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An iterative method for finding common
solutions of system of equilibrium problems
and fixed point problems in Hilbert spaces

Qiao-Li Dong, Yonghong Yao

Abstract

In this paper, we introduce an iterative algorithm for finding a com-
mon element of the set of solutions of a system of equilibrium problems
and of the set of fixed points of a nonexpansive mapping in a Hilbert
space. We prove the strong convergence of the proposed iterative al-
gorithm to the unique solution of a variational inequality, which is the
optimality condition for a minimization problem. Our results extend
and generalize related work.

1 Introduction

Let C be a closed convex subset of a Hilbert space H. Then, a mapping T of
C into itself is called nonexpansive if ∥Tx − Ty∥ ≤ ∥x − y∥, for all x, y ∈ C.
We denote by F (T ) the set of fixed points of T .

Let C be a nonempty closed convex subset of H, Γ be an arbitrary index
set, and {Fk}k∈Γ be a countable family of bifunctions from C × C to R.
Combettes and Hirstoaga [5] considered the following system of equilibrium
problems:

Finding x ∈ C such that Fk(x, y) ≥ 0, ∀k ∈ Γ, ∀y ∈ C. (1.1)

The formulation (1.1) covers, as special cases, monotone inclusion problems,
saddle point problems, minimization problems, optimization problems, varia-
tional inequality problems, Nash equilibria in noncooperative games and vari-
ous forms of feasibility problems (see [5, 2, 6] and the references therein). If Γ
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is a singleton, then problem (1.1) becomes the following equilibrium problem:

Finding x ∈ C such that F (x, y) ≥ 0, ∀y ∈ C. (1.2)

The set of solutions of (1.2) is denoted by EP (F ). It is shown [5] that under
suitable hypotheses on F (to be stated precisely in Section 2), the mapping
TF
r : H → C defined by

TF
r (x) =

{
z ∈ C : F (z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C

}
is single-valued and firmly nonexpansive and satisfies F (TF

r ) = EP (F ).
Let {Ti}Ni=1 be a finite family of nonexpansive mappings with ∩N

i=1F (Ti) ̸=
∅, Atsushiba and Takahashi [1], and Yao [14] defined the mapping Wn as
follows:

Un,1 = λn,1T1 + (1− λn,1)I,
Un,2 = λn,2T2Un,1 + (1− λn,2)I,
...
Un,N−1 = λn,N−1TN−1Un,N−2 + (1− λn,N−1)I,
Wn := Un,N = λn,NTNUn,N−1 + (1− λn,N )I.

(1.3)

Recently, the mapping Wn has been intensively studied and applied to develop
various iterative algorithms for finding common solutions of fixed points of a
finite family of nonexpansive mappings and of other problems (see [1, 4, 10, 14,
15]). Since, for {Fk}Nk=1 satisfying suitable hypotheses, mappings {TFk

rk,n
}Nk=1,

n > 0, are nonexpansive, inspiring by Atsushiba and Takahashi [1], and Yao
[14], we define the new mapping Wn as follows:

Un,1 = λn,1T
F1
r1,n + (1− λn,1)I,

Un,2 = λn,2T
F2
r2,nUn,1 + (1− λn,2)I,

...

Un,N−1 = λn,N−1T
FN−1
rN−1,nUn,N−2 + (1− λn,N−1)I,

Wn := Un,N = λn,NTFN
rN,n

Un,N−1 + (1− λn,N )I.

(1.4)

Such a mapping Wn is called the Wn-mapping generated by {TFk
rk,n

}Nk=1 and

{λn,k}Nk=1. Nonexpansivity of TFk
rk,n

yields the nonexpansivity of Wn.

For system of equilibrium problems {Fk}Nk=1, Saeidi [10] proposed the fol-
lowing scheme with respect to a semigroup {T (t), t ∈ S} of nonexpansive
mappings and a finite family of nonexpansive mappings {Ti}Mi=1:

xn+1 = ϵnγf(xn)+βxn+((1−β)I−ϵnA)T (µn)WnT
FN
rN,n

. . . TF2
r2,nT

F1
r1,nxn (1.5)
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where T (µn) ∈ {T (t), t ∈ S} andWn is generated by T1, . . . , TM and λn,1, . . . , λn,M .
He proved that under some hypotheses, both sequences {xn} and {TFk

rk,n
}Nk=1

converge strongly to a point x ∈ F = F ({T (t), t ∈ S}) ∩ (∩M
i=1F (Ti)) ∩

(∩N
i=1EP (Fi)) which is the unique solution of the variational inequality

⟨(A− γf)x∗, x− x∗⟩ ≥ 0 ∀x ∈ F.

Very recently, Peng and Yao [9] introduced the following scheme for system
of equilibrium problems {Fk}Nk=1, the monotone mapping A and an infinite
family of nonexpansive mappings {Si}∞i=1:

x1 = x ∈ C

un = TFN
rN,n

T
FN−1
rN−1,n . . . TF2

r2,nT
F1
r1,nxn

yn = PC(un − λnAun),
xn+1 = αnf(Snxn) + βnxn + γnSnPC(un − λnAyn),

and showed that sequences {xn}, {un} and {yn} converge strongly to the same
point w ∈ Ω = (∩∞

i=1Si) ∩ V I(C,A) ∩ (∩N
k=1EP (Fk)) where w = PΩf(w).

In this paper, motivated by Yao [14], Saeidi [10] and Peng and Yao [9], we
introduce the following iterative algorithm for finding a common element of
the set of solutions of a system of equilibrium problems {Fk}Nk=1 and of the
set of fixed points of a nonexpansive mapping S:

xn+1 = ϵnγf(xn) + βxn + ((1− β)I − ϵnA)SWnxn

where Wn is defined by (1.4). We prove that under certain appropriate as-
sumptions on parameters, the sequences {xn} and {Wnxn} converge strongly
to x ∈ Ω = F (S) ∩ (∩M

k=1EP (Fk)) which is the unique solution of the varia-
tional inequality

⟨(A− γf)x∗, x− x∗⟩ ≥ 0 ∀x ∈ Ω. (1.6)

We extend and generalize results of Saeidi [10] and Peng and Yao [9] from

TFN
rN,n

T
FN−1
rN−1,n . . . TF2

r2,nT
F1
r1,n to general Wn mapping defined by (1.4).

2 Preliminaries

Let C be a closed convex subset of H. Recall that the (nearest point) pro-
jection PC from H onto C assigns to each x ∈ H the unique point PCx ∈ C
satisfying the property

∥x− PCx∥ = min
y∈C

∥x− y∥.

The following characterizes the projection PC .
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Lemma 2.1. ([12]) Given x ∈ H and y ∈ C. Then PCx = y if and only if
there holds the inequality

⟨x− y, y − z⟩ ≥ 0 ∀z ∈ C.

Lemma 2.2. ([11]) Let {xn} and {zn} be bounded sequences in a Banach
space X and let {βn} be a sequence in [0, 1] with 0 < lim infn→∞ βn and
lim supn→∞ βn < 1. Suppose

xn+1 = βnxn + (1− βn)zn

for all integers n ≥ 0 and

lim sup
n→∞

(∥zn+1 − zn∥ − ∥xn+1 − xn∥) ≤ 0.

Then limn→∞ ∥xn − zn∥ = 0.

Lemma 2.3. ([13]) Let {an} be a sequence of nonnegative real numbers
satisfying the property:

an+1 ≤ (1− γn)an + γnβn, n ≥ 0

where {γn} is a sequence in (0,1) and {βn} is a sequence in R such that

(i)
∞∑

n=1
γn = +∞;

(ii) lim sup
n→∞

βn ≤ 0 or
∞∑

n=1
|γnβn| < +∞.

Then limn→∞ an = 0.

Lemma 2.4. ([8]) Assume that A is a strongly positive linear bounded oper-
ator on a Hilbert space H with coefficient γ̄ > 0 and 0 < ρ ≤ ∥A∥−1. Then
∥I − ρA∥ ≤ 1− ργ̄.

Lemma 2.5. ([5]) Let C be a nonempty closed convex subset of H and
F : C × C → R satisfy following conditions:

(A1) F (x, x) = 0, ∀x ∈ C;

(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0, ∀x, y ∈ C;

(A3) lim sup
t→0+

F (tz + (1− t)x, y) ≤ F (x, y), ∀x, y, z ∈ C;

(A4) for each x ∈ C, F (x, ·) is convex and lower semicontinuous.
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For x ∈ C and r > 0, set TF
r : H → C to be

TF
r (x) =

{
z ∈ C : F (z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C

}
.

Then TF
r is well defined and the following hold:

1. TF
r is single-valued;

2. TF
r is firmly nonexpansive [7], i.e., for any x, y ∈ E,

∥TF
r x− TF

r y∥2 ≤ ⟨TF
r x− TF

r y, x− y⟩;

3. F (TF
r ) = EP (F );

4. EP (F ) is closed and convex.

By the proof of Lemma 5 in [3], we have following lemma.

Lemma 2.6. Let C be a nonempty closed convex subset of a Hilbert space H
and F : C × C → R be a bifunction. Let x ∈ C and r1, r2 ∈ (0,∞). Then

∥TF
r1x− TF

r2x∥ ≤
∣∣∣∣1− r2

r1

∣∣∣∣ (∥TF
r1x∥+ ∥x∥). (2.1)

From the definition 2.6 given by Colao, Marino and Xu [4], we can introduce
following definition.

Definition 2.7. Let C be a nonempty convex subset of a Banach space. Let
Fi, i ∈ {1, 2, . . . , N} be bifunctions from C ×C to R satisfying (A1)-(A4) and
λ1, · · · , λN be real numbers such that 0 ≤ λi ≤ 1 for i = 1, 2, · · · , N . We
define a mapping W of C into itself as follows:

U1 = λ1T
F1
r1 + (1− λ1)I,

U2 = λn,2T
F2
r2 Un,1 + (1− λn,2)I,

...

UN−1 = λN−1T
FN−1
rN−1 UM−2 + (1− λN−1)I,

W := UN = λNTFN
rN UN−1 + (1− λN )I,

(2.2)

Such a mapping W is called the W -mapping generated by TF1
r1 , . . . , TFN

rN and
λ1, . . . , λN .

Following the proof presented by Atsushiba and Takahashi [1] and using
F (TFi

ri ) = EP (Fi), i ∈ {1, . . . , N}, we have following lemma.
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Lemma 2.8. Let C be a nonempty closed convex set of a strictly convex
Banach space and Fi, i ∈ {1, 2, . . . , N} be bifunctions from C × C to R sat-
isfying (A1)-(A4) and ∩N

i=1EP (Fi) ̸= ∅. Let λ1, . . . , λN be real numbers such
that 0 < λi < 1 for i = 1, . . . , N − 1 and 0 < λN ≤ 1. Let W be the W-
mapping of C into itself generated by TF1

r1 , . . . , TFN
rN and λ1, . . . , λN . Then

F (W ) = ∩N
i=1EP (Fi).

Lemma 2.9. Let C be a nonempty convex set of a Banach space and Fi,
i ∈ {1, 2, . . . , N} be bifunctions from C × C to R satisfying (A1)-(A4). Let
{λn,i}Ni=1 be sequences in [0, 1] such that λn,i → λi and {ri,n} be sequences in
(0,∞) such that ri,n → ri, ri ∈ (0,∞) (i = 1, . . . , N). Moreover for every
n ∈ N, let W be the W-mappings generated by TF1

r1 , . . . , TFN
rN and λ1, . . . , λN

and Wn be the Wn-mappings generated by TF1
r1,n , . . . , T

FN
rN,n

and λn,1, . . . , λn,N .
Then for every x ∈ C, it follows that

lim
n→∞

∥Wnx−Wx∥ = 0. (2.3)

Proof. Let x ∈ C. Uk and Un,k be generated by TF1
r1 , . . . , TFN

rN and λ1, . . . , λN

and TF1
r1,n , . . . , T

FN
rN,n

and λn,1, . . . , λn,N respectively, as in Definition 2.7. From
Lemma 2.6, we have

∥Un,1x− U1x∥ = ∥λn,1T
F1
r1,nx+ (1− λn,1)x− λ1T

F1
r1 x− (1− λ1)x∥

= ∥λn,1(T
F1
r1,nx− TF1

r1 x) + (λn,1 − λ1)(T
F1
r1 x− x)∥

≤ λn,1∥TF1
r1,nx− TF1

r1 x∥+ |λn,1 − λ1|∥TF1
r1 x− x∥

≤
∣∣∣∣1− r1,n

r1

∣∣∣∣ (∥TF1
r1 x∥+ ∥x∥) + |λn,1 − λ1|(∥TF1

r1 x∥+ ∥x∥)

≤
(∣∣∣∣1− r1,n

r1

∣∣∣∣+ |λn,1 − λ1|
)
(∥TF1

r1 x∥+ ∥x∥).

Similarly, we get, for k ∈ {2, ..., N},

∥Un,kx− Ukx∥ = ∥λn,kT
Fk
rk,n

Un,k−1x+ (1− λn,k)x− λkT
Fk
rk

Uk−1x− (1− λk)x∥

= ∥λn,k(T
Fk
rk,n

Un,k−1x− TFk
rk,n

Uk−1x) + λn,k(T
Fk
rk,n

Uk−1x− TFk
rk

Uk−1x)

+ (λn,k − λk)(T
Fk
rk

Uk−1x− x)∥
≤ λn,k∥TFk

rk,n
Un,k−1x− TFk

rk,n
Uk−1x∥+ λn,k∥TFk

rk,n
Uk−1x− TFk

rk
Uk−1x∥

+ |λn,k − λk|(∥TFk
rk

Uk−1x∥+ ∥x∥)

≤ ∥Un,k−1x− Uk−1x∥+
∣∣∣∣1− rk,n

rk

∣∣∣∣ (∥TFk
rk

Uk−1x∥+ ∥Uk−1x∥)

+ |λn,k − λk|(∥TFk
rk

Uk−1x∥+ ∥x∥).
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Hence,

∥Wnx−Wx∥ = ∥Un,Nx− UNx∥

≤
N∑

k=2

(∣∣∣∣1− rk,n
rk

∣∣∣∣ (∥TFk
rk

Uk−1x∥+ ∥Uk−1x∥) + |λn,k − λk|(∥TFk
rk

Uk−1x∥+ ∥x∥)
)

+

(∣∣∣∣1− r1,n
r1

∣∣∣∣+ |λn,1 − λ1|
)
(∥TF1

r1 x∥+ ∥x∥).

Since for every k ∈ {1, . . . , N}, limn→∞ |λn,k − λk| = 0 and limn→∞ |rk,n −
rk| = 0, the result follows.

Lemma 2.10. For all x, y ∈ H, there holds the inequality

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩.

3 Main result

Theorem 3.1. Let C be nonempty closed convex subset of a Hilbert space H.
Let S be a nonexpansive mapping from H into itself, and Fi, i ∈ {1, 2, . . . , N}
be bifunctions from C×C to R satisfying (A1)-(A4) and F (S)∩(∩N

k=1EP (Fk)) ̸=
∅. Let A be a strongly positive bounded linear operator with coefficient γ̄ and
f be an α-contraction on H for some 0 < α < 1. Moreover, let {ϵn} be a
sequence in (0, 1), {λn,i}Ni=1 a sequence in [a, b] with 0 < a ≤ b < 1, {rn} a
sequence in (0,∞) and γ and β two real numbers such that 0 < β < 1 and
0 < γ < γ̄/α. Assume

(B1) limn ϵn = 0;

(B2)
∑∞

n=1 ϵn = ∞;

(C1) lim infn rj,n > 0, for every j ∈ {1, . . . , N};

(C2) limn rj,n+1/rj,n = 1, for every j ∈ {1, . . . , N};

(D1) limn |λn,j − λn−1,j | = 0, for every j ∈ {1, . . . , N}.

If {xn} is the sequence generated by x1 ∈ H and ∀n ≥ 1,

xn+1 = ϵnγf(xn) + βxn + ((1− β)I − ϵnA)SWnxn, (3.1)

then {xn} and {Wnxn} converge strongly to x∗ ∈ Ω = F (S) ∩ (∩N
k=1EP (Fk))

which is the unique solution of the variational inequality (1.6). Equivalently,
we have PΩ(I −A+ γf)x∗ = x∗.
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Proof. Since A is a strongly positive bounded linear operator with coefficient
γ̄, A

1−β is a strongly positive bounded linear operator with coefficient γ̄
1−β . By

ϵn → 0, we may assume, with no loss of generality, that ϵn ≤ (1 − β)∥A∥−1.
From Lemma 2.4, we know that

∥(1− β)I − ϵnA∥ = (1− β)∥I − ϵnA

1− β
∥ ≤ (1− β)(1− ϵnγ̄

1− β
) = 1− β − ϵnγ̄.

We shall divide the proof into several steps.
Step 1. The sequence {xn} is bounded.
Proof of Step 1. Put p ∈ Ω. Then noting (1.4), nonexpansivity of Wn and
p = TFi

ri,np, i ∈ {1, . . . , N}, we derive that

∥Wnxn − p∥ ≤ ∥xn − p∥.

It follows that

∥xn+1 − p∥ = ∥ϵn(γf(xn)−Ap) + β(xn − p) + ((1− β)I − ϵnA)(SWnxn − p)∥

≤ (1− ϵn(γ̄ − αγ))∥xn − p∥+ ϵn(γ̄ − αγ)
∥γf(p)−Ap∥

γ̄ − αγ
,

which implies that

∥xn − p∥ ≤ max

{
∥x1 − p∥, ∥γf(p)−Ap∥

γ̄ − αγ

}
, ∀n ≥ 1.

Step 2. Let {wn} be a bounded sequence in H. Then

lim
n→∞

∥Wn+1wn −Wnwn∥ = 0. (3.2)

Proof of Step 2. Let j ∈ {0, . . . , N − 2} and set

M := sup
n∈N

∥wn∥+ ∥TF1
r1,nwn∥+

N∑
j=2

(∥TFj
rj,nUn,j−1wn∥+ ∥Un,j−1wn∥)

 < ∞.
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It follows from (1.4) and Lemma 2.6 that

∥Un+1,N−jwn − Un,N−jwn∥ = ∥λn+1,N−jT
FN−j
rN−j,n+1

Un+1,N−j−1wn + (1− λn+1,N−j)wn

− λn,N−jT
FN−j
rN−j,n

Un,N−j−1wn − (1− λn,N−j)wn∥

≤ λn+1,N−j∥TFN−j
rN−j,n+1

Un+1,N−j−1wn − TFN−j
rN−j,n+1

Un,N−j−1wn∥

+ λn+1,N−j∥TFN−j
rN−j,n+1

Un,N−j−1wn − TFN−j
rN−j,n

Un,N−j−1wn∥

+ |λn+1,N−j − λn,N−j |∥TFN−j
rN−j,n

Un,N−j−1wn − wn∥

≤ ∥Un+1,N−j−1wn − Un,N−j−1wn∥+
∣∣∣∣1− rN−j,n+1

rN−j,n

∣∣∣∣ (∥TFN−j
rN−j,n

Un,N−j−1wn∥

+ ∥Un,N−j−1wn∥) + |λn+1,N−j − λn,N−j |(∥TFN−j
rN−j,n

Un,N−j−1wn∥+ ∥wn∥)

≤ ∥Un+1,N−j−1wn − Un,N−j−1wn∥+M

(∣∣∣∣1− rN−j,n+1

rN−j,n

∣∣∣∣+ |λn+1,N−j − λn,N−j |
)
.

Thus, repeatedly using the above recursive inequalities, we deduce

∥Wn+1wn −Wnwn∥ = ∥Un+1,Nwn − Un,Nwn∥

≤ M
N∑
j=2

(∣∣∣∣1− rj,n+1

rj,n

∣∣∣∣+ |λn+1,j − λn,j |
)

+

(∣∣∣∣1− r1,n+1

r1,n

∣∣∣∣+ |λn+1,1 − λn,1|
)
(∥TF1

r1,nwn∥+ ∥xn∥)

≤ M
N∑
j=1

(∣∣∣∣1− rj,n+1

rj,n

∣∣∣∣+ |λn+1,j − λn,j |
)
.

(3.3)
Now by condition (C2), (D1) and using (3.3), we obtain (3.2) and Step 2 is
proven.
Step 3. limn→∞ ∥xn+1 − xn∥ = 0.
Proof of Step 3. Rewrite the iterative process (3.1) as follows:

xn+1 = ϵnγf(xn) + βxn + ((1− β)I − ϵnA)SWnxn

= βxn + (1− β)
ϵnγf(xn) + ((1− β)I − ϵnA)SWnxn

1− β

= βxn + (1− β)vn,

where

vn =
ϵnγf(xn) + ((1− β)I − ϵnA)SWnxn

1− β
. (3.4)
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Since {xn} is bounded, we have, for some big enough constant M > 0,

∥vn+1 − vn∥ =
∥∥∥ϵn+1γf(xn+1)− γϵnf(xn)

1− β
+ (SWn+1xn+1 − SWnxn)

− ϵn+1ASWn+1xn+1 − ϵnASWnxn

1− β

∥∥∥
≤ γ

1− β
(ϵn+1∥f(xn+1)∥+ ϵn∥f(xn)∥) + ∥Wn+1xn+1 −Wnxn∥

+
1

1− β
(ϵn+1∥ASWn+1xn+1∥+ ϵn∥ASWnxn∥)

≤ ∥Wn+1xn+1 −Wnxn+1∥+ ∥Wnxn+1 −Wnxn∥+M(ϵn+1 + ϵn)

≤ ∥Wn+1xn+1 −Wnxn+1∥+ ∥xn+1 − xn∥+M(ϵn+1 + ϵn).
(3.5)

By conditions on {ϵn}, and Steps 2, we immediately conclude from (3.5)

lim sup
n→∞

(∥vn+1−vn∥−∥xn+1−xn∥) ≤ lim sup
n→∞

(∥Wn+1xn+1−Wnxn+1∥+M(ϵn+1+ϵn)) = 0.

By Lemma 2.2, we obtain

lim
n→∞

∥xn − vn∥ = 0,

which implies

lim
n→∞

∥xn+1 − xn∥ = lim
n→∞

(1− β)∥xn − vn∥ = 0.

Step 4. limn→∞ ∥xn − SWnxn∥ = 0.
Proof of Step 4. We have

∥xn − SWnxn∥ ≤ ∥xn − xn+1∥+ ∥xn+1 − SWnxn∥
= ∥xn − xn+1∥+ ∥ϵn(γf(xn)−ASWnxn) + β(xn − SWnxn)∥
≤ ∥xn − xn+1∥+ ϵn∥γf(xn)−ASWnxn∥+ β∥xn − SWnxn∥.

It follows from Step 3 that

∥xn − SWnxn∥ ≤ 1

1− β
(∥xn − xn+1∥+ ϵn∥γf(xn)−ASWnxn∥) → 0.

Step 5. limn→∞ ∥TFk
rk,n

Un,k−1xn −Un,k−1xn∥ = 0, limn→∞ ∥TFk
rk,n

Un,k−1xn −
xn∥ = 0, k ∈ {1, . . . , N}.
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Proof of Step 5. Set Un,0 = I, then Un,1 = λn,1T
F1
r1,nUn,0 + (1 − λn,1)I. Take

v ∈ Ω, then we have, for k ∈ {0, 1, . . . , N − 1},

∥v − Un,k+1xn∥2 = ∥λn,k+1T
Fk+1
rk+1,n

Un,kv + (1− λn,k+1)v − λn,k+1T
Fk+1
rk+1,n

Un,kxn

− (1− λn,k+1)xn∥2

≤ λn,k+1∥TFk+1
rk+1,n

Un,kv − TFk+1
rk+1,n

Un,kxn∥2 + (1− λn,k+1)∥xn − v∥2.

Since T
Fk+1
rk+1,n is firmly nonexpansive, we obtain

∥TFk+1
rk+1,n

Un,kv − TFk+1
rk+1,n

Un,kxn∥2 ≤ ⟨TFk+1
rk+1,n

Un,kxn − v, Un,kxn − v⟩

=
1

2
(∥TFk+1

rk+1,n
Un,kxn − v∥2 + ∥Un,kxn − v∥2 − ∥TFk+1

rk+1,n
Un,kxn − Un,kxn∥2)

≤ ∥Un,kxn − v∥2 − ∥TFk+1
rk+1,n

Un,kxn − Un,kxn∥2.

It follows that

∥Un,k+1xn−v∥2 ≤ λn,k+1∥Un,kxn−v∥2+(1−λn,k+1)∥xn−v∥2−λn,k+1∥TFk+1
rk+1,n

Un,kxn−Un,kxn∥2,

which implies

∥Un,Nxn − v∥2 ≤ λn,N∥Un,N−1xn − v∥2 + (1− λn,N )∥xn − v∥2

≤ ΠN
i=k+2λn,i∥Un,k+1xn − v∥2 + (1−ΠN

i=k+2λn,i)∥xn − v∥2

≤ ΠN
i=k+1λn,i∥Un,kxn − v∥2 + (1−ΠN

i=k+1λn,i)∥xn − v∥2

−ΠN
i=k+1λn,i∥TFk+1

rk+1,n
Un,kxn − Un,kxn∥2

≤ ∥xn − v∥2 − aN−k∥TFk+1
rk+1,n

Un,kxn − Un,kxn∥2.
(3.6)

Set zn = γf(xn)−ASWnxn and let λ > 0 be a constant such that

λ > sup
n,k

{∥zn∥, ∥xk − v∥}.

Using Lemma 2.10 and noting that ∥ · ∥2 is convex, we derive, using (3.6)

∥xn+1 − v∥2 = ∥(1− β)(SWnxn − v) + β(xn − v) + ϵnzn∥2

≤ ∥(1− β)(SWnxn − v) + β(xn − v)∥2 + 2ϵn⟨zn, xn+1 − v⟩
≤ (1− β)∥Un,Nxn − v∥2 + β∥xn − v∥2 + 2λ2ϵn

≤ (1− β)(∥x− v∥2 − aN−k∥TFk+1
rk+1,n

Un,kxn − Un,kxn∥2)

+ β∥xn − v∥2 + 2λ2ϵn

= ∥xn − v∥2 − (1− β)aN−k∥TFk
rk,n

Un,k−1xn − Un,k−1xn∥2 + 2λ2ϵn.
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It follows, by Step 3 and condition (B1), that

∥TFk
rk,n

Un,k−1xn − Un,k−1xn∥2 ≤ 1

(1− β)aN−k
(∥xn − v∥2 − ∥xn+1 − v∥2 + 2λ2ϵn)

≤ 1

(1− β)aN−k
(2λ∥xn − xn+1∥+ 2λ2ϵn) → 0.

(3.7)
So we have, from Un,0 = I,

∥TFk
rk,n

Un,k−1xn − xn∥ ≤ ∥TFk
rk,n

Un,k−1xn − Un,k−1xn∥+ ∥Un,k−1xn − xn∥

≤ ∥TFk
rk,n

Un,k−1xn − Un,k−1xn∥+ ∥λn,k−1T
Fk−1
rk−1,n

Un,k−2xn

+ (1− λn,k−1)xn − xn∥
≤ ∥TFk

rk,n
Un,k−1xn − Un,k−1xn∥+ ∥TFk−1

rk−1,n
Un,k−2xn − xn∥

≤ · · ·

≤ ∥TF1
r1,nUn,0xn − xn∥+

k∑
i=2

∥TFi
ri,nUn,i−1xn − Un,i−1xn∥

=

k∑
i=1

∥TFi
ri,nUn,i−1xn − Un,i−1xn∥.

Combining with (3.7), we obtain

lim
n→∞

∥TFk
rk,n

Un,k−1xn − xn∥ = 0. (3.8)

Thus we get the results.
Step 6. The weak ω-limit set of {xn}, ω(xn), is a subset of Ω.
Proof of Step 6. Let z ∈ ω(xn) and {xnm} be a subsequence of {xn} weakly
converging to z. From Step 5, it follows

TFk
rk,nm

Unm,k−1xnm ⇀ z, ∀k ∈ {1, . . . , N}.

We need to show that z ∈ Ω. At first, note that by (A2) and given y ∈ C, for
k ∈ {1, 2, . . . , N}, we have

1

rk,nm

⟨y−TFk
rk,nm

Unm,k−1xnm , TFk
rk,nm

Unm,k−1xnm−Unm,k−1xnm⟩ ≥ Fk(y, T
Fk
rk,nm

Unm,k−1xnm).

Thus⟨
y − TFk

rk,nm
Unm,k−1xnm ,

TFk
rk,nm

Unm,k−1xnm − Unm,k−1xnm

rk,nm

⟩
≥ Fk(y, T

Fk
rk,nm

Unm,k−1xnm).

(3.9)



An iterative method for finding common solutions of system of equilibrium
problems and fixed point problems in Hilbert spaces 113

Step 5 and condition (C1) imply

TFk
rk,nm

Unm,k−1xnm − Unm,k−1xnm

rk,nm

→ 0,

in norm. By condition (A4), F (y, ·) is lower semicontinuous and convex, and
thus weakly semicontinuous. Therefore, letting m → ∞ in (3.8) yields

Fk(y, z) ≤ lim
m→∞

Fk(y, T
Fk
rk,nm

Unm,k−1xnm) ≤ 0,

for all y ∈ C and k ∈ {1, . . . , N}. Replacing y with yt := ty + (1 − t)z with
t ∈ (0, 1) and using (A1) and (A4), we obtain

0 = Fk(yt, yt) ≤ tFk(yt, y) + (1− t)Fk(yt, z) ≤ tFk(yt, y).

Hence Fk(ty + (1 − t)z, y) ≥ 0, for all t ∈ (0, 1) and y ∈ C. Letting t → 0+

and using (A3), we conclude Fk(z, y) ≥ 0, for all y ∈ C and k ∈ {1, . . . , N}.
Therefore

z ∈ ∩N
k=1EP (Fk).

Next show z ∈ F (S). By z ∈
∩N

k=1 EP (Fk), we have z ∈ F (Wn), i.e., z = Wnz,
∀n ≥ 1. Assume that z /∈ F (S), then z ̸= SWnz. Since Step 4, and using
Opials property of a Hilbert space, we have

lim inf
m

∥xnm − z∥ < lim inf
m

∥xnm − SWnmz∥

≤ lim inf
m

(∥xnm − SWnmxn∥+ ∥SWnmxnm − SWnmz∥)

≤ lim inf
m

∥xnm − z∥.

This is a contradiction. Therefore, z must belong to F (S).
Step 7. Let x∗ be the unique solution of the variational inequality (1.6). That
is,

⟨(A− γf)x∗, x− x∗⟩ ≥ 0, x ∈ Ω. (3.10)

Then
lim sup

n
⟨(γf −A)x∗, xn − x∗⟩ ≤ 0, x ∈ Ω. (3.11)

Proof of Step 7. Let {xnk
} be a subsequence of {xn} such that

lim
k
⟨(γf −A)x∗, xnk

− x∗⟩ = lim sup
n

⟨(γf −A)x∗, xn − x∗⟩. (3.12)

Without loss of generality, we can assume that {xnk
} weakly converges to

some z in C. By Step 6, z ∈ Ω. Thus combining (3.12) and (3.10), we get

lim sup
n

⟨(γf −A)x∗, xn − x∗⟩ = ⟨(γf −A)x∗, z − x∗⟩ ≤ 0,
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as required.
Step 8. The sequences {xn} and {Wnxn} converge strongly to x∗.
Proof of Step 8. By the definition (3.1) of {xn} and using Lemmas 2.4 and
2.10, we have

∥xn+1 − x∗∥2 = ∥[((1− β)I − ϵnA)(SWnxn − x∗) + β(xn − x∗)] + ϵn(γf(xn)−Ax∗)∥2

≤ ∥((1− β)I − ϵnA)(SWnxn − x∗) + β(xn − x∗)∥2

+ 2ϵn⟨γf(xn)−Ax∗, xn+1 − x∗⟩

= ∥(1− β)
(1− β)I − ϵnA

1− β
(SWnxn − x∗) + β(xn − x∗)∥2

+ 2ϵnγ⟨f(xn)− f(x∗), xn+1 − x∗⟩+ 2ϵn⟨γf(x∗)−Ax∗, xn+1 − x∗⟩

≤ ∥(1− β)I − ϵnA∥2

1− β
∥SWnxn − x∗∥2 + β∥xn − x∗∥2

+ ϵnγα(∥xn − x∗∥2 + ∥xn+1 − x∗∥2) + 2ϵn⟨γf(x∗)−Ax∗, xn+1 − x∗⟩

≤
(
(1− β − γ̄ϵn)

2

1− β
+ β + ϵnγα

)
∥xn − x∗∥2 + ϵnγα∥xn+1 − x∗∥2

+ 2ϵn⟨γf(x∗)−Ax∗, xn+1 − x∗⟩.

It follows that

∥xn+1 − x∗∥2 ≤
(
1− 2(γ̄ − αγ)ϵn

1− αγϵn

)
∥xn − x∗∥2

+
ϵn

1− αγϵn

(
2⟨γf(x∗)−Ax∗, xn+1 − x∗⟩+ γ̄2ϵn

1− β
∥xn − x∗∥2

)
.

Now, from conditions (B1) and (B2), Step 7 and Lemma 2.3, we get ∥xn −
x∗∥ → 0. Namely, xn → x∗ in norm. Finally, noticing ∥Wnxn − x∗∥ ≤
∥xn − x∗∥, we also conclude that Wnxn → x∗ in norm.
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