have that A1 = f(A) = [0, 1

n ] and A2 = g(A) = [n−1
n , 1]. Since n ≥ 3, it

follows that A it is not a connected set but it has two connected components.

Example 3.2. We consider the space R2 endowed with the euclidean met-
ric and the iterated function system S = (R2, (fk)k=0,n−1), where fk(x, y) =

(x+k
n , k) for every k ∈ {0, ..., n − 1}. Then the attractor of S is the set

A =
n−1
∪

k=0
[ kn ,

k+1
n ]× {k}. Indeed, for every k ∈ {0, ..., n− 1}, we have that:

fk(A) = fk

(
n−1
∪
i=0

[ in ,
i+1
n ]× {i}

)
=

n−1
∪
i=0

fk([
i
n ,

i+1
n ], i) =

n−1
∪
i=0

(
[ i+nk

n2 , i+1+nk
n2 ]× {k}

)
= [ kn ,

k+1
n ]× {k}.

Thus A =
n−1
∪

k=0

(
[ kn ,

k+1
n ]× {k}

)
=

n−1
∪

k=0
fk(A). We remark that A has n

connected components which are arcwise connected.

Remark 3.1. Theorem 2.2. does not remain true when the attractor
has a infinite number of connected components. The following example is
an attractor of an iterated function system with a countable number of con-
nected components such that one of the connected components is not arcwise
connected.

Example 3.3. We consider the following set of the plane R2 endowed with

the euclidian metric A = ({0}× [0, 1]) ∪ ∪
n≥0

(
{ 1
2n } × [0, 1]

)
= A∗∪

(
∪

n≥0
An

)
,

where A∗ = {0} × [0, 1] and An = { 1
2n } × [0, 1] for every n ∈ N. Then A is

the attractor of the iterated function system S1 = (A, {f0, f1, f2, f3}), where
fi : A −→ R2 for every i ∈ {0, 1, 2, 3} are defined by f0(x, y) = (x2 ,

y
2 ),

f1(x, y) = (x2 ,
y+1
2 ), f2(x, y) = (1, y

2 ), f3(x, y) = (1, y+1
2 ). We remark that

A has an infinite number of connected components. We consider now the
function f4 : A −→ R2 defined by:
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f4(x, y) =

 (x2 − y
22n+2 ,

y
2 + 3), if (x, y) ∈ A2n for every n ∈ N,

(x4 + y
22n+3 ,

y
2 + 3), if (x, y) ∈ A2n+1 for every n ∈ N,

(0, y
2 + 3) , if (x, y) ∈ A∗.

Then f4 is a contraction and B = f4(A) is a connected set which is not
arcwise connected. In fact f4 transforms any vertical line of A into an oblique
line of B such that the segment determined by P (1, 0) and Q(1, 1) goes into
the segment determined by P

′
( 12 , 3) and Q

′
( 14 ,

7
2 ), the segment determined

by P1(
1
2 , 0) and Q1(

1
2 , 1) goes into the segment determined by P

′

1(
1
8 , 3) and

Q
′

1(
1
4 ,

7
2 ) = Q

′
( 14 ,

7
2 ), and so on. In the end the segment determined by O(0, 0)

and R(0, 1) goes into the segment determined by O
′
(0, 3) and R

′
(0, 7

2 ).
Let g0, g1, g2, g3, g4 : A∪B −→ A∪B be the functions defined by gi|A = fi

for i ∈ {0, 1, 2, 3, 4}, g0(B) = {(0, 0)}, g1(B) = {(0, 1)}, g2(B) = {(1, 0)} ,
g2(B) = {(1, 1)} and g4(B) = {(0, 3)}. Then the set A ∪B is the attractor of
the iterated function system S2 = (A ∪ B, {g0, g1, g2, g3, g4}) and we remark
that A ∪ B has an infinite number of connected components, but not all the
components are arcwise connected.
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