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Almost Paracontact Structure on Finslerian
Indicatrix

E. Peyghan, A. Tayebi

Abstract

Recently Girtu by using the Sasaki metric, proved that the indicatrix
bundle of a Finsler manifold carries an almost paracontact structure. As
a generalization of this fact, we introduce a framed f(3,−1)-structure
of corank 2 on the slit tangent bundle of a Finsler manifold. Then we
prove that there exists an almost paracontact structure on the indicatrix
bundle, when this structure is restricted to the indicatrix bundle of
tangent bundle of Finsler manifold.

1 Introduction

A Riemannian metric g on a smooth manifold M gives rise to several Rieman-
nian metrics on the tangent bundle TM . Maybe the best known example is
the Sasaki metric gS introduced in [13]. Although the Sasaki metric is natu-
rally defined, it is very rigid; for example TM with the Sasaki metric is never
locally symmetric unless the metric g on the base manifold is flat [10]. On the
other hand, the Sasaki metric is not a good metric in the sense of [4] since its
Ricci curvature is not constant, that is, the Sasaki metric is not Einstein [11].

The Sasaki-Matsumoto lift GSM to the manifold TM0 := TM \ {0} of a
Finsler metric tensor g is extremely important in the study of the geometry of
a Finsler space Fn = (M,F (x, y)) [7]. This metric determines a Riemannian
structure on TM0, which depends only on the fundamental function F . Al-
though the Sasaki-Matsumoto metric is naturally defined, but it is very rigid.
For example, it is not difficult to see that GSM does not have a Finslerian
meaning. More precisely, the Sasaki-Matsumoto metric is not homogeneous
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with respect to the vertical variables yi. Consequently, we cannot study global
properties- as the Gauss-Bonnet theorem-for the Finsler space Fn by means
of this lift [3][5]. Also, since the two terms of the metric GSM do not have
the same physical dimensions, it does not satisfy the principles of the Post-
Newtonian calculus and so it is not convenient for a gauge theory. For this
reasons, Miron define a new lift GM to TM0, which is 0-homogeneous on the
fibers of the tangent bundle TM [9]. In continue, Anastasiei introduced lift
metric G to TM0 of a Finsler metric tensor g [1]. Then he showed that this
metric is generalization of Sasaki-Matsumoto metric, Miron Metric, Cheeger-
Gromoll metric [12] and Antonelli-Hrimiuc metrical structure [2]. We call this
metric with g-natural metric.

In [6], Girtu by using the Sasaki metric showed that the indicatrix bundle
of a Finsler manifold carries an almost paracontact structure. In this paper,
we introduce a framed f(3,−1)-structure on the slit tangent bundle TM0 of
a Finsler space. Then by considering g-natural metric G, we prove that the
framed f(3,−1)-structure on TM0 induces on indicatrix bumdle IM an almost
paracontact structure.

2 Preliminaries

Let M be a n-dimensional C∞ manifold. Denote by TxM the tangent space
at x ∈ M , by TM = ∪x∈MTxM the tangent bundle of M , and by TM0 =
TM \ {0} the slit tangent bundle on M . A Finsler metric on M is a function
F : TM → [0,∞) which has the following properties: (i) F is C∞ on TM0;
(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM , and
(iii) for each y ∈ TxM , the following quadratic form gy on TxM is positive
definite,

gy(u, v) :=
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
|s,t=0, u, v ∈ TxM.

The homogeneity of F implies

F 2(x, y) = gij(x, y)y
iyj = yiyi,

where yi = gijy
j . The functions N i

j(x, y) =
1
2

∂
∂yj (γ

i
kr(x, y)y

kyr) and γi
kr(x, y)

the generalized Christoffel symbols, are the local coefficients of the nonlinear
Cartan connection.

Let (x, y) = (xi, yi) be the local coordinates on TM0. It is well known that
the tangent space to TM0 at (x, y) splits into the direct sum of the vertical
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subspace V TM0(x,y) = span{∂ī} and the horizontal subspace HTM0(x,y) =
span{δi} as follows

T(x,y)TM0 = V TM0(x,y) ⊕HTM0(x,y),

where
δi = ∂i −Nk

i ∂k̄, (1)

and ∂ī =
∂

∂yi , δi =
δ

δxi , ∂i =
∂

∂xi . Its dual basis is (dx
i, δyi), where

δyi = dyi +N i
j(x, y)dx

j .

In [7], Matsumoto extended to Finsler spaces Fn the notion of Sasaki lift
metric, considering the tensor field

GSM (x, y) = gij(x, y)dx
i ⊗ dxj + gij(x, y)δy

i ⊗ δyj ∀(x, y) ∈ TM0. (2)

It easily follows that GSM is a Riemannian metric globally defined on TM0

and depending only on the fundamental function F of the Finsler space Fn.
Also, We see that the Sasaki-Matsumoto lift GSM is not homogeneous on the
fibers of the tangent bundle TM .

The Miron metric is defined uniquely by the following relations

GM (x, y) = gij(x, y)dx
i ⊗ dxj +

c2

F 2
gij(x, y)δy

i ⊗ δyj , (3)

for each (x, y) ∈ TM0, where c is a constant. It is obvious that GM is 0-
homogeneous on the fibers of TM and it depends only on the fundamental
function of the Finsler space [14].

A general metric is in fact a family of Riemannian metrics (depending on
two parameters) and we call it G [15]. The Sasaki-Matsumoto metric and the
Miron metric are particular cases of this metric. It is defined by the following
formulas

G(x, y) = gij(x, y)dx
i ⊗ dxj + (a(F 2)gij(x, y) + b(F 2)yiyj)δy

i ⊗ δyj , (4)

for all (x, y) ∈ TM0, where a, b : [0,∞] −→ [0,∞] and a > 0. The Sasaki-
Matsumoto metric is obtained for a = 1 and b = 0, while the Miron metric for

a = c2

F 2 and b = 0.

An almost paracontact structure on a manifold N is a set (ϕ, ξ, η) where
ϕ is a tensor field of type (1,1), ξ a vector field and η an 1-form such that

η(ξ) = 1, ϕ(ξ) = 0, η ◦ ϕ = 0, ϕ2 = I − η ⊗ ξ (5)
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where I denotes the Kronecker tensor field. This structure generalizes as
follows. One considers on a manifold N of dimension (2n+ s) a tensor field f
of type (1,1). If there exists on N the vector fields (ξα) and the 1- forms ηα

(α = 1, 2, . . . , s) such that

ηα(ξβ) = δαβ , f(ξα) = 0, ηα ◦ f = 0, f2 = I −
∑
α

ηα ⊗ ξα, (6)

then (f, (ξα), (η
α)) is called a framed f(3,−1)- structure. The term was sug-

gested by the equation f3 − f = 0. This is in some sense dual to the framed
f -structure which generalizes the almost contact structure and which may be
called a framed f(3, 1)- structure. For an account of such kind of structures
we refer to the book [8].

3 A framed f(3,−1)- structure on TM0

As is well known, there are two remarkable vector fields defined on TM0. One
is the vertical Liouville vector field C = yi∂ī, which is globally defined on
TM0. The other is the horizontal Liouville vector field S = yiδi (also called
the geodesic spray field of F ).

Let us put

ξ1 := αS = αyiδi and ξ2 := βC = βyi∂ī,

where α and β are functions on TM0 to be determined. Also we define the
linear operator P in the local basis by

P (δi) = δi, P (∂ī) = −∂ī. (7)

By a direct calculation, we get

P (ξ1) = ξ1, P (ξ2) = −ξ2. (8)

We consider the following 1-forms

η1 = γyidx
i, η2 = λyiδy

i, (9)

then we have

Lemma 3.1. η1 ◦ P = η1, η2 ◦ P = −η2.

Proof. It is sufficient to check these equalities on the adapted basis (δi, ∂ī).
We have

(η1 ◦ P )(δi) = η1(P (δi)) = η1(δi), (η1 ◦ P )(∂ī) = −η1(∂ī) = 0.
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Similarly we get

(η2 ◦ P )(δi) = η2(δi) = 0, (η2 ◦ P )(∂ī) = −η1(∂ī).

This completes the proof.

Lemma 3.2. For X ∈ χ(TM0), we have η1(X) = G(X, ξ1) and η2(X) =
G(X, ξ2) if and only if

α = γ, λ = β(a+ bF 2). (10)

Proof. In the adapted basis (δi, ∂ī), we have

η1(∂ī) = γykdx
k(∂ī) = 0, G(∂ī, ξ1) = G(∂ī, αy

kδk) = 0.

Further

η1(δi) = γykdx
k(δi) = γyi, G(δi, αy

kδk) = αykgik = αyi.

Then η1(X) = G(X, ξ1) if and only if η1(δi) = G(δi, ξ1) or α = γ. Similarly,
we have

η2(δi) = λykδy
k(δi) = 0, G(δi, ξ2) = G(∂ī, βy

k∂k̄) = 0,

and

η2(∂ī) = λykδy
k(∂ī) = λyi, G(∂ī, βy

k∂k̄) = αykgik = βyk(agik+byiyk) = β(a+bF 2)yi.

Then η2(X) = G(X, ξ2) if and only if η1(∂ī) = G(∂ī, ξ2) or λ = β(a+bF 2).

Now we define a tensor field p of type (1, 1) on TM0 by

p(X) = P (X)− η1(X)ξ1 + η2(X)ξ2, X ∈ χ(TM0). (11)

This can be written in a more compact form as p = P − η1 ⊗ ξ1 + η2 ⊗ ξ2.

Theorem 3.3. For the triple (p, (ξk), (η
k)), k=1,2, we have

(i) ηk(ξl) = δkl , p(ξk) = 0, ηk ◦ p = 0,
(ii) p2 = I − η1 ⊗ ξ1 − η2 ⊗ ξ2,
(iii) p is of rank 2n− 2

if and only if

αγ =
1

F 2
, βλ =

1

F 2
. (12)



156 E. Peyghan, A. Tayebi

Proof. By using (9) we have

η1(ξ1) = γyidx
i(αykδk) = αγyiy

i = αγF 2.

Further, since dxi(∂k̄) = 0, then we result that η1(ξ2) = 0. Therefore η1(ξl) =
δ1l if and only if η1(ξ1) = 1 or αγ = 1

F 2 . By similar way we get η2(ξ1) = 0 and
η2(ξ2) = βλF 2. Therefore η2(ξl) = δ2l if and only if βλ = 1

F 2 . From (8), (9)
and (11), we obtain

p(ξ1) = (1− αγF 2)ξ1, p(ξ2) = (βλF 2 − 1)ξ2. (13)

Hence p(ξk) = 0 if and only if (12) is hold. By using (9), (11) and Lemma 3.1,
we obtain

(η1 ◦ p)(δi) = η1[P (δi)− η1(δi)ξ1] = η1(δi)− η1(δi)η
1(ξ1) = γyi(1− αγF 2),(14)

(η1 ◦ p)(∂ī) = η1[P (∂ī) + η2(∂ī)ξ2] = −η1(∂ī) + η1(∂ī)η
1(ξ2) = 0. (15)

Similarly we get

(η2 ◦ p)(δi) = 0, (η2 ◦ p)(∂ī) = λyi(βλF
2 − 1). (16)

From (14), (15) and (16) we result that η1 ◦ p = η2 ◦ p = 0 if and only if (12)
is hold. For (ii) we have

p2(X) = p(p(X)) = P [P (X)− η1(X)ξ1 + η2(X)ξ2]− η1[P (X)− η1(X)ξ1 + η2(X)ξ2]ξ1

+η2[P (X)− η1(X)ξ1 + η2(X)ξ2]ξ2 = X − η1(X)ξ1 − η2(X)ξ2 − η1(P (X))ξ1

+η1(X)η1(ξ1)ξ1 − η2(X)η1(ξ2)ξ1 + η2(P (X))ξ2 − η1(X)η2(ξ1)ξ2 + η2(X)η2(ξ2)ξ2. (17)

Since η1(ξ2) = η2(ξ1) = 0, η1(ξ1) = αγF 2 and η2(ξ2) = βλF 2, then by using
Lemma 3.1 we can rewrite (17) as follows

p2(X) = X + (αγF 2 − 2)η1(X)ξ1 + (βλF 2 − 2)η2(X)ξ2. (18)

Therefore (ii) is hold if and only if αγF 2− 2 = −1 (or αγ = 1
F 2 ) and (βλF 2−

2) = −1 (or βλ = 1
F 2 ). For proof of (iii), it is sufficient to show that ker p =

span(ξ1, ξ2) if and only if (12) is hold. Let X = Xiδi+X ī∂ī ∈ ker p. By using
(11), we have

p(X) = Xiδi−X ī∂ī−γyiX
iξ1+λyiX

īξ2 = (Xi−αγykX
kyi)δi−(X ī−βλykX

k̄yi)∂ī = 0,

which is equal to

Xi = αγykX
kyi, X ī = βλykX

k̄yi.
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Hence

X = αγykX
kyiδi + βλykX

k̄yi∂ī = γykX
kξ1 + λykX

k̄ξ2,

that is X belongs to span(ξ1, ξ2). In other words, ker p ⊆ span(ξ1, ξ2). Let
X = c1ξ1 + c2ξ2 ∈ span(ξ1, ξ2). Then by using (13), we obtain

p(X) = c1p(ξ1) + c2p(ξ2) = c1(1− αγF 2)ξ1 + c2(βλF
2 − 1)ξ2.

Therefore p(X) = 0 if and only if (12) is hold. In other words, span(ξ1, ξ2) =
ker p if and only if (12) is hold.

Theorem 3.4. p3 − p = 0 if and only if αγ = k
F 2 and βλ = l

F 2 , where
k, l = 1, 2.

Proof. By using (13) and (18), we have

p3(X) = p(X) + (αγF 2 − 2)η1(X)p(ξ1) + (βλF 2 − 2)η2(X)p(ξ2)

= p(X) + (αγF 2 − 2)(1− αγF 2)η1(X)ξ1 + (βλF 2 − 2)(βλF 2 − 1)η2(X)ξ2.(19)

By attention the above equation, it results that p3 = p if and only if (αγF 2 −
2)(1− αγF 2) = 0 and (βλF 2 − 2)(βλF 2 − 1) = 0.

Theorem 3.5. If (10) and (12) is hold then the Riemannian metric G satisfies

G(pX, pX) = G(X,Y )−η1(X)η1(Y )−η2(X)η2(Y ), ∀X,Y ∈ χ(TM0). (20)

Proof. Let (10) and (12) is hold, then we have

G(ξ1, ξ1) = G(αyiδi, αy
jδj) = α2yiyjgij = α2F 2 = 1, (21)

G(ξ2, ξ2) = G(βyi∂ī, βy
j∂j̄) = β2yiyj(agij + byiyj) = β2F 2(a+ bF 2) = 1(22)

and
G(ξ1, ξ2) = G(αyiδi, βy

j∂j̄) = 0. (23)

From (21), (22), (23), Lemma 3.1 and Lemma 3.2 we get

G(pX, pY ) = G(PX,PY )−G(PX, ξ1)η
1(Y ) +G(P (X), ξ2)η

2(Y )−G(ξ1, PY )η1(X)

+η1(X)η1(Y ) + η2(X)G(ξ2, PY ) + η2(X)η2(Y )

= G(X,Y )− η1(PX)η1(Y ) + η2(PX)η2(Y )− η1(PY )η1(X)

+η1(X)η1(Y ) + η2(X)η2(PY ) + η2(X)η2(Y )

= G(X,Y )− η1(X)η1(Y )− η2(X)η2(Y ) (24)

This completes the proof.
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Remark 3.6. It is easy to check that conditions (10) and (12) are equivalent
to

α = γ = ± 1

F
, β = ± 1

F
√
a+ bF 2

, λ = ±
√
a+ bF 2

F
. (25)

Therefore by attention to the Theorem 3.5, we can conclude that if (25) is
hold then the metric G satisfies in (20).

From (11), the following local expression of p hold

p(δi) = P (δi)− η1(δi)ξ1 = (δki − αγyiy
k)δk (26)

p(∂ī) = P (∂ī) + η2(∂ī)ξ2 = (βλyiy
k − δki )∂k̄ (27)

Using (26) and (27), one can obtains

G(p(∂ī), p(∂j̄)) = (βλyiy
k − δki )(βλyjy

r − δrj )(agkr + bykyr)

= agij + [βλ(a+ bF 2)(βλF 2 − 2) + b]yiyj , (28)

G(p(δi), p(δj)) = (δki − αγyiy
k)(δrj − αγyjy

r)gkr

= gij + αγ(αγF 2 − 2)yiyj , (29)

G(p(δi), p(∂j̄)) = 0. (30)

Theorem 3.7. (G, p) is almost product structure if and only if αγ = 2
F 2 and

βλ = 2
F 2 .

Proof. If αγ = 2
F 2 and βλ = 2

F 2 , then by using (18) we have p2 = I. In this
case, also by using (28), (29) and (30) we obtain

G(p(∂ī), p(∂j̄)) = agij + byiyj = G(δi, δj),

G(p(δi), p(δj)) = gij = G(δi, δj),

G(p(δi), p(∂j̄)) = 0 = G(δi, ∂j̄).

In other word we have G(p(X), p(Y )) = G(X,Y ), for all X ∈ TM0, i.e., (G, p)
is almost product structure.

Conversely, if (G, p) is almost product structure, then from condition p2 =
I and (18) we result that αγ = 2

F 2 and βλ = 2
F 2 .

Let us put
h(X,Y ) = G(pX, Y ), X, Y ∈ χ(TM0). (31)

Then we get the following.

Theorem 3.8. The map h is a symmetric bilinear form on TM0. Further, h
is of rank2n− 2 with the null space span(ξ1, ξ2) if and only if (12) is hold.
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Proof. By using (26), (27) and (31) we obtain

h(∂ī, ∂j̄) = (βλyiy
k − δki )(agkj + bykyj) = −agij + [βλ(a+ bF 2)− b]yiyj ,(32)

h(δi, δj) = (δki − αγyiy
k)gkj = gij − αγyiyj , (33)

h(δi, ∂j̄) = 0. (34)

Since G is bilinear, then from the above equations we conclude that h is
symmetric bilinear form on TM0. For proof the second part of theorem, first
we let (12) is hold. Then by using (i) of the Theorem 3.3, we have h(ξ1, ξ1) =
h(ξ2, ξ2) = 0. Thus span(ξ1, ξ2) is contained in the null space of h. Now,

if X = Xiδi is such that h(X,X) = 0 it results X = ykX
kξ1

F 2 and similarly,

if X = X ī∂ī is such that h(X,X) = 0, it results X = ykX
k̄ξ2

F 2 . Thus the
null space of h is just span(ξ1, ξ2). Conversely, we let the null space of h is
span(ξ1, ξ2). Then we have h(ξ1, ξ1) = h(ξ2, ξ2) = 0. By using (13), we obtain

h(ξ1, ξ1) = G(p(ξ1), ξ1) = (1− αγF 2)G(ξ1, ξ1) = α2F 2(1− αγF 2)

h(ξ2, ξ2) = G(p(ξ2), ξ2) = (βλF 2 − 1)G(ξ2, ξ2) = (βλF 2 − 1)[β2F 2(a+ bF 2)]

From the above equations and condition h(ξ1, ξ1) = h(ξ2, ξ2) = 0, we result
αγF 2 = 1 and βλF 2 = 1.

If αγ = βλ = 1
F 2 , then from (32), (33) and (34) the bilinear form h as

follows

h = (gij −
2

F 2
)dxi ⊗ dxj − (agij − (

2a+ bF 2

F 2
)yiyj)δy

i ⊗ δyj . (35)

If αγ = βλ = 1
F 2 , then by (35) and Theorem 3.7 we have the following.

Theorem 3.9. If αγ = βλ = 1
F 2 , then the map h is a singular pseudo-

Riemannian metric on TM0 and it is the twin tensor of almost product metric
G.

4 Almost Paracontact Structure on Indicatrix Bundle

The set IM = {(x, y) ∈ TM0|F (x, y) = 1} is called the indicatrix bundle of
Fn. This set is a submanifold of dimension 2n− 1 of TM0. We show that the
framed f(3,−1)- structure on TM0, given by Theorem 3.3, induces an almost
paracontact structure on TM0.

It is easy to show that ξ2 = βyi∂ī is the unit normal vector field with
respect to the metric G. Indeed, if the local equations of IM in TM0 are

xi = xi(uα), yi = yi(uα), α ∈ {1, ..., 2m− 1}, (36)
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then, we have
∂F

∂xi

∂xi

∂uα
+

∂F

∂yi
∂yi

∂uα
= 0. (37)

As the h-covariant derivative of F vanishes, by using (1), we obtain

(Nk
i

∂xi

∂uα
+

∂yk

∂uα
)ℓk = 0, (38)

where ℓk = yk

F . The natural frame field on IM is represented by

∂

∂uα
=

∂xi

∂uα

∂

∂xi
+

∂yi

∂uα

∂

∂yi
=

∂xi

∂uα

δ

δxi
+ (Nk

i

∂xi

∂uα
+

∂yk

∂uα
)

∂

∂yk
. (39)

Then by (38), we deduce that

G(
∂

∂uα
, ξ2) = β(a+ bF 2)(Nk

i

∂xi

∂uα
+

∂yk

∂uα
)yk = 0. (40)

Thus ξ2 is orthogonal to any vector tangent to IM . The vector field ξ1 = αyiδi
is tangent to IM since G(ξ1, ξ2) = 0.

We restrict to IM all the objects introduced above and indicate this fact
by putting a bar over the letters denoting those objects. We have

Lemma 4.1. On indicatrix bundle IM , the following hold

ξ̄1 = ξ1, η̄2 = 0, p̄(X) = P (X)− η̄1(X)ξ1, ∀X ∈ χ(IM).

Proof. Since ξ1 is tangent to IM , then we result ξ̄1 = ξ1. From η̄2(X) =
G(X, ξ2) = 0, the other relation of lemma will conclude.

Since G(p̄(X), ξ2) = 0, then we have the following.

Lemma 4.2. The map p̄ is an endomorphism of the tangent bundle to IM .

We put ξ̄1 = ξ̄, η̄1 = η̄. Then Theorem 3.3, Theorem 3.4 and Lemmas 4.1
and 4.2, imply the following.

Theorem 4.3. If (12) is hold, then triple (p̄, ξ̄, η̄) defines an almost paracon-
tact structure on IM , that is,

(i) η̄(ξ̄) = 1, p̄(ξ̄) = 0, η̄ ◦ p̄ = 0,
(ii) p̄2(X) = X − η̄(X)ξ̄, X ∈ χ(IM),
(iii) p̄3 − p̄ = 0, rankp̄ = 2n− 2 = (2n− 1)− 1.
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Let Ḡ = G|IM . Using the restriction to IM and Theorem 3.5, one infers
that if (10) and (12) are hold then the Riemannian metric Ḡ satisfies

Ḡ(p̄X, p̄Y ) = Ḡ(X,Y )− η̄(X)η̄(Y ), X, Y ∈ χ(IM). (41)

By the equation (41) and Theorem 4.3, we conclude the following.

Theorem 4.4. If (10) and (12) are hold then the ensemble (p̄, ξ̄, η̄, Ḡ) defines
an almost metrical paracontact structure on IM .
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