An. Şt. Univ. Ovidius Constanţa

Depth and minimal number of generators of square free monomial ideals

Dorin Popescu

Abstract

Let I be an ideal of a polynomial algebra over a field generated by square free monomials of degree $\geq d$. If I contains more monomials of degree d than $(n-d) /(n-d+1)$ multiplied with the number of square free monomials of S of degree d then $\operatorname{depth}_{S} I \leq d$, in particular the Stanley's Conjecture holds in this case.

Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial algebra in n-variables over a field K and $I \subset S$ a square free monomial ideal. Let d be a positive integer and $\rho_{d}(I)$ be the number of all square free monomials of degree d of I.

The proposition below was repaired using an idea of Y. Shen to whom we owe thanks.
Proposition 1. If I is generated by square free monomials of degree $\geq d$ and $\rho_{d}(I)>((n-d) /(n-d+1))\binom{n}{d}$ then $\operatorname{depth}_{S} I \leq d$.

Proof. Apply induction on n. If $n=d$ then there exists nothing to show. Suppose that $n>d$. Let ν_{i} be the number of the square free monomials of degree d from $I \cap\left(x_{i}\right)$. We may consider two cases renumbering the variables if necessary.

Case $1 \nu_{1}>((n-d) /(n-d+1))\binom{n-1}{d-1}$.
Let $S^{\prime}:=K\left[x_{2}, \ldots, x_{n}\right]$ and $x_{1} c_{1}, \ldots, x_{1} c_{\nu_{1}}, c_{i} \in S^{\prime}$ be the square free monomials of degree d from $I \cap\left(x_{1}\right)$. Then $J=\left(I: x_{1}\right) \cap S^{\prime}$ contains $\left(c_{1}, \ldots, c_{\nu_{1}}\right)$ and so $\rho_{d-1}(J) \geq \nu_{1}>((n-d) /(n-$ $d+1))\binom{n-1}{d-1}$. By induction hypothesis, we get depth ${ }_{S^{\prime}} J \leq d-1$. It follows $\operatorname{depth}_{S} J S \leq d$ and so $\operatorname{depth}_{S} I \leq d$ by [7, Proposition 1.2].

Case $2 \nu_{i} \leq((n-d) /(n-d+1))\binom{n-1}{d-1}$ for all $i \in[n]$.
We get $\sum_{i=1}^{n} \nu_{i} \leq n((n-d) /(n-d+1))\binom{n-1}{d-1}$. Let A_{i} be the set of the square free monomials of degree d from $I \cap\left(x_{i}\right)$. A square free monomial from I of degree d will be present in d-sets A_{i} and it follows

$$
\rho_{d}(I)=\left|\cup_{i=1}^{n} A_{i}\right| \leq(n / d)((n-d) /(n-d+1))\binom{n-1}{d-1}=((n-d) /(n-d+1))\binom{n}{d}
$$

if $n \geq d+1$. Contradiction!
Remark 2. If I is generated by square free monomials of degree $\geq d$, then $\operatorname{depth}_{S} I \geq d$. Indeed, since I has a square free resolution the last shift in the resolution of I is at most n. Thus if I is generated in degree $\geq d$, then the resolution can have length at most $n-d$, which means that the depth of I is greater than or equal to d (this argument belongs to J. Herzog). Hence in the setting of the above proposition we get $\operatorname{depth}_{S} I=d$.

Corollary 3. Let I be an ideal generated by $\mu(I)$ square free monomials of degree d. If $\mu(I)>$ $((n-d) /(n-d+1))\binom{n}{d}$ then $\operatorname{depth}_{S} I=d$.

Example 4. Let $I=\left(x_{1} x_{2}, x_{2} x_{3}\right) \subset S:=K\left[x_{1}, x_{2}, x_{3}\right]$. Then $d=2$ and $\mu(I)=2>(1 / 2)\binom{3}{2}$. It follows that depth ${ }_{S} I=2$ by the above corollary.

Example 5. Let $I=\left(x_{1} x_{2}, x_{1} x_{3}, x_{1} x_{4}, x_{2} x_{3}, x_{2} x_{5}, x_{3} x_{4}, x_{3} x_{5}, x_{4} x_{5}\right) \subset$
$S:=K\left[x_{1}, \ldots, x_{5}\right]$. Then $d=2$ and $\mu(I)=8>(3 / 4)\binom{5}{2}$ and so depth ${ }_{S} I=2$.
Next lemma presents a nice class of square free monomial ideals I with $\mu(I)=\binom{n}{d+1} \leq((n-$ $d) /(n-d+1))\binom{n}{d}$ but $\operatorname{depth}_{S} I=d$. We suppose that $n \geq 3$. Let w be the only square free monomial of degree n of S, that is $w=\prod_{j=1}^{n} x_{i}$. Set $f_{i}=w /\left(x_{i} x_{i+1}\right)$ for $1 \leq i<n, f_{n}=w /\left(x_{1} x_{n}\right)$ and let $L_{n}:=\left(f_{1}, \ldots, f_{n-1}\right), I_{n}:=\left(L, f_{n}\right)$ be ideals of S generated in degree $d=n-2$. We will see that depth ${ }_{S} I_{n}=n-2$ even $\mu\left(I_{n}\right)=n=\binom{n}{d+1}$.

Lemma 6. Then $\operatorname{depth}_{S} L_{n}=n-1$ and $\operatorname{depth}_{S} I_{n}=n-2$.
Proof. Apply induction on $n \geq 3$. If $n=3$ then $L_{3}=\left(x_{3}, x_{1}\right), I_{3}=\left(x_{1}, x_{2}, x_{3}\right)$ and the result is trivial. Assume that $n>3$. Note that $\left(L_{n}: x_{n}\right)=L_{n-1} S=\left(I_{n}: x_{n}\right)$ because $f_{n}, f_{n-1} \in\left(L_{n}: x_{n}\right)$. We have

$$
\begin{gathered}
L_{n}=\left(L_{n}: x_{n}\right) \cap\left(x_{n}, L_{n}\right)=\left(L_{n-1} S\right) \cap\left(x_{n}, f_{n-1}\right), \\
I_{n}=\left(I_{n}: x_{n}\right) \cap\left(x_{n}, I_{n}\right)=\left(L_{n-1} S\right) \cap\left(x_{n}, f_{n-1}, f_{n}\right)=\left(L_{n-1} S\right) \cap\left(x_{n}, u\right) \cap\left(x_{1}, x_{n-1}, x_{n}\right),
\end{gathered}
$$

where $u=w /\left(x_{1} x_{n-1} x_{n}\right)$. But $\left(x_{1}, x_{n-1}\right)$ is a minimal prime ideal of $L_{n-1} S$ and so we may remove $\left(x_{1}, x_{n-1}, x_{n}\right)$ above, that is $I_{n}=\left(L_{n-1} S\right) \cap\left(x_{n}, u\right)$. On the other hand, $\left(L_{n-1} S\right)+\left(x_{n}, u\right)=$ $\left(x_{n}, I_{n-1}\right)$ and $\left(L_{n-1} S\right)+\left(x_{n}, f_{n-1}\right)=\left(x_{n}, L_{n-1}\right) S$ because $f_{n-1} \in L_{n-1} S$. We have the following exact sequences

$$
\begin{gathered}
0 \rightarrow S / L_{n} \rightarrow S / L_{n-1} S \oplus S /\left(x_{n}, f_{n-1}\right) \rightarrow S /\left(x_{n}, L_{n-1} S\right) \rightarrow 0 \\
0 \rightarrow S / I_{n} \rightarrow S / L_{n-1} S \oplus S /\left(x_{n}, u\right) \rightarrow S /\left(x_{n}, I_{n-1} S\right) \rightarrow 0
\end{gathered}
$$

By induction hypothesis depth $L_{n-1}=n-2$ and depth $I_{n-1}=n-3$ and so depth ${ }_{S} S /\left(x_{n}, L_{n-1} S\right)=$ $n-3, \operatorname{depth}_{S} S /\left(x_{n}, I_{n-1} S\right)=n-4$. As depth$S S /\left(x_{n}, f_{n-1}\right)=\operatorname{depth}_{S} S /\left(x_{n}, u\right)=n-2$, it follows $\operatorname{depth}_{S} S / L_{n}=n-2, \operatorname{depth}_{S} S / I_{n}=n-3$ by the Depth Lemma applied to the above exact sequences.

Now, let I be an arbitrary square free monomial ideal and P_{I} the poset given by all square free monomials of I (a finite set) with the order given by the divisibility. Let \mathcal{P} be a partition of P_{I} in intervals $[u, v]=\left\{w \in P_{I}: u|w, w| v\right\}$, let us say $P_{I}=\cup_{i}\left[u_{i}, v_{i}\right]$, the union being disjoint. Define $\operatorname{sdepth} \mathcal{P}=\min _{i} \operatorname{deg} v_{i}$ and $\operatorname{sdepth}_{S} I=\max _{\mathcal{P}} \operatorname{sdepth} \mathcal{P}$, where \mathcal{P} runs in the set of all partitions of P_{I}. This is the so called the Stanley depth of I, in fact this is an equivalent definition given in a general form by [1].

For instance, in Example 4, we have $P_{I}=\left\{x_{1} x_{2}, x_{2} x_{3}, x_{1} x_{2} x_{3}\right\}$ and we may take $\mathcal{P}: \quad P_{I}=$ $\left[x_{1} x_{2}, x_{1} x_{2} x_{3}\right] \cup\left[x_{2} x_{3}, x_{2} x_{3}\right]$ with $\operatorname{sdepth}_{S} \mathcal{P}=2$. Moreover, it is clear that $\operatorname{sdepth}_{S} I=2$.
Remark 7. If I is generated by $\mu(I)>\binom{n}{d+1}$ square free monomials of degree d then $\operatorname{sdepth}_{S} I=$ d. Since $((n-d) /(n-d+1))\binom{n}{d} \geq\binom{ n}{d+1}$, the Proposition 1 says that in a weaker case case $\operatorname{depth}_{S} I \leq \operatorname{sdepth}_{S} I$, which was in general conjectured by Stanley [8]. Stanley's Conjecture holds for intersections of four monomial prime ideals of S by [2] and [4] and for square free monomial ideals of $K\left[x_{1}, \ldots, x_{5}\right]$ by [3] (a short exposition on this subject is given in [5]). It is worth to mention that Proposition 1 holds in the stronger case when $\mu(I)>\binom{n}{d+1}$ (see [6]), but the proof is much more complicated and the easy proof given in the present case has its importance.

In the Example 5 we have $P_{I}=\left[x_{1} x_{2}, x_{1} x_{2} x_{4}\right] \cup\left[x_{1} x_{3}, x_{1} x_{3} x_{5}\right] \cup\left[x_{1} x_{4}, x_{1} x_{4} x_{5}\right] \cup\left[x_{2} x_{3}, x_{1} x_{2} x_{3}\right] \cup$ $\left[x_{3} x_{4}, x_{1} x_{3} x_{4}\right] \cup\left[x_{3} x_{5}, x_{3} x_{4} x_{5}\right] \cup\left[x_{4} x_{5}, x_{2} x_{4} x_{5}\right] \cup\left[x_{2} x_{3} x_{4}, x_{2} x_{3} x_{4}\right] \cap\left[x_{2} x_{3} x_{5}, x_{2} x_{3} x_{5}\right] \cup\left(\cup_{\alpha}[\alpha, \alpha]\right)$, where α runs in the set of square free monomials of I of degree 4,5 . It follows that $\operatorname{sdepth}_{S} I=3$. But as we know $\operatorname{depth}_{S} I=2$.
Acknowledgment. The support from the CNCSIS grant PN II-542/2009 of Romanian Ministry of Education, Research and Inovation is gratefully acknowledged.

References

[1] J. Herzog, M. Vladoiu, X. Zheng, How to compute the Stanley depth of a monomial ideal, J. Algebra, 322 (2009), 3151-3169.
[2] A. Popescu, Special Stanley Decompositions, Bull. Math. Soc. Sc. Math. Roumanie, 53(101), no 4 (2010), arXiv:AC/1008.3680.
[3] D. Popescu, An inequality between depth and Stanley depth, Bull. Math. Soc. Sc. Math. Roumanie 52(100), (2009), 377-382, arXiv:AC/0905.4597v2.
[4] D. Popescu, Stanley conjecture on intersections of four monomial prime ideals, arXiv.AC/1009.5646.
[5] D. Popescu, Bounds of Stanley depth, An. St. Univ. Ovidius. Constanta, 19(2),(2011), 187-194.
[6] D. Popescu, Depth of factors of square free monomial ideals, Preprint, 2011.
[7] A. Rauf, Depth and Stanley depth of multigraded modules, Comm. Algebra, 38 (2010),773-784.
[8] R. P. Stanley, Linear Diophantine equations and local cohomology, Invent. Math. 68 (1982) 175-193.

Institute of Mathematics "Simion Stoilow", Research unit 5, University of Bucharest,
P.O.Box 1-764, Bucharest 014700,

Romania e-mail: dorin.popescu@imar.ro

