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Proto-Boolean rings

Sergiu Rudeanu

Abstract

We introduce the family of R-based proto-Boolean rings associated
with an arbitrary commutative ring R. They generalize the proto-
Boolean algebra devised by Brown [4] as a tool for expressing in modern
language Boole’s research in The Laws of Thought. In fact the algebraic
results from [4] are recaptured within the framework of proto-Boolean
rings, along with other theorems. The free Boolean algebras with a fi-
nite or countable set of free generators, and the ring of pseudo-Boolean
functions, used in operations research for problems of 0–1 optimization,
are also particular cases of proto-Boolean rings.

The deductive system in Boole’s Laws of Thought [3] involves both an alge-
braic calculus and a “general method in Logic” making use of this calculus. Of
course, Boole’s treatises do not conform to contemporary standards of rigour;
for instance, the modern concept of Boolean algebra was in fact introduced by
Whitehead [12] in 1898; see e.g. [9].

Several authors have addressed the problem of presenting Boole’s creation
in modern terms. Thus Beth [1], Section 25 summarizes the approach of Hoff-
Hansen and Skolem, who describe the algebra devised by Boole as the quotient
of an algebra of polynomial functions by the ideal generated by x2 − x, y2 −
y, z2 − z, . . . . Undoubtedly the most comprehensive analysis of the Laws of
Thought is that offered by Hailperin [5] in terms of multisets. Quite recently,
Brown [4], taking for granted the existence of formal entities described as
polynomials with integer coefficients, subject to the usual computation rules
except that the indeterminates are idempotent (x2

i = xi), analyses Chapters
V-X of [3] within this elementary framework, which he calls proto-Boolean
algebra.
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The starting point of this paper had been the simple idea of applying the
factorization technique recalled above in order to obtain an actual construc-
tion of Brown’s polynomials, using the conventional ring R[X] with arbitrary
X. Then it ocurred to us that even R[X] can be obtained by a similar factor-
ization technique from a more general structure R[[S]], known as a monoidal
ring, which in its turn can be constructed as a ring of functions from S to
R. Summarizing, proto-Boolean algebra can be obtained with no existen-
tial postulate at all. As a matter of fact, the above strategy has pushed us
much farther: the properties established in [4] are valid in a much larger class
of rings, having also other interesting properties. This will be shown in the
present paper, which is structured as follows.

Section 1 introduces R[[S]] as a ring of functions from S to R; a few
properties used in the sequel are pointed out. Then we take an arbitrary
alphabet Ξ and specialize S := Ξ∗/ ∼, where ∼ is the monoid congruence
of Ξ∗ which identifies each xy with yx. We thus obtain the conventional
polynomial ring R[Ξ] = R[[Ξ∗/ ∼]] (cf. Proposition 1.5). Further we specialize
S := (Ξ∗/ ∼)/ ≈, where ≈ is the monoid congruence of Ξ∗/ ∼ which identifies
each x2 with x, and prove that R[[(Ξ∗)/ ∼)/ ≈]] is the ring of R-polynomials
in a set of idempotent variables of the same cardinality as Ξ (cf. Proposition
1.7). Now several specializations of the set Ξ provide an increasing sequence
of commutative rings

R < RP1 < RP2 < · · · < RPn < · · · < RP ,

which we call proto-Boolean rings. In particular ZPn is Brown’s proto-Boolean
algebra, while RPn turns out to be in bijection with the ring of pseudo-Boolean
functions, which has important applications in operations research.

In Section 2 we prove some properties of proto-Boolean rings and we point
out the consequences of the following specializations of the ring R: a ring of
characteristic 2, a Boolean ring, and the ring Z2. Thus the ring Z2Pn (the
ring Z2P ) is the n-generated (the countably generated) free Boolean ring (cf.
Theorem 2.4).

Section 3 focuses on the ring RPn. We study in some detail the set I =
{p ∈ RPn | p2 = p} of idempotents. The results of this Section, along with
Theorem 2.1, recapture within the genearal framework RPn the results of [4]
which describe Boole’s original algebra∗.

All the rings in this paper are associative and with unit.

∗Paper [4] presents also Boole’s “general method of logic”.
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1 Construction of proto-Boolean rings

We begin our construction of proto-Boolean rings with an algebra R[[S]]
which was pointed out to us by P. Flondor.

Let R be a commutative ring and S a monoid, whose operation and unit
are denoted by concatenation and e, respectively.

It is plain that the set RS = {f | f : S −→ R} is an R-module with respect
to the operations

(1) f + g : S −→ R, (f + g)(s) = f(s) + g(s) ,

(2) af : S −→ R, (af)(s) = af(s) .

For each s ∈ S we define δs ∈ RS by

(3) δs(t) =

{
1, if t = s
0, if t ̸= s

and we are interested in the submodule R[[S]] of RS generated by the family
(δs)s∈S . We will prove that it consists of all the finite linear combinations∑

s∈F asδs, where as ∈ R (∀ s ∈ S) and F is a finite subset of S. It follows
from (1)-(3) that

(4) (aδs)(t) =

{
a, if t = s
0, if t ̸= s

, (
∑

asδs)(t) =

{
at, if t ∈ F
0, if t /∈ F

;

in particular (0δs)(t) = 0 for all t.
We associate with each family (as)s∈F the elements

as
F =

{
as, if s ∈ F
0, if s /∈ F

,

which have the property
∑

s∈F asδs =
∑

s∈G as
F δs for every finite set G ⊇ F .

Proposition 1.1. R[[S]] consists of all the functions which can be written in
the form

∑
s∈F asδs, with the operations

(5)

∑
s∈F asδs +

∑
s∈G bsδs

=
∑

s∈F∩G(as + bs)δs +
∑

s∈F\G asδs +
∑

s∈G\F bsδs =
∑

s∈F∪G(as
F + bs

G
)δs ,

(6) a
∑

s∈F asδs =
∑

s∈F (aas)δs .
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Proof: The first equality (5) follows by (1). The second equality is obtained
by computing the values of each side at a point t ∈ F ∪ G = (F ∩ G) ∪ (F \
G) ∪ (G \ F ). �

Remark 1.1. In particular
∑

s∈F asδs+
∑

s∈F bsδs =
∑

s∈F (as+ bs)δs. This
identity can be viewed as combining like terms.

Proposition 1.2. R[[S]] is a ring with respect to the operations (5) and

(7)
(
∑

s∈F asδs)(
∑

s∈G bsδs) =
∑

t∈F,u∈G(atbu)δs

=
∑

s∈FG(
∑

{atbu | t ∈ F, u ∈ G, tu = s})δs ,

where FG = {tu | t ∈ F, u ∈ G}, with zero 0 = 0δe and unit 1 = 1δe.

Proof: The first equality (7) is a consistent definition because the set FG
is finite. To prove the second equality (7) we compute the value of each side
at a point w ∈ S. If w /∈ FG both values are 0. If w ∈ FG then

(
∑

t∈F,u∈G

(atbt)δtu)(w)
(1)
=

∑
t∈F,u∈G

((atbu)δtu)(w)

(4)
=

∑
{atbu | t ∈ F, u ∈ G, tu = w}

(4)
= (

∑
s∈FG

(
∑

{atbu | t ∈ F, u ∈ G, tu = s})δs)(w) .

Further we check here only associativity and left distributivity. Take a =∑
s∈F asδs,b =

∑
s∈G bsδs, c =

∑
s∈H csδs. Then it follows easily that

(ab)c = a(bc) =
∑

t∈F,u∈G,v∈H

(atbvcu)δtuv .

Besides,

a(b+ c) = (
∑
t∈F

atδt)(
∑

u∈G∪H

(bu
G
+ cu

H)δu)

=
∑

t∈F,u∈G∪H

atbu
G
δtu +

∑
t∈F,u∈G∪H

atcu
Hδtu .

Taking into account that G ∪H = G ∪ (H \G), we obtain∑
t∈F,u∈G∪H

atbu
G
δtu =

∑
t∈F,u∈G

atbu
G
δtu +

∑
t∈F,u∈H\G

atbu
G
δtu = ab

because bu
G
= 0 for u ∈ H \G; similarly

∑
t∈F,u∈G∪H atcu

Hδtu = ac. �
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Remark 1.2. 0(s) = 0 for all s, 1(e) = 1 and 1(s) = 0 for s ̸= e. If aδs = 0
then a = 0.

Remark 1.3. If the monoid S is commutative, then the ring R[[S]] is com-
mutative and aab = a(ab) = (ab)a for all a ∈ R and a,b ∈ R[[S]].

Proposition 1.3. The ring R is embedded into R[[S]].

Proof: Define ε : R −→ R[[S]] by ε(a) = aδe = a1. Then it is immediately
seen that ε is a ring homomorphism and if ε(a) = ε(b) then a = (aδe)(e) =
(bδe)(e) = b, hence ε is injective. Therefore ε : R −→ ε(R) is an isomorphism.

�

Corollary 1.1. In R[[S]] we can unambiguously write a instead of aδe.

Proposition 1.4. If S is a submonoid of a monoid T, then R[[S]] is a subring
of R[[T ]].

Proof: R[[S]] consists of those elements
∑

s∈F asδs ∈ R[[T ]] for which F ⊆
S. �

Now we specialize S as follows. Consider a non-empty set Ξ which may be
infinite. The set Ξ∗ of words over the alphabet Ξ is a monoid with respect to
concatenation, the unit being the empty word λ (the free monoid generated
by Ξ). Let ∼ be the monoid congruence of Ξ∗ generated by the relation ρ =
{(xy, yx) | x, y ∈ Ξ}. Then S := Ξ∗/ ∼ is a monoid.

Lemma 1.1. The monoid Ξ∗/ ∼ is commutative.

Proof: It suffices to prove that w1xwyw2 ∼ w1ywxw2 for every w1, w, w2 ∈
Ξ∗/ ∼ and x, y ∈ Ξ. Clearly this reduces further to xwy ∼ ywx. We proceed
by induction on w.

For w := λ we have xy ∼ yx because xy ρ yx. If the property is true for
w, it follows from xwz ∼ zwx, xy ∼ yx and zwy ∼ ywz that xwzy ∼ zwxy ∼
zwyx ∼ ywzx. �

Now we wish to determine the coset modulo ∼ of an element x ∈ Ξ. We
will use Theorem 2.1.6 in the monograph by Wechler [11], which describes as
follows the congruence ≡ generated by a relation ρ of an arbitrary algebra A
(in the sense of universal algebra): a ≡ b iff either a ρ b or there exist an integer
m ≥ 1 and a sequence a0 = a, a1, . . . , am = b of elements of A such that for
each i := 1, . . . ,m there exist elements ci, di ∈ A and a translation τi of A
such that ci ρ di and either ai−1 = τi(ci) and ai = τi(di) or ai−1 = τi(di) and
ai = τi(ci). We will refer to the sequence a0, a1, . . . , am as an ≡ - sequence.

In the case of a monoid, the translations are the maps of the form s 7→ rst
([11], page 97).
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Lemma 1.2. 1) The coset modulo ∼ of an element x ∈ Ξ is x/ ∼= {x}, while
λ/ ∼= {λ}.

2) The set {λ} ∪ Ξ is embedded into Ξ∗/ ∼.

Proof: 1) In view of Theorem 2.1.6 in [11], it is sufficient to prove there is
no ∼ - sequence starting with a0 = x or a0 = λ. Indeed, otherwise we would
have x1y1 ρ y1x1 and either a0 = r1x1y1t1 or a0 = r1y1x1t1; both cases are
impossible in Ξ∗.

2) It follows from 1) that the map λ 7→ λ/ ∼ and x 7→ x/ ∼ is an embed-
ding.
�

Corollary 1.2. Each element of Ξ∗/ ∼ is either λ or it can be written in
the form xn1

i1
. . . xnk

ik
, where n1, . . . , nk ≥ 1, xi1 , . . . , xik ∈ Ξ and i1, . . . , ik are

pairwise distinct, the representation being unique up to the order of factors.

Proof: An element of Ξ∗/ ∼ is either λ or of the form s = σ/ ∼, with
σ = xh1 . . . xhm ∈ Ξ∗. If {i1, . . . , ik} are the distinct indices from {h1, . . . , hm}
and xi1 appears n1 times in σ, . . . , xik appears nik times in σ, then σ ∼ σ′ =
xn1
i1

. . . xnk
ik
.

This representation is unique up to the order of factors, because if s = τ/ ∼
then σ ∼ τ and the corresponding ∼ - sequence shows that τ is obtained from
σ by a permutation of xh1 , . . . , xhm . hence s = τ ′/ ∼, where τ ′ is obtained
from σ′ by a permutation of xi1 , . . . , xik .

Finally the desired conclusion is obtained by writing λ instead of λ/ ∼ and
xi1 , . . . , xik instead of xi1/ ∼, . . . , xik/ ∼, respectively, which is possible by
Lemma 1.2. �

In the sequel we will tacitly use Corollary 1.2.

Proposition 1.5. R[[Ξ∗/ ∼]] is the ring R[Ξ] of polynomials in the (possibly
infinite) set Ξ of indeterminates.

Proof: This is a paraphrase of Proposition 1.1 and Corollary 1.1 : if we
write s instead of δs and we identify aλδλ with the element aλ ∈ R accord-
ing to Proposition 1.3, then

∑
s∈F asδs becomes the usual representation of

polynomials in R[Ξ]. �

Now we are ready to construct polynomials in idempotent indeterminates
by using one more factorization. Let ≈ be the monoid congruence of Ξ∗/ ∼
generated by the relation ς = {(x, x2) | x ∈ Ξ}.

Lemma 1.3. 1) The coset modulo ≈ of an element xn1
i1

. . . xnk
ik

∈ Ξ∗/ ∼ is
(xn1

i1
. . . xnk

ik
)/ ≈= {xm1

i1
. . . xmk

ik
| m1, . . . ,mk ∈ N \ {0}}, while λ/ ≈= {λ}.
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2) The coset modulo ≈ of an element x ∈ Ξ ⊂ Ξ∗/ ∼ is x/ ≈= {xn | n ∈
N, n > 0}.

3) The set {λ} ∪ Ξ is embedded into (Ξ∗/ ∼)/ ≈.

Proof: 1) Every ≈ - sequence contains indeterminates, therefore λ/ ≈= {λ}.
For every x ∈ Ξ we have x ς x2, hence x ≈ x2, therefore x ≈ xn for all

n ≥ 1. This implies

xn1
i1

. . . xnk
ik

≈ xi1 . . . xik ≈ xm1
i1

. . . xmk
ik

for all n1, . . . , nk,m1, . . . ,mk. Conversely, let us prove that every ≈ - sequence
starting with xn1

i1
. . . xnk

ik
produces only elements of the form xm1

i1
. . . xmk

ik
. In-

deed, take an ≈ - sequence a0 = xn1
i1

. . . xnk
ik
, a1, . . . , am and suppose ai−1 =

xm1
i1

. . . xmk
ik

. Then xi ς yi = x2
i and either 1) xm1

i1
. . . xmk

ik
= rixiti and ai =

rix
2
i ti, or 2) x

m1
i1

. . . xmk
ik

= rix
2
i ti and ai = rixiti. In both cases we have xi ∈

{xi1 , . . . , xik} and in view of commutativity we may suppose without loss of
generality that xi = xi1 . Therefore in case 1) we have xm1−1

i1
xm2
i2

. . . xmk
ik

= riti
and ai = xm1+1

i1
xm2
i2

. . . xmk
ik

, while case 2) is possible only for m1 ≥ 2 and we

get xm1−2
i1

xm2
i2

. . . xmk
ik

= riti and ai = xm1−1
i1

xm2
i2

. . . xmk
ik

with m1 − 1 ≥ 1.
2) follows from 1).
3) The embedding is λ 7→ λ/ ≈ and x 7→ x/ ≈. If x/ ≈= y/ ≈ then

{xn | n ≥ 1} = {yn | n ≥ 1}, hence x = y. �

Now we specialize S := (Ξ∗/ ∼)/ ≈. We begin with the following corollary
of Lemma 1.3.

Corollary 1.3. Each element of (Ξ∗/ ∼)/ ≈ is either λ or it can be written in
the form xi1 . . . xik , where xi1 , . . . , xik ∈ Ξ and i1, . . . , ik are pairwise distinct,
the representation being unique up to the order of factors.

Proof: In view of Corollary 1.2, an element of (Ξ∗/ ∼)/ ≈ is either λ or of
the form

(xn1
i1

. . . xnk
ik
)/ ≈= (xn1

i1
/ ≈) . . . (xnk

ik
/ ≈) = (xi1/ ≈) . . . (xik/ ≈) .

If (xi1/ ≈) . . . (xik/ ≈) = (yj1/ ≈) . . . (yjh/ ≈), it follows that (xi1 . . . xik)/ ≈
= (yj1 . . . yjh)/ ≈ , hence yj1 . . . yjh ∈ (xi1 . . . xik)/ ≈ , say yj1 . . . yjh = xm1

i1
. . . xmk

ik
,

therefore

(yj1/ ≈) . . . (yjh/ ≈) = (xm1
i1

)/ ≈) . . . (xmk
ik

/ ≈) = (xi1/ ≈) . . . (xik/ ≈) .

So, the representation (xi1/ ≈) . . . (xik/ ≈) is unique up to the order of fac-
tors. Finally, Lemma 1.3 also shows that we can unambiguously write λ and
xi1 . . . xik instead of λ/ ≈ and (xi1/ ≈) . . . (xik/ ≈). �

In the sequel we tacitly use Corollary 1.3.
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Lemma 1.4. The monoid (Ξ∗)/ ∼)/ ≈ is commutative and idempotent.

Proof: Commutativity is inherited from Ξ∗/ ∼. Besides, it is clear that
λ2 = λ and (xi1 . . . xik)

2 = xi1 . . . xikxi1 . . . xik = x2
i1
. . . x2

ik
= xi1 . . . xik . �

Proposition 1.6. If Ξ ⊆ Υ, then the monoid S = (Ξ∗/ ∼)/ ≈ is a submonoid
of T = (Υ∗/ ∼)/ ≈ and the ring R[[S]] is a subring of R[[T ]].

Proof: It follows from Ξ∗ ⊆ Υ∗ and Lemma 1.2 that λ and x ∈ Ξ ⊂ Ξ∗ have
the same cosets in Ξ∗/ ∼ and Υ∗/ ∼, hence Ξ∗/ ∼ is a submonoid of Υ∗/ ∼.
This fact and Lemma 1.3 imply that λ and x ∈ Ξ ⊂ Ξ∗/ ∼ have the same
cosets in (Ξ∗/ ∼)/ ≈ and (Υ∗/ ∼)/ ≈, therefore (Ξ∗/ ∼)/ ≈ is a submonoid
of (Υ∗/ ∼)/ ≈. This fact and Proposition 1.4 imply that R[[S]] is a subring
of R[[T ]]. �

Proposition 1.7. R[[(Ξ∗/ ∼)/ ≈]] is the ring of R-polynomials in a set of
idempotent variables of the same cardinality as Ξ.

Proof: As with Proposition 1.5, this is a paraphrase of Proposition 1.1 and
Corollary 1.3: we write s instead of δs and aλ instead of aλδλ. �

Now we introduce several specializations of Ξ: a countable set Ξ∞ =
{x1, x2,
. . . , xn, . . . } and the sets Ξ1 = {x1},Ξ2 = {x1, x2}, . . . ,Ξn = {x1, . . . , xn}, . . .
. Following a suggestion of Brown [4], who calls proto-Boolean algebra his
modern description of the original algebraic calculus of Boole [2], [3], we in-
troduce the rings RPn = R[[(Ξ∗

n/ ∼)/ ≈]], which we call the n-valued R-based
proto-Boolean rings (n ∈ N, n > 0), and RP = R[[(Ξ∗

∞/ ∼)/ ≈]], which we
call the complete R-based proto-Boolean ring.

Theorem 1.1. RPn and RP are the rings of polynomials in the idempotent in-
determinates x1, . . . , xn (n ∈ N, n > 0) and {x1, x2, . . . , xn, . . . }, respectively,
and

R < RP1 < RP2 < · · · < RPn < · · · < RP ,

where < denotes the relation of being a subring. These rings are commutative.

Proof: From Propositions 1.3, 1.6 and 1.7. Commutativity follows from
Remark 1.3 and Lemma 1.4. �

Corollary 1.4. RP =
∪

n∈N RPn.

Proof: It follows from Theorem 1.1 that
∪

n∈N RPn ⊆ RP . Conversely,
take p =

∑
s∈F asδs ∈ RP . Each δs involves a finite number of indeterminates

and since F is finite, it follows that only finitely many indeterminates occur
in p. So p ∈ RPn for some n, proving that p ∈

∪
n∈N RPn. �
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Corollary 1.5. For each p ∈ RP , there are infinitely many n ∈ N such that
p ∈ RPn.

Remark 1.4. Every ring R is embedded into the proto-Boolean ringsRPn (n ∈
N, n > 0) and RP.

Brown [4] introduces the n-symbol proto-Boolean algebra of polynomials
with integer coefficients, equipped with “the common (high school) sum, dif-
ference and product of polynomials – except that a computed product is made
linear in each symbol xi by application of Boole’s law xi × xi = xi”. We
have just provided an actual construction of this algebra: it is the n-valued
Z - based proto-Boolean ring ZPn, which we will call the Brown proto-Boolean
ring.

Proto-Boolean rings can also be related to pseudo-Boolean functions, which
have important applications in operations research, to Boolean programming
(MSC 90C09); for the beginning of this field see e.g. the monograph by
Hammer and Rudeanu [6]. A pseudo-Boolean function of n variables is any
function f : {0, 1}n −→ R. Set S := ({x1, . . . , xn}∗/ ∼)/ ≈ and define
bij : S −→ {0, 1}n by bij(λ) = ∅ and bij(xi1 . . . xik) = (α1, . . . , αn) where
αi1 = · · · = αik = 1, the other αj = 0. Let PBF (n) be the set of pseudo-
Boolean functions of n variables. Then the map f 7→ f ◦ bij establishes a
bijection between PBF (n) and RPn.

We will prove in Section 2 that the {0, 1}-based proto-Boolean rings are
in fact free Boolean algebras with n generators and with countably many
generators, respectively.

2 Properties of proto-Boolean rings

In this Section we begin the study of the properties of proto-Boolean rings
and we point out the consequences of the following specializations of the ring
R: a ring of characteristic 2, a Boolean ring, the ring Z2.

Proposition 2.1. Each element of RPn can be written as a sum of an element
a0 ∈ R and a sum of terms of the form axi1 . . . xik with a ∈ R and pairwise
distinct indices i1, . . . , ik, the subsets {i1, . . . , ik} ⊆ {1, . . . , n} being pairwise
distinct.

Proof: From Proposition 1.1 and Corollary 1.3. �

Now we introduce in RPn the operation ′ of negation and some supple-
mentary notation:
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(8) p′ = 1− p, p1 = p, p0 = p′ (p ∈ RPn) ,

(9) X = {x1, . . . , xn} and XA = xα1
1 . . . xαn

n for A = (α1, . . . , αn) ∈ {0, 1}n .

The following properties hold:

(10) AA = 1 and AB = 0 if A ̸= B ,

(11) XAXB = 0 if A ̸= B and XAXA = XA ,

(12)
∑

A∈{0,1}n XA = 1 .

This is easily checked, as in a Boolean algebra. Note, however, that the proof is
based on the idempotency of the elements of X : xx′ = x(1−x) = x−x2 = 0,
which is not shared by all the elements of RPn.

Theorem 2.1. Every element of RPn can be written in the form

(13)
∑

A∈{0,1}n p(A)XA ,

where all the factors p(A) belong to R and are uniquely determined by p.

Proof: (as in Boolean algebras). The existence of the representation (13)
follows from Proposition 2.1 by introducing in each monoid xi1 . . . xik the
missing indeterminates x by the technique

xi1 . . . xik = 1xi1 . . . xik = xxi1 . . . xik + x′xi1 . . . xik .

To prove uniqueness, suppose
∑

A p(A)XA =
∑

A q(A)XA, take an arbi-
trary B ∈ {0, 1}n and multiply by XB. It follows by (11) that p(B)XB =
q(B)XB , hence p(B)− q(B) = 0 by Remark 1.2. �

Corollary 2.1. For every p, q ∈ RPn and A ∈ {0, 1}n we have

(p+ q)(A) = p(A) + q(A) ,

(pq)(A) = p(A)q(A) ,

p′(A) = (p(A))′ .

Proof: For instance, the last equality follows from p′ =
∑

A p′(A)XA and

p′ = 1− p
(12)
=

∑
A

1XA −
∑
A

p(A)XA =
∑
A

(1− p(A))XA =
∑
A

(p(A))′XA .

�
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Remark 2.1. Theorem 1.1, Corollary 1.4 and Theorem 2.1 show that for every
p ∈ RP and every n such that p ∈ RPn, the element p has a representation
of the form (13) for every m ≥ n. For m := n+ 1, this representation is

p =
∑

A∈{0,1}n+1

p(A)X
A
,

where: 1)A = (α1, . . . , αn, αn+1) = (A,αn+1) ∈ {0, 1}n+1, withA = (α1, . . . , αn),

2) X
A
= XAx

αn+1

n+1 , and 3) p(A, 1) = p(A, 0) = p(A).

In the rest of this Section we denote by P either of the rings RPn and RP.
The set

I = {p ∈ P | p2 = p} ,

which essentially goes back to Boole, makes the link between proto-Boolean
rings and Boolean rings. Recall that a Boolean ring is a ring with unit satisfy-
ing the identity x2 = x. It is well known that every Boolean ring is commuta-
tive and of characteristic 2, which means that it satisfies the identity x+x = 0.
Recall also the equivalence between Boolean rings (B,+, ·, 0, 1) and Boolean
algebras (B,∨,∧,′ , 0, 1), with x·y = x∧y, x∨y = x+y+xy, x′ = 1+x = 1−x,
and x+ y = (x ∧ y′) ∨ (x′ ∧ y).

Remark 2.2. The indeterminates and 0,1 belong to I.

In the following we work with the representation (13) of an element p ∈ P ;
cf. Remark 2.1.

Proposition 2.2. The following conditions are equivalent for an element p ∈
P :

(i) p ∈ I ;

(ii) (p(A))2 = p(A) for all A .

Proof: It follows from Corollary 2.1 that p2(A) = (p(A))2, hence p ∈ I ⇐⇒
p2 = p ⇐⇒ (p(A))2 = p(A) for all A. �

Since condition (ii) above can be written in the form p(A)(1− p(A)) = 0,
we obtain the following two consequences.

Corollary 2.2. The ring P has divisors of zero, e.g. the elements of I \ {0}.

Corollary 2.3. If the ring R has no divisors of zero, then the following hold:

(i) p ∈ I ⇐⇒ p(A) ∈ {0, 1} for all A ∈ {0, 1}n ;

(ii) ap = 0 with a ∈ R, p ∈ P =⇒ a = 0 or p = 0 .
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Proof: If ap = 0 then
∑

A ap(A)XA = 0. Taking a fixed B ∈ {0, 1}n and
multiplying by XB we get ap(B)XB = 0, hence ap(B) = 0 by Remark 1.2.
Therefore if a ̸= 0 it follows that p(B) = 0 for all p ∈ {0, 1}n, hence p = 0.
�

Theorem 2.2. The following conditions are equivalent for P:

(i) the ring R is of characteristic 2 ;

(ii) every subring of P is of characteristic 2 ;

(iii) the ring P is of characteristic 2 ;

(iv) I is a subring of P ;

(v) I is a Boolean subring of P .

Proof: (iii)=⇒(ii)=⇒(ii): Trivial.
(i)=⇒(iii): p+ p = 1p+ 1p = (1 + 1)p = 0 .
(iii)=⇒(iv): If p, q ∈ I, then (pq)2 = p2q2 = pq , (p+ q)2 = p2 + q2

= p+ q, (−p)2 = p2 = p = −p .
(iv)=⇒(v): By the definition of I.
(v)=⇒(i): Since 1 ∈ I, we have 1 + 1 = 0. �

Theorem 2.3. The following conditions are equivalent for P:

(i) R is a Boolean ring ;

(ii) every subring of P is Boolean ;

(iii) P is a Boolean ring

(iv) I = P .

Proof: (iii)=⇒(ii)=⇒(i): Trivial.
(i)=⇒(iii): The elements p(A) ∈ R satisfy condition (ii) in Proposition 2.2.
(iii)⇐⇒(iv): Both conditions mean p2 = p for all p ∈ P . �

Theorem 2.4. The ring {0, 1}Pn (the ring {0, 1}P ) is the free Boolean ring
with n generators (with countably many generators).

Proof: {0, 1}Pn and {0, 1}P are Boolean rings by Theorem 2.3
Theorem 2.1 implies that the elements of {0, 1}Pn are of the form p =∑

A∈F XA, where F runs over the subsets of {0, 1}n, therefore {0, 1}Pn is
generated by the set {x1, . . . , xn}, hence the Boolean algebra FB(n) equivalent
to {0, 1}Pn is also generated by the set {x1, . . . , xn}. This set is independent,
that is, all xα1

i1
. . . xαk

ik
̸= 0 : the reason is that in any ring R[[S]] we have δs ̸= 0

for all s ∈ S. Therefore FB(n) is the free Boolean algebra with n generators
by Theorem 14.2 in [10]. Clearly freeness is transferred to {0, 1}Pn.

For {0, 1}P the proof is similar, except that n is not fixed, but runs over
N \ {0}, and the set of generators is {x1, x2, . . . , xn, . . . }.
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Second proof for {0, 1}Pn: There are 2n coefficients p(A) in the representa-
tion (13), therefore {0, 1}Pn has 22

n

elements and the same is true for FB(n).
This implies the desired conclusion by Corollary 4.9.7 in [7]. �

3 Transforming the indeterminates into variables

In this section we focus on the ring RPn, which we denote simply by P. We
prove that P is isomorphic to a ring of functions f : Pn −→ P and we study
in some detail the set I = {p ∈ P | p2 = p} of idempotents. As mentioned
by Brown [4], this is justified by the fact that Boole actually worked with
idempotent arguments. We will recapture the algebraic results of [4], some of
them with different proofs.

Recall first that if R is a (commutative) ring with unit, then the set RRn

=
{f | f : Rn −→ R}, endowed with the pointwise defined operations, i.e, for
every Q ∈ Rn,

(f + g)(Q) = f(Q) + g(Q), (fg)(Q) = f(Q)g(Q), 0′(Q) = 0, 1′(Q) = 1 ,

is also a (commutative) ring with unit.
In the sequel we use the notation Q = (q1, . . . , qn) for the elements of Pn.

Note first that identities (11) and (12) extend to

(11′) QAQB = 0 if A ̸= B and QAQA = QA (∀A ∈ {0, 1}n) (∀Q ∈ In) ,

(12′)
∑

A∈{0,1}n QA = 1 (∀Q ∈ Pn) .

None of the two identities (11′) can be extended to arbitrary Q ∈ Pn, because
qq′ = 0 only for q ∈ I.

Theorem 3.1. The map ∗ : P −→ PPn

defined by

(14) p∗(q1, . . . , qn) =
∑

A∈{0,1}n p(A)qα1
1 . . . qαn

n , where A = (α1, . . . , αn) ,

establishes an isomorphism between the rings P and P ∗ = {p∗ | p ∈ P}.

Proof: Theorem 2.1 shows that the map ∗ is well defined, and using it
together with Corollary 2.1, we get (p1 + p2)

∗(Q) = p∗1(Q) + p∗2(Q) = (p∗1 +
p∗2)(Q), hence (p1 + p2)

∗ = p∗1 + p∗2 and similarly (p1p2)
∗ = p∗1p

∗
2. Besides,

formula (12′) implies that 1∗(Q) = 1 = 1(Q), hence 1∗ = 1. Therefore ∗ is a
ring homomorphism and it remains to prove that it is injective.

Indeed, note first that p∗(A) = p(A) for all A ∈ {0, 1}n. Hence if p∗1 = p∗2,
then p1(A) = p∗1(A) = p∗2(A) = p2(A) for all A, showing that p1 = p2. �
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Remark 3.1. The following properties are easy to check:

for every a ∈ R, a∗(Q) = a (∀Q ∈ Pn) ,

for every xi ∈ X, x∗
i (Q) = qi (∀Q ∈ Pn) ,

for every p ∈ P, p∗(A) = p(A) (∀A ∈ {0, 1}n) ,
for every p ∈ P, p∗(X) = p .

However the most significant properties are obtained by restricting the
argument of p∗ to Q ∈ In, as was mentioned above.

Caution. In the rest of this paper we assume that the ring R has no divisors
of zero.

Proposition 3.1. The following conditions are equivalent for p ∈ P and
Q ∈ In:

(i) p∗(Q) = 0 ;

(ii) p(A) = 0 or QA = 0, for all A ∈ {0, 1}n ;

(iii) p(A)QA = 0, for all A ∈ {0, 1}n .

Proof: (ii)⇐⇒(iii): By Corollary 2.3(ii).
(iii)=⇒(i) : By (14).
(i)=⇒(iii): Multiply

∑
B p(B)QB = 0 by QA and use (11′). �

Now we establish analogues of the Verification Theorem in Boolean alge-
bras.

Proposition 3.2. The following conditions are equivalent for p1, p2 ∈ P :

(i) p∗1(Q) = 0 =⇒ p∗2(Q) = 0, for all Q ∈ In ;

(ii) p∗1(A) = 0 =⇒ p∗2(A) = 0, for all A ∈ {0, 1}n .

Proof: (i)=⇒(ii): Trivial.
(ii) implies that p∗1(A) = 0 or QA = 0 (∀A) =⇒ p∗2(A) = 0 or QA = 0,

whence (i) follows by Proposition 3.1. �

Corollary 3.1. The following conditions are equivalent for p1, p2 ∈ P :

(i) p∗1(Q) = 0 ⇐⇒ p∗2(Q) = 0, for all Q ∈ In ;

(ii) p∗1(A) = 0 ⇐⇒ p∗2(A) = 0, for all A ∈ {0, 1}n .

Theorem 2.1 and Corollary 2.3(i) immediately imply that the following
relation is a partial order on I :

(15) p1 ≤ p2 ⇐⇒ p1(A) ≤ p2(A) (∀A ∈ {0, 1}n) .

In particular p ≥ 0 iff p(A) ≥ 0 (∀A ∈ {0, 1}n.
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Proposition 3.3. The following conditions are equivalent for p1, p2 ∈ I:

(i) p1 ≤ p2 ;

(ii) ∀Q ∈ In : (p∗2(Q) = 0 =⇒ p∗1(Q) = 0) ;

(iii) ∀Q ∈ In : (p∗2)
′(Q)p∗1(Q) = 0 .

Proof: Note that p∗1(A), p
∗
2(A) ∈ {0, 1} by Corollary 2.3 and Remark 3.1.

Hence, according to (15), p1 ≤ p2 if and only if p∗2(A) = 0 =⇒ p∗1(A) = 0 for
all A ∈ {0, 1}n, therefore (i)⇐⇒(ii) by Proposition 3.2.

Since ab and a′ = 1−a are the same for a, b ∈ {0, 1} no matter whether they
are calculated in {0, 1} or in P ,† it also follows that p1 ≤ p2 ⇐⇒ p′2(A)p1(A) =
0 (∀A ∈ {0, 1}n), while (p∗2)

′(Q)p∗1(Q) =
∑

A p′2(A)p1(A)Q
A by (14) and

Corollary 2.1, it also follows that (i)=⇒(iii).
Finally, (iii)=⇒(ii) because (iii) can be written in the form (p∗2(Q))′p∗1(Q) =

0. �
Now we need the hypothesis that R is an ordered ring. For this concept

see e.g. [8]. In such a ring a2 ≥ 0 for all a, and if a, b ≥ 0 then a+ b ≥ a and
a+ b ≥ b, hence a+ b = 0 =⇒ a = b = 0.

Lemma 3.1. Suppose R is an ordered ring. If p1, . . . , pm ∈ P and p1, . . . , pm ≥
0, then

∀Q ∈ In : p∗i (Q) = 0 (i = 1, . . . ,m) ⇐⇒
m∑
i=1

p∗i (Q) = 0 .

Proof: It follows from (14) and Remark 3.1 that

m∑
i=1

p∗i (Q) =
m∑
i=1

∑
A

p∗i (A)Q
A =

∑
A

(
m∑
i=1

pi(A))Q
A .

If
∑m

i=1 p
∗
i (Q) = 0 then multiplication by QA yields (

∑m
i=1 pi(A))Q

A = 0 for
all A. It follows by Corollary 2.3 that for each A we have

∑m
i=1 pi(A) = 0

or QA = 0, and since R is an ordered ring, for each i ∈ {1, . . . ,m} we have
pi(A) = 0 or QA = 0, hence pi(A)Q

A = 0, therefore p∗i (A) = 0 by (14). �

Theorem 3.2. Suppose R is an ordered ring. Then for every p1, . . . , pm ∈ P ,

(16) ∀Q ∈ In : p∗i (Q) = 0 (i = 1, . . . ,m) ⇐⇒
∑m

i=1(p
∗
i )

2(Q) = 0 .

Proof: Note that (p∗)2(A) = (p∗(A))2 = (p(A))2 ≥ 0 and apply Lemma
3.1. �

†1 + 1 need not be the same.
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Proposition 3.4. For every p ∈ P, q ∈ I and Q ∈ Pn−1,

p∗(q,Q) = 0 ⇐⇒ p∗(1, Q)q = p∗(0, Q)q′ = 0 =⇒ p∗(0, Q)p∗(1, Q) = 1 .

Proof: We have p∗(q,Q) = p∗(1, Q)q+p∗(0, Q)q′ by (14), hence p∗(q,Q) = 0
implies p∗(1, Q)q = 0 and p∗(0, Q)q′ = 0 by multiplying with q and q′. This
implies further p∗(0, Q)p∗(1, Q)q = p∗(0, Q)p∗(1, Q)q′ = 0 and since q+ q′ = 1
we get p∗(0, Q)p∗(1, Q) = p∗(0, Q)p∗(1, Q)(q + q′) = 0. �

The following construction is useful in the study of proto-Boolean equa-
tions. We associate with each p ∈ P an element pN ∈ P , for which we suggest
the name normalized p, borrowed from the language of Hilbert spaces, and
which is defined as follows: for each A ∈ {0, 1}n,

pN (A) =

{
1, if p(A) ̸= 0,
0 if p(A) = 0.

Remark 3.2. apN (A) = 0 ⇐⇒ ap(A) = 0, because if a ̸= 0 then

apN (A) = 0 ⇐⇒ pN (A) = 0 ⇐⇒ p(A) = 0 ⇐⇒ ap(A) = 0 .

We are interested in equations of the form p∗(ξ,Q) = 0, where p ∈ P , and
we are looking for solutions of the form ξ = p∗1(Q) with p1 ∈ P (n− 1) ∩ I (an
interpretable solution, in Boole’s terminology). The meaning of the solution
is that p∗(p∗1(Q), Q) = 0 is an identity.

Proposition 3.5. If p ∈ P and p1 ∈ P (n− 1) ∩ I, then for every Q ∈ In−1,

p∗(p∗1(Q), Q) = 0 ⇐⇒ p∗N (p∗1(Q), Q) = 0 .

Proof: By applying in turn Propositions 3.4 and 3.2, via Remarks 3.1 and
3.2, we obtain

p∗(p∗1(Q), Q) = 0 ⇐⇒ p∗(1, Q)p∗1(Q) = p∗(0, Q)(p∗1)
′(Q) = 0

⇐⇒ ∀A ∈ {0, 1}n) p(1, A)p1(A) = 0 & ∀A ∈ {0, 1}n) p(0, A)p′1(A) = 0

⇐⇒ ∀A ∈ {0, 1}n pN (1, A)p1(A) = 0 & ∀A ∈ {0, 1}n pN (0, A)p′1(A) = 0

and the proof is completed by applying the same technique in the opposite
sense for pN . �

Theorem 3.3. Consider an equation of the form p∗(ξ,Q) = 0, where p ∈ P
and Q ∈ Pn−1. A necessary and sufficent condition for the existence of an
interpretable solution ξ = p∗1(Q) with p1 ∈ I, is p∗(0, Q)p∗(1, Q) = 0 (∀Q ∈
In−1.
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Proof: The condition is necessary by Proposition 3.4. Conversely, if the
condition is satisfied, we will prove that q := p∗N (0, Q) is an interpretable
solution. Firstly, q ∈ I by Corollary 2.3(i). Then

p∗(p∗N (0, Q), Q) = p∗(1, Q)p∗N (0, Q) + p∗(0, Q)(p∗N (0, Q))′

=
∑

A∈{0,1}n−1

S1(A)Q
A +

∑
A∈{0,1}n−1

S2(A)Q
A ,

where S1(A) = p∗(1, Q)p∗N (0, Q) and S2(A) = p∗(0, Q)(p∗N )′(0, Q). If p∗(0, Q) =
0 then P ∗

N (0, Q) = 0 and S1(A) = S2(A) = 0. If p∗(0, Q) ̸= 0 then p∗N (0, Q) =
1 and S2(A) = 0, while the hypothesis implies p∗(1, Q) = 0 and S1(A) = 0.
Thus p∗(p∗N (0, Q), Q) = 0. �

The partial order (15) on I is transferred by isomorphism (cf. Theorem
3.1) to I∗ = {p∗ | p ∈ I} :

(15′) p∗1 ≤ p∗2 ⇐⇒ p1 ≤ p2 ⇐⇒ p1(A) ≤ p2(A) (∀A ∈ {0, 1}n) .

This suggests the possibility of characterizing the solution by a double inequal-
ity, as in a Boolean algebra.

Theorem 3.4. If an equation p∗(ξ,Q) = 0 has interpretable solutions, then
these solutions p∗1(Q) with p1 ∈ I are characterized by the condition

p∗N (0, Q) ≤ p∗1(Q) ≤ (p∗N (1, Q))′ (∀Q ∈ Pn−1) .

Proof: By applying Propositions 3.5 and 3.4 we obtain

p∗(p∗1(Q), Q) = 0 ⇐⇒ p∗N (p∗1(Q), Q) = 0

⇐⇒ p∗N (1, Q)p∗1(Q) = 0 & p∗N (0, Q)(p∗1(Q))′ = 0 .

Since p1, pN ∈ I, it follows by Theorem 2.1 and (14) that the elements
p∗1(Q), p∗N (1, Q) and p∗N (0, Q) are in I, therefore they obey Proposition 3.3.
Using this fact and noticing the identity (p′)′ = p, we see that the last two
conditions are equivalent to

p∗1(Q) ≤ (p∗N (1, Q))′ & pN (0, Q) ≤ p∗1(Q) .

�
As in [4], Theorem 3.4 can be refined by introducing antecedents and con-

sequents of the equation under investigation.

Conclusions The origin of this paper was the desire of providing an actual
construction of the proto-Boolean algebra introduced in [4]. Yet we have gone
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much farther by introducing the family of proto-Boolean rings, which includes
not only the proto-Boolean algebra, but also many Boolean rings. The aim
of recapturing the algebraic part of [4] has been achieved; some of the results
remain valid for an arbitrary basic ring R, the other require the condition that
R is an integral domain (i.e., the assumption of non-existence of divisors of
zero is added to commutativity). The proto-Boolean algebras are obtained for
R := Z.

Acknowledgment. The use of the algebra R[[S]] pointed out by P. Flondor
has much improved a previous version of this paper. The comments of F.M.
Brown concerning good English usage have been most helpful.
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