Roman domination perfect graphs

Nader Jafari Rad, Lutz Volkmann

Abstract

A Roman dominating function on a graph G is a function $f: V(G) \rightarrow \{0, 1, 2\}$ satisfying the condition that every vertex $u \in V(G)$ for which f(u) = 0 is adjacent to at least one vertex $v \in V(G)$ for which f(v) = 2. The weight of a Roman dominating function is the value $f(V(G)) = \sum_{u \in V(G)} f(u)$. The Roman domination number $\gamma_R(G)$ of G is the minimum weight of a Roman dominating function on G. A Roman dominating function (V_0, V_1, V_2) of V(G), where $V_i = \{v \in V(G) \mid f(v) = i\}$ for i = 0, 1, 2. A Roman dominating function if $V_1 \cup V_2$ is an independent Roman dominating function if $V_1 \cup V_2$ is an independent set. The independent Roman domination number $i_R(G)$ of G is the minimum weight of an independent Roman dominating function on G. In this paper, we study graphs G for which $\gamma_R(G) = i_R(G)$. In addition, we investigate so called Roman domination perfect graphs. These are graphs G with $\gamma_R(H) = i_R(H)$ for every induced subgraph H of G.

1 Introduction

Let G = (V(G), E(G)) be a simple graph of order n. We denote the open neighborhood of a vertex v of G by $N_G(v)$, or just N(v), and its closed neighborhood by $N_G[v] = N[v]$. For a vertex set $S \subseteq V(G)$, $N(S) = \bigcup_{v \in S} N(v)$ and $N[S] = \bigcup_{v \in S} N[v]$. The degree deg(x) of a vertex x denotes the number of neighbors of x in G, and $\Delta(G)$ is the maximum degree of G. Also $\delta(G)$ is the minimum degree of G. A set of vertices S in G is a dominating set if N[S] = V(G). The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set of G. If S is a subset of V(G), then we denote by G[S]

Key Words: Domination, Roman domination, Independent Roman domination Mathematics Subject Classification: 05C69

¹⁶⁷

the subgraph of G induced by S. We write K_n for the *complete graph* of order n. By \overline{G} we denote the *complement* of the graph G. A subset S of vertices is *independent* if G[S] has no edge. For notation and graph theory terminology in general we follow [5] or [9].

A function $f: V(G) \to \{0, 1, 2\}$ is a Roman dominating function (or just RDF) if every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function is the value $f(V(G)) = \sum_{u \in V(G)} f(u)$. The Roman domination number of a graph G, denoted by $\gamma_R(G)$, is the minimum weight of a Roman dominating function on G. A Roman dominating function $f: V(G) \to \{0, 1, 2\}$ can be represented by the ordered partition (V_0, V_1, V_2) of V(G), where $V_i = \{v \in V(G) \mid f(v) = i\}$ for i = 0, 1, 2. A function $f = (V_0, V_1, V_2)$ is called a γ_R -function (or $\gamma_R(G)$ -function when we want to refer f to G) if it is a Roman dominating function and $f(V(G)) = \gamma_R(G)$. Roman domination has been studied, for example, in [3, 2, 6, 7].

Independent Roman dominating functions in graphs were studied by Adabi et al. in [1]. A RDF $f = (V_0, V_1, V_2)$ in a graph G is an independent RDF, or just IRDF, if $V_1 \cup V_2$ is independent. The independent Roman domination number $i_R(G)$ of G is the minimum weight of an IRDF of G. An IRDF with minimum weight in a graph G will be referred to as an i_R -function. The definitions imply that $\gamma_R(G) \leq i_R(G)$ for any graph G.

In this paper, we study graphs G for which $\gamma_R(G) = i_R(G)$. In addition, we investigate so-called Roman domination perfect graphs. These are graphs G with $\gamma_R(H) = i_R(H)$ for every induced subgraph H of G. We frequently use the following.

Lemma 1. ([1]) Let $f = (V_0, V_1, V_2)$ be a RDF for a graph G. If V_2 is independent, then there is an independent RDF g for G such that $w(g) \leq w(f)$.

2 On graphs G with $\gamma_R(G) = i_R(G)$

We start with characterizations of graphs G with $i_R(G) = 2$, $i_R(G) = 3$, $i_R(G) = 4$ and $i_R(G) = 5$. The proof is straightforward, and so is omitted.

Proposition 2. (1) For a graph G of order $n \ge 2$, $i_R(G) = 2$ if and only if $G = \overline{K_2}$ or $\Delta(G) = n - 1$.

(2) For a graph G of order $n \ge 3$, $i_R(G) = 3$ if and only if either $G = \overline{K_3}$ or $\Delta(G) = n - 2$.

(3) For a graph G of order $n \ge 4$, $i_R(G) = 4$ if and only if one of the following conditions holds:

(i) $G = \overline{K_4}$.

(ii) $\Delta(G) = n - 3$, and G contains a vertex v of maximum degree such that

 $\begin{aligned} G[V(G) - N[v]] &= \overline{K_2}.\\ (iii) \ \Delta(G) &\leq n-3 \ and \ there \ are \ two \ nonadjacent \ vertices \ u,v \ in \ G \ such \ that \\ N_G[u] \cup N_G[v] &= V(G). \end{aligned}$

(4) For a graph G of order $n \ge 5$, $i_R(G) = 5$ if and only if one of the following conditions hold:

(i) $G = \overline{K_5}$. (ii) $\Delta(G) \leq n-4$ and $|N_G[x] \cup N_G[y]| \leq |V(G)| - 1$ for all pairs of nonadjacent vertices $x, y \in V(G)$. In addition, there are two nonadjacent vertices u, v in G such that $|N_G[u] \cup N_G[v]| = |V(G)| - 1$ or G contains a vertex v of degree n-4 such that $G[V(G) - N[v]] = \overline{K_3}$.

According to Lemma 1, the following is obviously verified.

Lemma 3. For a graph G, $\gamma_R(G) = i_R(G)$ if and only if there is a γ_R -function $f = (V_0, V_1, V_2)$ for G such that $G[V_2]$ has no edge.

We note that a forbidden subgraph characterization for the graphs G having $\gamma_R(G) = i_R(G)$ cannot be obtained since for any graph G, the addition of a new vertex that is adjacent to all vertices of G produces a new graph Hwith $\gamma_R(H) = i_R(H) = 2$.

Theorem 4. Let $k \ge 2$ be an integer. If a graph G of order n > 1 does not contain the star $K_{1,k+1}$ as an induced subgraph, then

$$i_R(G) \le (k-1)\gamma_R(G) - 2(k-2).$$

Proof. Let $f = (V_0, V_1, V_2)$ be a γ_R -function for G. Let I be a maximal independent subset of V_2 . Then I is a dominating set for V_2 . Let $X = V(G) - (N[I] \cup V_1)$, and let Y be a maximal independent subset of X. Then Y is a dominating set for X. Since G is $K_{1,k+1}$ -free, any vertex of $V_2 - I$ is adjacent to at most k - 1 vertices of Y. We deduce that $|Y| \leq (k-1)|V_2 - I|$. Now define $g: V(G) \longrightarrow \{0, 1, 2\}$ by g(v) = 2 if $v \in I \cup Y$, g(v) = 1 if $v \in V_1$, and g(v) = 0 otherwise. Then g is a RDF for G. Now

$$\begin{split} w(g) &\leq 2(k-1)|V_2 - I| + 2|I| + |V_1| \\ &= 2(k-1)|V_2| - 2(k-2)|I| + |V_1| \\ &\leq 2(k-1)|V_2| - 2(k-2)|I| + (k-1)|V_1| \\ &= (k-1)(2|V_2| + |V_1|) - 2(k-2)|I| \\ &\leq (k-1)\gamma_R(G) - 2(k-2). \end{split}$$

Now the result follows by Lemma 1.

Next we will list some properties of the $K_{1,k+1}$ -free graphs G with $i_R(G) = (k-1)\gamma_R(G) - 2(k-2)$. Of course, we may assume that $k \ge 3$, since for k = 2 it is the well-known family of claw-free graphs.

If $i_R(G) = (k-1)\gamma_R(G) - 2(k-2)$, then, using the notation of the proof of Theorem 4 equality holds at each point in the above sequence of inequalities.

The equality 2(k-2)|I| = 2(k-2) implies that |I| = 1 for every choice of I, and thus $G[V_2]$ is complete.

The equality $|V_1| = (k-1)|V_1|$ leads to $|V_1| = 0$. This implies that $\gamma_R(G) = 2|V_2|$. Because of $|Y| = (k-1)|V_2 - I|$, we note (i) that every maximal independent set Y in G[X] has $(k-1)(|V_2|-1)$ vertices, with exactly k-1 vertices adjacent to each vertex of $V_2 - I$. Furthermore, every vertex in X is joined to exactly one vertex of $V_2 - I$, otherwise, Y can be chosen to contain a vertex joined to at least two vertices of $V_2 - I$, contradicting (i).

As a consequence of Theorem 4, we obtain the following corollary.

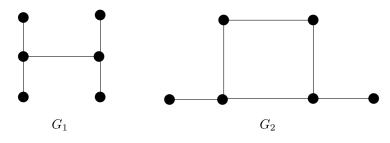
Corollary 5. If G is a claw-free graph, then $\gamma_R(G) = i_R(G)$.

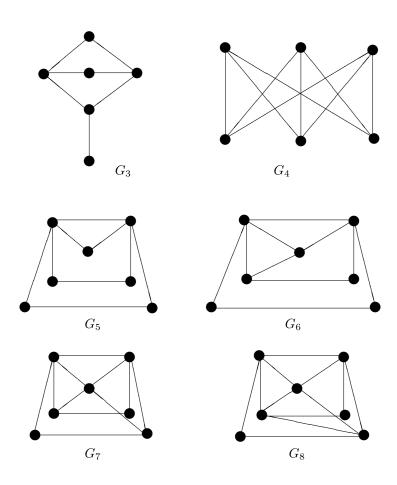
Since any line graph is claw-free, Corollary 5 implies that $\gamma_R(L(G)) = i_R(L(G))$, where L(G) is the line graph of G.

3 Roman domination perfect graphs

In 1990, Summer [8] defines a graph G to be domination perfect if $\gamma(H) = i(H)$ for any induced subgraph H of G, where i(H) is the independent domination number of H. Fulman [4] showed that the absence of all of the eight induced subgraphs of Figure 1 in G is sufficient for G to be domination perfect.

Theorem 6. (Fulman [4] 1993) If a graph G does not contain any of the graphs in Figure 1 as an induced subgraph, then G is domination perfect.





We next consider a closely related concept. A graph G is called *Roman* domination perfect if $\gamma_R(H) = i_R(H)$ for any induced subgraph H of G. For $x \in X \subseteq V(G)$, we define $I(x, X) = N[x] - N[X - \{x\}]$. Note that I(x, X)is the set of vertices dominated by x but not by the rest of X. Corollary 5 implies that if G has no induced subgraph isomorphic to the claw $K_{1,3}$, then G is domination perfect. Following the ideas in [4] and [10], we now prove an analogue to Theorem 6.

Theorem 7. If a graph G does not contain any of the graphs in Figure 1 as an induced subgraph, then G is Roman domination perfect.

Proof. It suffices to prove that if G does not contain the graphs in Figure 1 as induced subgraphs, then $\gamma_R(G) = i_R(G)$. Suppose to the contrary that $\gamma_R(G) < i_R(G)$, and let $f = (V_0, V_1, V_2)$ be a γ_R -function for G such that the

number of edges of the induced subgraph $G[V_2]$ is minimum. It follows from our assumption $\gamma_R(G) < i_R(G)$ and Lemmas 1 and 3 that V_2 is not dependent. Let u, v be two adjacent vertices in V_2 . Since f is a γ_R -function, $I(u, V_2)$ and $I(v, V_2)$ are disjoint sets each of cardinality at least two. Since the number of edges in $G[V_2]$ is minimum, $I(u, V_2)$ as well as $I(v, V_2)$ do not contain a dominating vertex. Thus there exist $a_1, a_2 \in I(u, V_2)$ and $b_1, b_2 \in I(v, V_2)$ such that $a_1a_2 \notin E(G)$ and $b_1b_2 \notin E(G)$. If each vertex of $I(u, V_2)$ is adjacent to each vertex of $I(v, V_2)$, then G contains an induced subgraph isomorphic to G_4 , a contradiction. Hence it remains that case that there are two nonadjacent vertices $u_1 \in I(u, V_2)$ and $v_1 \in I(v, V_2)$.

If $\{u_1, v_1\}$ does not dominate the set $I = I(u, V_2) \cup I(v, V_2)$, then there exists a vertex $u_2 \in I(u, V_2) \cup I(v, V_2)$ such that $u_2u_1 \notin E(G)$ and $u_2v_1 \notin E(G)$. We assume, without loss of generality, that $u_2 \in I(u, V_2)$. As $I(v, V_2)$ does not contain a dominating vertex, we see that there is a vertex $v_2 \in I(v, V_2)$ such that $v_2v_1 \notin E(G)$. Considering the subgraph $H = G[\{u, v, u_1, v_1, u_2, v_2\}]$, it is easy to see that depending on the existence of edges u_1v_2 and u_2v_2 , the subgraph H is isomorphic to one of G_1, G_2 or G_3 , a contradiction. So we assume next that $\{u_1, v_1\}$ dominates the set $I = I(u, V_2) \cup I(v, V_2)$.

Since $D = (V_2 - \{u, v\}) \cup \{u_1, v_1\}$ has fewer edges than V_2 , the function $(V(G) - (V_1 \cup D), V_1, D)$ is not a RDF. Thus there exists a vertex w that is not dominated by D. The definition of D shows that w must be adjacent to u or to v. Moreover, since $\{u_1, v_1\}$ dominates I, the vertex w does not belong to I. This implies that w must be adjacent to both u and v. Since $I(u, V_2)$ does not contain a dominating vertex, there is a vertex $u_2 \in I(u, V_2)$ such that $u_1u_2 \notin E(G)$. Similarly, there is a vertex $v_2 \in I(v, V_2)$ such that $v_1v_2 \notin E(G)$. As $\{u_1, v_1\}$ dominates the set I, we find that $\{u_1v_2, v_1u_2\} \subseteq E(G)$. Now consider the subgraph $H = G[\{u, v, w, u_1, v_1, u_2, v_2\}]$. The only edges in H whose existence is undetermined are u_2v_2 , u_2w and v_2w . If none is present, H is isomorphic to G_5 , a contradiction. If only u_2v_2 is present, then H - v is isomorphic to G_2 , a contradiction. If only u_2w or if only v_2w is present, then we obtain the contradiction that H is isomorphic to G_6 . If only u_2v_2 and u_2w are present, then H - u is isomorphic to G_3 , a contradiction. The same occurs if only u_2v_2 and v_2w are present. Finally, if only u_2w and v_2w are present, H is isomorphic to G_7 , and if all three edges are present, H is isomorphic to G_8 . In both cases a contradiction, and the proof is complete. \square

Recall that a graph is called *chordal* if every cycle of length exceeding three has an edge joining two nonadjacent vertices in the cycle.

Corollary 8. If a chordal graph G does not contain G_1 as an induced subgraph, then G is Roman domination perfect. *Proof.* Assume that G does not contain G_1 as an induced subgraph. Note that the graphs G_2, G_3, \ldots, G_8 in Figure 1 are not chordal. Applying Theorem 7, we deduce that G is Roman domination perfect.

Note that since the graph G_1 is Roman domination perfect, the converses of Theorem 7 and Corollary 8 are false.

The proofs of the next two corollaries are similar to that of Corollary 8.

Corollary 9. If a graph G of girth at least five does not contain G_1 as an induced subgraph, then G is Roman domination perfect.

Corollary 10. If a bipartite graph G does not contain G_1, G_2, G_3 and G_4 as induced subgraphs, then G is Roman domination perfect.

The subdivision graph S(G) of a graph G is the graph obtained from G by subdividing each edge of G. A subdivision graph S(G) does not contain two adjacent vertices u and v such that $deg(u) \geq 3$ and $deg(v) \geq 3$. Since each graph of G_1, G_2, \ldots, G_8 has two adjacent vertices of degree at least three, the next result follows from Theorem 7.

Corollary 11. If S(G) is the subdivision graph of a graph G, then S(G) is Roman domination perfect.

References

- M. Adabi, E. Ebrahimi Targhi, N. Jafari Rad and M. Saied Moradi, *Properties of independent Roman domination in graphs*, submitted for publication.
- [2] E.W. Chambers., B. Kinnersley, N. Prince, and D.B. West, *Extremal Problems for Roman Domination*, SIAM J. Discr. Math., 23 (2009), 1575-1586.
- [3] E. J. Cockayne, P. M. Dreyer Jr., S. M. Hedetniemi, and S. T. Hedetniemi, On Roman domination in graphs, Discrete Math. 278 (2004), 11-22.
- [4] J. Fulmann, A note on the characterization of domination perfect graphs, J. Graph Theory, 17 (1993), 47-51.
- [5] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, NewYork, 1998.
- [6] C. S. ReVelle, K. E. Rosing, Defendens imperium romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (2000), 585-594.

- [7] I. Stewart, Defend the Roman Empire!, Sci. Amer. 281 (6) (1999), 136 139.
- [8] D. P. Sumner, Critial concepts in domination, Discrete Math. 86 (1990), 33-46.
- [9] D. B. West, Introduction to graph theory, (2nd edition), Prentice Hall, USA (2001).
- [10] I. E. Zverovich and V. E. Zverovich, A characterization of domination perfect graphs, J. Graph Theory, 15 1991, 109-114.

Acknowledgment. This research is supported by Shahrood University of Technology

Shahrood University of Technology, Department of Mathematics, Shahrood, Iran e-mail: n.jafarirad@shahroodut.ac.ir

Lehrstuhl II für Mathematik, RWTH Aachen University, Templergraben 55, D-52056 Aachen, Germany e-mail: volkm@math2.rwth-aachen.de