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Proto-Boolean rings

Sergiu Rudeanu

Abstract

We introduce the family of R-based proto-Boolean rings associated
with an arbitrary commutative ring R. They generalize the proto-
Boolean algebra devised by Brown [4] as a tool for expressing in modern
language Boole’s research in The Laws of Thought. In fact the algebraic
results from [4] are recaptured within the framework of proto-Boolean
rings, along with other theorems. The free Boolean algebras with a fi-
nite or countable set of free generators, and the ring of pseudo-Boolean
functions, used in operations research for problems of 0—1 optimization,
are also particular cases of proto-Boolean rings.

The deductive system in Boole’s Laws of Thought [3] involves both an alge-
braic calculus and a “general method in Logic” making use of this calculus. Of
course, Boole’s treatises do not conform to contemporary standards of rigour;
for instance, the modern concept of Boolean algebra was in fact introduced by
Whitehead [12] in 1898; see e.g. [9].

Several authors have addressed the problem of presenting Boole’s creation
in modern terms. Thus Beth [1], Section 25 summarizes the approach of Hoff-
Hansen and Skolem, who describe the algebra devised by Boole as the quotient
of an algebra of polynomial functions by the ideal generated by 22 — z, 3% —
y,22 — z,... . Undoubtedly the most comprehensive analysis of the Laws of
Thought is that offered by Hailperin [5] in terms of multisets. Quite recently,
Brown [4], taking for granted the existence of formal entities described as
polynomials with integer coefficients, subject to the usual computation rules
except that the indeterminates are idempotent (z7 = z;), analyses Chapters
V-X of [3] within this elementary framework, which he calls proto-Boolean
algebra.
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The starting point of this paper had been the simple idea of applying the
factorization technique recalled above in order to obtain an actual construc-
tion of Brown’s polynomials, using the conventional ring R[X] with arbitrary
X. Then it ocurred to us that even R[X] can be obtained by a similar factor-
ization technique from a more general structure R[[S]], known as a monoidal
ring, which in its turn can be constructed as a ring of functions from S to
R. Summarizing, proto-Boolean algebra can be obtained with no existen-
tial postulate at all. As a matter of fact, the above strategy has pushed us
much farther: the properties established in [4] are valid in a much larger class
of rings, having also other interesting properties. This will be shown in the
present paper, which is structured as follows.

Section 1 introduces RJ[[S]] as a ring of functions from S to R; a few
properties used in the sequel are pointed out. Then we take an arbitrary
alphabet = and specialize S := Z*/ ~, where ~ is the monoid congruence
of =* which identifies each zy with yz. We thus obtain the conventional
polynomial ring R[E] = R[[E*/ ~]] (cf. Proposition 1.5). Further we specialize
S := (2*/ ~)/ =, where = is the monoid congruence of Z*/ ~ which identifies
each 22 with x, and prove that R[[(Z*)/ ~)/ ]| is the ring of R-polynomials
in a set of idempotent variables of the same cardinality as Z (cf. Proposition
1.7). Now several specializations of the set = provide an increasing sequence
of commutative rings

R<RPi<RP,<---<RP,<---<RP,

which we call proto-Boolean rings. In particular ZP,, is Brown’s proto-Boolean
algebra, while RP, turns out to be in bijection with the ring of pseudo-Boolean
functions, which has important applications in operations research.

In Section 2 we prove some properties of proto-Boolean rings and we point
out the consequences of the following specializations of the ring R: a ring of
characteristic 2, a Boolean ring, and the ring Zs. Thus the ring Zo P, (the
ring ZoP) is the n-generated (the countably generated) free Boolean ring (cf.
Theorem 2.4).

Section 3 focuses on the ring RP,,. We study in some detail the set I =
{p € RP, | p* = p} of idempotents. The results of this Section, along with
Theorem 2.1, recapture within the genearal framework RP, the results of [4]
which describe Boole’s original algebra*.

All the rings in this paper are associative and with unit.

*Paper [4] presents also Boole’s “general method of logic”.
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1 Construction of proto-Boolean rings

We begin our construction of proto-Boolean rings with an algebra R[[S]]
which was pointed out to us by P. Flondor.

Let R be a commutative ring and S a monoid, whose operation and unit
are denoted by concatenation and e, respectively.

It is plain that the set R = {f | f: S — R} is an R-module with respect
to the operations

(1) f+g9:S— R, (f+9)(s)=Ff(s)+4g(s),
(2) af 1S — R, (af)(s) = af(s).

For each s € S we define 6, € R® by
®) CE

and we are interested in the submodule R[[S]] of R® generated by the family
(0s)ses- We will prove that it consists of all the finite linear combinations
> scr @s0s, where ag € R(Vs € S) and F is a finite subset of S. It follows
from (1)-(3) that

ift=s ifte F

@ @ ={ o has  Casan={ o HEE

in particular (0d,)(t) = 0 for all ¢.
We associate with each family (as)ser the elements

_r_J oas ifseF
@ TV o0, ifs¢F

which have the property Y _nasds = ZseccTsFés for every finite set G D F.

seF

Proposition 1.1. R[[S]] consists of all the functions which can be written in
the form Y . asds, with the operations

ZSGF a‘565 + ZSGG b565

. —G
= sernc(as +bs)ds + ZSEF\G asds + ZSEG\F bsds = ZseFuG(asF +bs )0

(6) a ) ser Us0s =3 cplaas)ds .

()
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PRrROOF: The first equality (5) follows by (1). The second equality is obtained
by computing the values of each side at a point t € FUG = (FNG) U (F'\
G)U(G\F). O

Remark 1.1. In particular ) _pasds + > cpbsds = > cplas +bs)ds. This
identity can be viewed as combining like terms.

Proposition 1.2. R[[S]] is a ring with respect to the operations (5) and
(er 0:0) (D bed) = Yo e arba)d.
=Y serc(Odaby | t € Fiu € G tu = s})ds

where FG = {tu | t € F,u € G}, with zero 0 = 00, and unit 1 = 16,.

(7)

ProOF: The first equality (7) is a consistent definition because the set F'G
is finite. To prove the second equality (7) we compute the value of each side
at a point w € S. If w ¢ FG both values are 0. If w € FG then

(Y (@b)d)@) L 3 (arba)di)(w)

teFueG teEF,ueG
= Z{atbu |t e F,ue G tu=w}

DS (S {abu |t € Foue Gytu=s})s,)(w) .

sEFG

Further we check here only associativity and left distributivity. Take a =
Yoscr 0s0s, D=3 cbsds, €= csds. Then it follows easily that

(ab)c = a(bc) = Z (atbycu)dtun -

teF,ueG,veH

Besides,

ab+c)= (> ad)( Y (Bu" +e)s)

teF ucGUH

= Z atEG(Stu + Z o Sty -

te F,ucGUH teF,ucGUH

Taking into account that GU H = GU (H \ G), we obtain

Z atEG&su = Z atEG(Stu + Z atEG(stu =ab

teF,ue GUH teFueG teFLue H\G

—G .. _
because b, =0 for v € H\ G; similarly >, p.coun a,Cy 1 84, = ac. O
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Remark 1.2. 0(s) =0 for all s, 1(¢) =1 and 1(s) =0 for s £ e. If ads =0
then a = 0.

Remark 1.3. If the monoid S is commutative, then the ring R][[S]] is com-
mutative and aab = a(ab) = (ab)a for all a € R and a,b € R[[9]].

Proposition 1.3. The ring R is embedded into R[[S]].

PROOF: Define € : R — R[[S]] by €(a) = ad. = al. Then it is immediately
seen that ¢ is a ring homomorphism and if £(a) = e(b) then a = (ad.)(e) =
(bde)(e) = b, hence ¢ is injective. Therefore € : R — £(R) is an isomorphism.

O

Corollary 1.1. In R][[S]] we can unambiguously write a instead of ade.

Proposition 1.4. If S is a submonoid of a monoid T, then R[[S]] is a subring
of R[[T]].

Proor: RJ[[S]] consists of those elements ) . as0, € R[[T]] for which F' C
S. O

Now we specialize S as follows. Consider a non-empty set = which may be
infinite. The set =* of words over the alphabet = is a monoid with respect to
concatenation, the unit being the empty word A (the free monoid generated
by Z). Let ~ be the monoid congruence of Z* generated by the relation p =
{(zy,yx) | x,y € E}. Then S :==*/ ~ is a monoid.

Lemma 1.1. The monoid Z*/ ~ is commutative.

PRrROOF: It suffices to prove that wizwyws ~ wyywzws for every wy, w, ws €
2*/ ~ and z,y € Z. Clearly this reduces further to zwy ~ ywz. We proceed
by induction on w.

For w := X\ we have zy ~ yx because zy pyzx. If the property is true for
w, it follows from zwz ~ zwx, xy ~ yx and zwy ~ ywz that rwzy ~ zwzry ~
ZWYT ~ YWwzx. O

Now we wish to determine the coset modulo ~ of an element = € =. We
will use Theorem 2.1.6 in the monograph by Wechler [11], which describes as
follows the congruence = generated by a relation p of an arbitrary algebra A
(in the sense of universal algebra): a = b iff either a p b or there exist an integer
m > 1 and a sequence ag = a,aq,...,a, = b of elements of A such that for
each 7 := 1,...,m there exist elements ¢;,d; € A and a translation 7; of A
such that ¢; pd; and either a,_1 = 7;(¢;) and a; = 74(d;) or a;—1 = 7;(d;) and
a; = 7;(¢;). We will refer to the sequence ag,aq,...,a, as an =- sequence.

In the case of a monoid, the translations are the maps of the form s — rst
([11], page 97).
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Lemma 1.2. 1) The coset modulo ~ of an element x € E is x/ ~= {x}, while

A ~={A}.
2) The set {\} UE is embedded into Z*/ ~.

PRrROOF: 1) In view of Theorem 2.1.6 in [11], it is sufficient to prove there is
no ~ -sequence starting with ag = x or ap = A. Indeed, otherwise we would
have x1y; py1x1 and either ag = rix1y1t1 or ag = riyixity; both cases are
impossible in =*.
2) It follows from 1) that the map A — A/ ~ and = — z/ ~ is an embed-
ding.
O

Corollary 1.2. FEach element of =%/ ~ is either \ or zt can be written in
e where ny,...,ng > 1, Ty, 2, € 2 and iy, ..., 0, are

the form ' ... ax}*,
pairwise distinct, the representation being unique up to the order of factors.

PROOF: An element of Z*/ ~ is either A or of the form s = o/ ~, with

0 =2xp, ...xp, €E*. I {i1,..., i} are the distinct indices from {hy,..., hp}

and x;, appears nj times in o,...,;, appears n;, times in o, then o ~ o’ =
ni Nk

x; T,

R
This representation is unique up to the order of factors, because if s = 7/ ~

then o ~ 7 and the corresponding ~ - sequence shows that 7 is obtained from
o by a permutation of xp,,...,xp, . hence s = 7'/ ~, where 7/ is obtained
from o’ by a permutation of x;,,...,x;,.

Finally the desired conclusion is obtained by writing A instead of A/ ~ and
Tiyy- -, &, instead of x;,/ ~,...,x; / ~, respectively, which is possible by
Lemma 1.2. g

In the sequel we will tacitly use Corollary 1.2.

Proposition 1.5. R[[=*/ ~]] is the ring R[Z] of polynomials in the (possibly
infinite) set = of indeterminates.

ProoFr: This is a paraphrase of Proposition 1.1 and Corollary 1.1 : if we
write s instead of &5 and we identify a)d, with the element a) € R accord-
ing to Proposition 1.3, then ) _, asds becomes the usual representation of
polynomials in R[Z]. O

Now we are ready to construct polynomials in idempotent indeterminates
by using one more factorization. Let = be the monoid congruence of Z*/ ~
generated by the relation ¢ = {(x,2?) | x € =}.

Lemma 1.3. 1) The coset modulo =~ of an element x}'} ... x}F € E*/ ~ s
(it ooaph) ) = {at o fma, . my € N {0}} whzle X ={A}.

i1
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2) The coset modulo ~ of an element x € 2 C Z*/ ~ isx/ ~= {z" | n €
N,n > 0}.

3) The set {\} UZE is embedded into (E*/ ~)/ =.
PRrROOF: 1) Every = -sequence contains indeterminates, therefore A/ ~= {A}.

For every * € Z we have x¢z?, hence x ~ 22, therefore x ~ 2" for all
n > 1. This implies

n1
i L

z ~alt gt
for all ny,...,ng, m1,...,mg. Conversely, let us prove that every = -sequence
starting with 27" ... 2" produces only elements of the form x;"* ... 27" In-
deed, take an =-sequence ag = x?ll ...:c?k’“,al, ...,ay, and suppose a;_1 =
" oxp®. Then x;qy; = x? and either 1) i CUZ:’“ = rxt; and a; =
r;x?t;, or 2) " x:::* = r;z7t; and a; = r;x;t;. In both cases we have x; €
{Zi,,..., 24, } and in view of commutativity we may suppose without loss of

. . 1
generality that x; = x;,. Therefore in case 1) we have ;"' ™"z, 2 ... x"* = rt;
1 2 (23

Z”H:EZLQ ...z;® while case 2) is possible only for m; > 2 and we
k

get xg“_zxgm coxpt =it and a; = xz’l“_lx;zz cxt withmg — 1> 1

2) follows from 1).

3) The embedding is A — A/ ~ and z — z/ ~. If / == y/ = then

{z" |n>1} ={y" | n > 1}, hence x = y. O

and a; = x

Now we specialize S := (E*/ ~)/ ~. We begin with the following corollary
of Lemma 1.3.

Corollary 1.3. Each element of (E*/ ~)/ = is either \ or it can be written in
the form x;, ...x;,, where z; ..., x; € E andii,...,i; are pairwise distinct,
the representation being unique up to the order of factors.

PROOF: In view of Corollary 1.2, an element of (2*/ ~)/ = is either A or of
the form

If (x5,/ =)...(z3,/ =) = (y5,/ =) ... (yj,/ =), it follows that (z;, ...z;, )/ =

= (Yj, ---Yj,)/ =, hencey;, ...y;, € (i ... x;,)/ =, 88y Yj, - - Yj :x;’fl...xz’“,

therefore

Wi/ =)o (Y5 =) = (@i")) =) () =) = (i) =) (0 ) =)

So, the representation (x;,/ =)...(x;,/ =) is unique up to the order of fac-

tors. Finally, Lemma 1.3 also shows that we can unambiguously write A\ and

Ti, ... x;, instead of A/ ~ and (z;,/ =) ... (z;,/ ~). O
In the sequel we tacitly use Corollary 1.3.
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Lemma 1.4. The monoid (E*)/ ~)/ = is commutative and idempotent.

Proor: Commutativity is inherited from =*/ ~. Besides, it is clear that

2 _ 2 _ _ 2 2 _
M =Xand (i, ... 2,)° =Ty - Ty Ty Ty, =X T =T, 2. O

Proposition 1.6. If = C T, then the monoid S = (2*/ ~)/ ~ is a submonoid
of T = (Y*/ ~)/ = and the ring R[[S]] is a subring of R[[T]].

ProoFr: It follows from Z* C T* and Lemma 1.2 that A and x € E C =* have
the same cosets in 2%/ ~ and T*/ ~, hence Z*/ ~ is a submonoid of T*/ ~.
This fact and Lemma 1.3 imply that A and © € Z C Z*/ ~ have the same
cosets in (£*/ ~)/ = and (Y*/ ~)/ =, therefore (£*/ ~)/ = is a submonoid
of (Y*/ ~)/ =. This fact and Proposition 1.4 imply that R[[S]] is a subring
of R[[T]]. O

Proposition 1.7. R[[(E*/ ~)/ =]] is the ring of R-polynomials in a set of
idempotent variables of the same cardinality as E.

PRrOOF: As with Proposition 1.5, this is a paraphrase of Proposition 1.1 and
Corollary 1.3: we write s instead of §; and a) instead of a)dy. O

Now we introduce several specializations of =: a countable set 2, =
{xlv T2,
ey Zp,y ...} and the sets 21 = {z1}, 53 = {z1, 22}, ..., Ep = {x1, ..., Tn}y - -

Following a suggestion of Brown [4], who calls proto-Boolean algebra his
modern description of the original algebraic calculus of Boole [2], [3], we in-
troduce the rings RP,, = R[[(E}/ ~)/ =], which we call the n-valued R-based
proto-Boolean rings (n € Nyn > 0), and RP = R[[(E%,/ ~)/ =]], which we
call the complete R-based proto-Boolean ring.

Theorem 1.1. RP,, and RP are the rings of polynomials in the idempotent in-
determinates x1,...,x, (n € Nyn > 0) and {x1,22,...,Tp,... }, respectively,
and

R<RP <RP, < ---<RP,<---<RP,

where < denotes the relation of being a subring. These rings are commutative.

PrOOF: From Propositions 1.3, 1.6 and 1.7. Commutativity follows from
Remark 1.3 and Lemma 1.4. O

Corollary 1.4. RP = J,,.y RPn.

Proo¥: It follows from Theorem 1.1 that (J, .y RPn € RP. Conversely,
take p =" sCF as0s € RP. Each §, involves a finite number of indeterminates
and since F' is finite, it follows that only finitely many indeterminates occur
in p. So p € RPn for some n, proving that p € J,,cyy RPn. ]
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Corollary 1.5. For each p € RP, there are infinitely many n € N such that
p € RPn.

Remark 1.4. Every ring R is embedded into the proto-Boolean rings RPn (n €
N,n > 0) and RP.

Brown [4] introduces the n-symbol proto-Boolean algebra of polynomials
with integer coefficients, equipped with “the common (high school) sum, dif-
ference and product of polynomials — except that a computed product is made
linear in each symbol z; by application of Boole’s law x; x z; = z;”. We
have just provided an actual construction of this algebra: it is the n-valued
Z - based proto-Boolean ring Z Pn, which we will call the Brown proto-Boolean
ring.

Proto-Boolean rings can also be related to pseudo-Boolean functions, which
have important applications in operations research, to Boolean programming
(MSC 90C09); for the beginning of this field see e.g. the monograph by
Hammer and Rudeanu [6]. A pseudo-Boolean function of n variables is any
function f : {0,1}" — R. Set S := ({x1,...,2,}*/ ~)/ = and define
bij : S — {0,1}" by bij(\) = @ and bij(z,, ... x;,) = (a1,...,q,) where
a;, = -+ =, = 1, the other a; = 0. Let PBF(n) be the set of pseudo-
Boolean functions of n variables. Then the map f — f o bij establishes a
bijection between PBF'(n) and RPn.

We will prove in Section 2 that the {0, 1}-based proto-Boolean rings are
in fact free Boolean algebras with n generators and with countably many
generators, respectively.

2 Properties of proto-Boolean rings

In this Section we begin the study of the properties of proto-Boolean rings
and we point out the consequences of the following specializations of the ring
R: a ring of characteristic 2, a Boolean ring, the ring Zs.

Proposition 2.1. Fach element of RPn can be written as a sum of an element
ap € R and a sum of terms of the form ax;, ...x;, with a € R and pairwise

distinct indices i1, ..., 1, the subsets {i1,...,ix} C {1,...,n} being pairwise
distinct.
ProoOF: From Proposition 1.1 and Corollary 1.3. g

Now we introduce in RPn the operation

mentary notation:

of negation and some supple-
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(8) p=1-p p'=p p’=p (p€RPn),
(9) X ={zy,...,x,} and X4 =2 ... 2% for A = (ay,...,a,) € {0,1}".

The following properties hold:

(10) AA =1and AB =0if A# B,
(11) XAXB =0if A# Band XAX4 = X4
(12) ZAG{O,l}" X4=1.

This is easily checked, as in a Boolean algebra. Note, however, that the proof is
based on the idempotency of the elements of X : 2’ = 2(1—2) =x—22 =0,
which is not shared by all the elements of RPn.

Theorem 2.1. Every element of RPn can be written in the form

(13) > acqoyn P(A)XA,
where all the factors p(A) belong to R and are uniquely determined by p.

PrOOF: (as in Boolean algebras). The existence of the representation (13)
follows from Proposition 2.1 by introducing in each monoid x;, ...x;, the
missing indeterminates x by the technique

xZ; P

=1 — /
ey, =1y, oo g, =Xy, L T, XX LT

To prove uniqueness, suppose Y. , p(A) X4 = >, q(A) X4, take an arbi-
trary B € {0,1}" and multiply by XZ. Tt follows by (11) that p(B)X? =
q(B)X B hence p(B) — ¢(B) = 0 by Remark 1.2. O

Corollary 2.1. For every p,q € RPn and A € {0,1}™ we have
(p+a)(4) =p(4) +q(4) ,
(pa)(A) = p(A)q(A)
P'(4) = (p(4))".

PROOF: For instance, the last equality follows from p’ = >, p/(A) X4

and

P =1-p @ 31X =3 p(A)XA =31 - pA) XA =3 (p(A) X2
A A

A A

O
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Remark 2.1. Theorem 1.1, Corollary 1.4 and Theorem 2.1 show that for every
p € RP and every n such that p € RPn, the element p has a representation
of the form (13) for every m > n. For m := n + 1, this representation is

"
Ac{0,1}n+1

where: 1) A= (ai,...,n, any1) = (A, ang1) € {0, 13" with A = (aq,..., an),

2) x4 = XAzymit, and 3) B(A, 1) = B(A,0) = p(A).

In the rest of this Section we denote by P either of the rings RPn and RP.

The set
I={peP|p’=p},

which essentially goes back to Boole, makes the link between proto-Boolean
rings and Boolean rings. Recall that a Boolean ring is a ring with unit satisfy-
ing the identity 22 = z. It is well known that every Boolean ring is commuta-
tive and of characteristic 2, which means that it satisfies the identity x4+x = 0.
Recall also the equivalence between Boolean rings (B, +,,0,1) and Boolean
algebras (B, V,A,,0,1), with -y = 2 Ay, aVy = c+y+ay,2’ =1+ =1—=x,
andz+y=(zAy) V(2 Ay).

Remark 2.2. The indeterminates and 0,1 belong to I.

In the following we work with the representation (13) of an element p € P;
cf. Remark 2.1.

Proposition 2.2. The following conditions are equivalent for an element p €
P:
(pel;
(ii) (p(A))? = p(A) for all A .
ProOF: It follows from Corollary 2.1 that p?(A) = (p(A))?, hence p € I <=
p? =p <= (p(A))? = p(A) for all A. O
Since condition (ii) above can be written in the form p(A)(1 —p(A4)) =0,
we obtain the following two consequences.
Corollary 2.2. The ring P has divisors of zero, e.g. the elements of I\ {0}.

Corollary 2.3. If the ring R has no divisors of zero, then the following hold:

(i) pe I < p(A) € {0,1} for all A € {0,1}";
(ii) ap=0 witha e R, pe P=a=00rp=0.
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PrROOF: If ap = 0 then ), ap(4)X* = 0. Taking a fixed B € {0,1}" and

multiplying by XZ we get ap(B)X? = 0, hence ap(B) = 0 by Remark 1.2.

Therefore if a # 0 it follows that p(B) = 0 for all p € {0,1}", hence p = 0.
(I

Theorem 2.2. The following conditions are equivalent for P:
(i) the ring R is of characteristic 2 ;
(ii) every subring of P is of characteristic 2 ;
(iil) the ring P is of characteristic 2 ;
(iv) I is a subring of P ;
(v) I is a Boolean subring of P .
Proor: (iii)==(ii)==-(ii): Trivial.
()=(iil): p+p=1p+1p=(1+1)p=0.
(iii)=>(iv): If p,q € I, then (pq)* = p°¢*> = pq , (p + ¢)* = p* + ¢*
=p+q (-p)?=p’=p=-p.
(iv)==(v): By the definition of I.
(v)==(i): Since 1 € I, we have 1 + 1 = 0. O

Theorem 2.3. The following conditions are equivalent for P:
(i) R is a Boolean ring ;
(ii) every subring of P is Boolean ;
(iii) P 4s a Boolean ring
(ivyI=P.

ProoF: (iii)=(ii)==(i): Trivial.
(i)==(iii): The elements p(A) € R satisfy condition (ii) in Proposition 2.2.
(iii)<=>(iv): Both conditions mean p* = p for all p € P. O

Theorem 2.4. The ring {0,1}Pn (the ring {0,1}P) is the free Boolean ring
with n generators (with countably many generators).

ProOF: {0,1}Pn and {0,1} P are Boolean rings by Theorem 2.3

Theorem 2.1 implies that the elements of {0,1}Pn are of the form p =
> acrp X#, where F runs over the subsets of {0,1}", therefore {0,1}Pn is
generated by the set {x1, ..., 2, }, hence the Boolean algebra F' B(n) equivalent
to {0,1}Pn is also generated by the set {x1,...,2,}. This set is independent,
that is, all #7%! ... 27" # 0 : the reason is that in any ring R[[S]] we have d; # 0
for all s € S. Therefore FB(n) is the free Boolean algebra with n generators
by Theorem 14.2 in [10]. Clearly freeness is transferred to {0,1}Pn.

For {0,1}P the proof is similar, except that n is not fixed, but runs over
N\ {0}, and the set of generators is {21, za,...,Zn,... }.
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SECOND PROOF for {0, 1} Pn: There are 2" coefficients p(A) in the representa-
tion (13), therefore {0, 1} Pn has 22" elements and the same is true for FB(n).
This implies the desired conclusion by Corollary 4.9.7 in [7]. O

3 Transforming the indeterminates into variables

In this section we focus on the ring RPn, which we denote simply by P. We
prove that P is isomorphic to a ring of functions f : P* — P and we study
in some detail the set I = {p € P | p> = p} of idempotents. As mentioned
by Brown [4], this is justified by the fact that Boole actually worked with
idempotent arguments. We will recapture the algebraic results of [4], some of
them with different proofs.

Recall first that if R is a (commutative) ring with unit, then the set RF" =
{f | f:R*" — R}, endowed with the pointwise defined operations, i.e, for
every Q € R",

(f +9)(Q) = f(Q) +9(Q), (f9)(Q) = f(Q)9(Q), 0(Q) =0, 1'(Q) =1,

is also a (commutative) ring with unit.
In the sequel we use the notation Q = (q1,...,q,) for the elements of P™.
Note first that identities (11) and (12) extend to

(11") QAQP =0if A# Band QQ* =Q* (VA€ {0,1}") (VvQe€I"),

(12) > Ae{o1}n QY=1 (vQePm).

None of the two identities (11") can be extended to arbitrary @ € P", because
qq’ = 0 only for q € I.

Theorem 3.1. The map * : P — PF" defined by
(14) 2 (q1,. - qn) = ZAE{O,l}" p(A)gTt ... g8, where A= (aq,...,ap) ,
establishes an isomorphism between the rings P and P* = {p* | p € P}.

PrROOF: Theorem 2.1 shows that the map * is well defined, and using it
together with Corollary 2.1, we get (p1 + p2)*(Q) = pi(Q) + p5(Q) = (p7 +
P3)(Q), hence (p1 + pa)* = pi + ps and similarly (pip2)* = pips. Besides,
formula (12') implies that 1*(Q) = 1 = 1(Q), hence 1* = 1. Therefore * is a
ring homomorphism and it remains to prove that it is injective.

Indeed, note first that p*(A) = p(A) for all A € {0,1}". Hence if p} = p3,
then p1(A) = pi(A) = p5(A) = p2(A) for all A, showing that p; = pa. O
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Remark 3.1. The following properties are easy to check:
for every a € R, a*(Q) =a (VQ € P™),
for every z; € X, z}(Q)=¢; (VQ € P"),
for every p € P, p*(A) =p(A) (VA € {0,1}"),
for every pe P, p*(X)=p.

However the most significant properties are obtained by restricting the
argument of p* to @ € I™, as was mentioned above.

Caution. In the rest of this paper we assume that the ring R has no divisors
of zero.

Proposition 3.1. The following conditions are equivalent for p € P and
Qelm:
(1) p*(@)=0;
(ii) p(A) =0 or QA =0, forall Ac{0,1}";
(iil) p(A)Q* =0, forall A€ {0,1}" .
ProoF: (ii)«<=(iii): By Corollary 2.3(ii).
(iil)=(i) : By (14).
(i)==(iii): Multiply >_;p(B)Q®? = 0 by Q* and use (11). O
Now we establish analogues of the Verification Theorem in Boolean alge-

bras.

Proposition 3.2. The following conditions are equivalent for pi,ps € P:
() pi(Q) =0=p3(Q) =0, forall@el";
(ii) pi(A) =0=p3(A) =0, forall Ac{0,1}".

PrOOF: (i)==-(ii): Trivial.
(ii) implies that pj(A) = 0 or Q4 = 0 (VA) = p5(A) = 0 or Q4 =0,
whence () follows by Proposition 3.1. O

Corollary 3.1. The following conditions are equivalent for pi,ps € P:

(i) p1(Q) =0<=p3(Q) =0, forallQelI";
(ii) pi(A) = 0 < p3(A) =0, forall A€ {0,1}".

Theorem 2.1 and Corollary 2.3(i) immediately imply that the following
relation is a partial order on I :

(15) p1 < p2 <= p1(A) <p2(A) (VA€ {0,1}").
In particular p > 0 iff p(4) > 0 (VA € {0,1}™.
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Proposition 3.3. The following conditions are equivalent for pi,ps € I:
(i) p1 <p2;
(i) vVQelI: (p5(Q) =0= pi(Q) =0);
(i) vQ € I" = (p3) (Q)pi(Q) =0 .

Proor: Note that pi(A),p5(A) € {0,1} by Corollary 2.3 and Remark 3.1.
Hence, according to (15), p1 < pe if and only if p5(4) = 0 = pj(A) = 0 for
all A € {0,1}", therefore (i)<=>(ii) by Proposition 3.2.

Since ab and @’ = 1—a are the same for a, b € {0, 1} no matter whether they
are calculated in {0, 1} or in P,T it also follows that p; < py <= ph(A)p1(A) =
0 (VA € {0,1}"), while (p3)(Q)pi(Q) = X4 ph(A)p1(A)Q* by (14) and
Corollary 2.1, it also follows that (i)==-(iii).

Finally, (iii)==-(ii) because (iii) can be written in the form (p5(Q))'p;(Q) =
0. O

Now we need the hypothesis that R is an ordered ring. For this concept
see e.g. [8]. In such a ring a® > 0 for all a, and if a,b > 0 then a + b > a and
a+b>b, hencea+b=0=a=>b=0.

Lemma 3.1. Suppose R is an ordered ring. Ifp1,...,pm € P andp1,...,pm >
0, then

VQeEI": pl(Q)=0(i=1,....m)< > pi(Q)=0.
i=1

PROOF: Tt follows from (14) and Remark 3.1 that

Spi @ =SS =S mA)et.
i=1 =1

i=1 A A

If Y7 p(Q) = 0 then multiplication by Q* yields (37", pi(A4))Q* = 0 for
all A. Tt follows by Corollary 2.3 that for each A we have Y ..» p;(A) = 0
or Q4 = 0, and since R is an ordered ring, for each i € {1,...,m} we have
pi(A) =0 or Q* =0, hence p;(A)Q* = 0, therefore p:(A) = 0 by (14). O

Theorem 3.2. Suppose R is an ordered ring. Then for every p1,...,pm € P,

(16) VQelIm: pi(@Q)=0@G=1,...,m) <= >" (»)*(Q)=0.
PrOOF: Note that (p*)%(A4) = (p*(A))? = (p(A))? > 0 and apply Lemma
3.1. g

1 4+ 1 need not be the same.
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Proposition 3.4. For everyp € P,q€ I and Q € P* 1,
P (¢,Q) =0 p"(1,Q)q =p"(0,Q)¢ = 0= p*(0,Q)p"(1,Q) = 1.

PrOOF: We have p*(q, Q) = p*(1,Q)q+p*(0,Q)q’ by (14), hence p*(¢,Q) =0
implies p*(1,Q)g = 0 and p*(0,Q)¢" = 0 by multiplying with ¢ and ¢’. This
implies further p*(0,Q)p*(1,Q)q = p*(0,Q)p*(1,Q)q’ = 0 and since g+¢' =1
we get p*(0,Q)p*(1,Q) = p*(0,Q)p*(1,Q) (¢ + ¢') = 0. O

The following construction is useful in the study of proto-Boolean equa-
tions. We associate with each p € P an element py € P, for which we suggest
the name normalized p, borrowed from the language of Hilbert spaces, and
which is defined as follows: for each A € {0,1}",

1, if p(A) #0,
pN(A):{ 0 ifz(A):O.

Remark 3.2. apy(A) = 0 <= ap(A) = 0, because if a # 0 then
apny(A) =0<= py(A) =0<=p(A) =0 <= ap(A) =0.

We are interested in equations of the form p*(¢, Q) = 0, where p € P, and
we are looking for solutions of the form & = p3(Q) with p; € P(n—1)N1T (an
interpretable solution, in Boole’s terminology). The meaning of the solution
is that p*(p3(Q), Q) = 0 is an identity.

Proposition 3.5. Ifp € P and p; € P(n — 1) N1, then for every Q € I,

P (p1(Q),Q) =0+ px(p1(Q), Q) =0.

ProoOF: By applying in turn Propositions 3.4 and 3.2, via Remarks 3.1 and
3.2, we obtain

P*(P1(Q),Q) =0 = p"(1,Q)p1(Q) = p*(0,Q)(p1)"(Q) =0
= VAe{0,1}") p(1, A)p1(A) =0 & VA € {0,1}") p(0, A)py(A) =0
<= VAe{0,1}" pn(1,A)p1(A) =0& VA € {0,1}" pn(0,A)pi(A) =0

and the proof is completed by applying the same technique in the opposite
sense for py. |

Theorem 3.3. Consider an equation of the form p*(&,Q) = 0, where p € P
and Q € P"'. A necessary and sufficent condition for the existence of an
interpretable solution & = p7(Q) with p1 € I, is p*(0,Q)p*(1,Q) = 0 (VQ €
It
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PrOOF: The condition is necessary by Proposition 3.4. Conversely, if the
condition is satisfied, we will prove that ¢ := p}3(0,Q) is an interpretable
solution. Firstly, ¢ € I by Corollary 2.3(i). Then

P (P (0,Q), Q) = p*(1,Q)px(0,Q) + p*(0,Q) (PN (0, Q))’
= Y S5+ Y S(A)Q”,

Aef{0,1}n-1 Aef{0,1}n-1

where S1(A4) = p*(1,Q)px (0, Q) and S3(A4) = p*(0,Q)(px)'(0,Q). If p*(0,Q) =

0 then P3(0,Q) =0 and S1(A) = S2(A) = 0. pr (0,Q) # 0 then p§(0,Q) =
1 and S3(A) = 0, while the hypothesis implies p*(1,Q) = 0 and S;(A) = 0.
Thus p*(p} (0, Q),Q) 0. O

The partial order (15) on [ is transferred by isomorphism (cf. Theorem
31) toI*={p*|pel}:

(1%) P < ps <= p1 <ps <= pi1(A) <pa(A) (VA€ {0,1}").

This suggests the possibility of characterizing the solution by a double inequal-
ity, as in a Boolean algebra.

Theorem 3.4. If an equation p*(&,Q) = 0 has interpretable solutions, then
these solutions pi(Q) with py € I are characterized by the condition

pa(0,Q) < pi(Q) < (pv(1,Q)) (YQ e P"7H).

PRrROOF: By applying Propositions 3.5 and 3.4 we obtain
p(ri(Q),Q) =0 py(i(Q),Q) =0

<= py(1,Q)pi(Q) =0 & py(0,Q)(pI(Q) =0.

Since p1,pny € I, it follows by Theorem 2.1 and (14) that the elements
p5(Q),py(1,Q) and py(0,Q) are in I, therefore they obey Proposition 3.3.
Using this fact and noticing the identity (p’)’ = p, we see that the last two
conditions are equivalent to

Pi(Q) < (pN(1,Q)) & pn(0,Q) < pi(Q) -

g
As in [4], Theorem 3.4 can be refined by introducing antecedents and con-
sequents of the equation under investigation.

Conclusions The origin of this paper was the desire of providing an actual
construction of the proto-Boolean algebra introduced in [4]. Yet we have gone
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much farther by introducing the family of proto-Boolean rings, which includes
not only the proto-Boolean algebra, but also many Boolean rings. The aim
of recapturing the algebraic part of [4] has been achieved; some of the results
remain valid for an arbitrary basic ring R, the other require the condition that
R is an integral domain (i.e., the assumption of non-existence of divisors of
zero is added to commutativity). The proto-Boolean algebras are obtained for
R :=7Z.

Acknowledgment. The use of the algebra R[[S]] pointed out by P. Flondor
has much improved a previous version of this paper. The comments of F.M.
Brown concerning good English usage have been most helpful.
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