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A Glimpse at Supertropical Valuation theory

Z. Izhakian, M. Knebusch, L. Rowen

Abstract

We give a short tour through major parts of a recent long paper
[IKR1] on supertropical valuation theory, leaving aside nearly all proofs
(to be found in [IKR1]). In this way we hope to give easy access to ideas
of a new branch of so called “supertropical algebra”.

1 Introduction

We will be much concerned with semirings. Our semirings will always have a
unit. Thus here a semiring R is a set R equipped with addition and multi-
plication such that both (R, +) and (R \ {0}, · ) are monoids, i.e., semigroups
with a unit element, 0 and 1 respectively, such that multiplication distributes
over addition in the usual way. In the present paper we always assume that
multiplication (and, of course, addition) is commutative. A semifield is a
semiring such that (R \ {0}, · ) is a group. We give two examples of semifields.

Example 1.1. If F is field then the set R :=
∑

F 2 consisting of all sums of
squares in R is a subsemiring of F , and in fact a subsemifield since, if

q := a2
1 + · · ·+ a2

n

with ai ∈ F and q 6= 0, then

1
q

=
(

a1

q

)2

+ · · ·+
(

an

q

)2

.
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For the second example of semifields we need some preparation. We call a
semiring M bipotent if for any a, b ∈ M the sum a + b is either a or b. {This
ia also called “selective” in the literature, cf. e.g. [GM].} In this case we have
a total ordering ≤ on the set M , defined by

a ≤ b ⇔ a + b = b,

as is easily checked. Clearly 0 is the smallest element of M . The ordering is
compatible with multiplication.

a ≤ b ⇒ ac ≤ bc,

and also with addition

a ≤ b ⇒ a + c ≤ b + c,

for any a, b, c ∈ M . We may state that

a + b = max(a, b).

Notice that bipotent semirings are very far away from those semirings where
addition is cancellative, i.e., a + c = b + c ⇒ a = b.

Example 1.2. Let Γ be a (totally) ordered abelian group, in multiplicative
notation. We add to Γ a new element 0 and extend the ordering of Γ to
M := Γ ∪ {0} by declaring 0 < γ for all γ ∈ Γ. We define addition and
multiplication on the set M as follows:

x + y = max(x, y) for x, y ∈ M,

0 · y = y · 0 = 0 for y ∈ M,

x · y = the given product in Γ, if x, y ∈ Γ.

Clearly, M is a bipotent semifield.

It is an easy exercise to check that in this way we obtain all bipotent
semifields M from ordered abelian groups Γ in a unique way (M = Γ ∪ {0},
Γ = M \{0}, . . . ). In short, bipotent semifields are the same objects as ordered
abelian groups.

Subexample 1.3. Take Γ = (R, +), the additive group of the real numbers
with the standard ordering. Since we switched to an additive notation, we
denote the zero element of the associated bipotent semiring M now by −∞.
Thus M = R ∪ {−∞}. Addition and multiplication on M are given by

x⊕ y := max(x, y), x¯ y := x + y.
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We refer to this bipotent semifield R ∪ {−∞} and related structures (e.g.
the subsemiring R≥0∪{−∞}) as the “max-plus setting”. It is used in tropical
geometry (e.g. [G], [IMS]). {In some papers (e.g. [SS]) an equivalent “min-
plus setting” is used.}

The present authors feel that the max-plus setting is rather weak for the
needs of tropical geometry, and thus are driven by the idea to develop a “su-
pertropical algebra”, which should serve tropical geometry better. Here the
supertropical semirings, to be defined below, occupy a central place. The
prefix “super” alludes to the fact that they are a sort of cover of bipotent
semirings.

There exist already supertropic results on polynomials ([IR1], [IR5]), ma-
trices ([IR2], [IR3], [IR4]) and, based on the supertropical matrix theory, first
steps of a supertropical linear algebra [IKR2]. And now supertropical valua-
tion theory [IKR1], to which we refer here.

2 Supertropical predomains with pregiven ghost map

Definition 2.1. Let R be a semiring. A valuation v on R is a map v : R →
M into a bipotent semifield M with v(0) = 0, v(1) = 1, and, for any a, b ∈ M ,

v(ab) = v(a) · v(b),

v(a + b) ≤ v(a) + v(b) [= max(v(a), v(b))].

If R is a ring, this definition can be found in [B, §3 No.1], up to our change
from ordered abelian groups (additively written in [B]) to bipotent semirings.
If R is a field, we meet the classical Krull valuations.

Definition 2.2. We call a valuation v on the semiring R strict, if

∀a, b ∈ R : v(a + b) = v(a) + v(b),

(i.e., v is a semiring homomorphism).
We call v strong, if

∀a, b ∈ R : v(a) 6= v(b) ⇒ v(a + b) = v(a) + v(b).

As is well known (at least when R is field), every valuation v on a ring R
is strong, but no valuation on R is strict. But if R is a semiring which is not
a ring, v very well may be strict.

Example 2.3. (For readers with experience in real algebra.) If R =
∑

F 2

with F a formal real field (cf. Example 1.1) and w is a valuation on F , then
the restriction w|R is strict iff the valuation w is “real”, i.e., w has a formally
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real residue class field. In this way the real valuations w on F correspond
uniquely to the strict valuation v on R, provided the group Γ := M \ {0} is
2-divisible; we obtain w back from v by the formula

w(a) = v(a2)
1
2 .

Since any ordered abelian group can be enlarged to a 2-divisible ordered
abelian group (even to a divisible ordered abelian group) in a unique way, it
is essentially a question of preference, whether we study real valuations on
fields or strict valuations on sub-semifields. With the second route we leave
the cadre of classical algebra but have the possibility of transit to semirings
which cannot be embedded into rings. For example we can study the image
of the “total strict valuation map”

R →
∏

Mv, a 7→ (v(a1)),

with v running through all strict valuations v : R → Mv on R. We do
not pursue this line here, but only point out that a “semiring–approach” is
reasonable even for Krull valuations on fields.

3 Supertropical semirings

We now define supertropical semirings. Such semirings have been con-
structed first in a special case in [I], and then defined in general in [IR1],
[IR2], [IKR1]. We follow the approach of [IKR1], which has the advantage of
being short, but we refer the reader to the other papers to understand more
on the intuition behind these semirings.

Definition 3.1. A semiring U is supertropical if the following four axioms
ST1-ST4 hold, which we state together with comments and side definitions.

ST1: The element e := 1 + 1 is both additive and multiplicative idempotent,
i.e., 1 + 1 = 1 + 1 + 1 + 1.
Thus eU is an ideal of U and is by itself a semiring.

ST2: The semiring eU is bipotent.

Then the elements of

G := G(U) := eU \ {0}
are called the ghost elements of U . (In some sense also 0 is considered
as a ghost element.) The map

νU : U → eU, x 7→ ex
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is called the ghost map of U . It associates to each x ∈ U its ghost ex.
{If x ∈ eU , then x is its own ghost.}

ST3: If ex < ey then x + y = y.

{Recall that eU is totaly ordered, due to Axiom ST2.}

ST4: If ex = ey then x + y = ex.

With Axiom ST4 we meet a principal idea of supertropical algebra:
While in the usual tropical geometry the semirings are idempotent,
i.e., x + x = x for each x in the semiring, here x + x is the ghost of x.

If U is a supertropical semiring we call the elements of

T := T(U) := U \ eU

tangible. We then have a partition

U = T ∪̇ G ∪̇ {0},

and we remark that G + G ⊂ G.

In the present paper we require for supertropical semirings one more axiom,
namely

ST5: T · T ⊂ T, G · G ⊂ G.

By this assumption we exclude only supertropical semirings which are
rather pathological and seldom of interest. (They are sometimes needed for
categorical reasons.)

We add three remarks for a supertropical semiring U , which can be readily
verified.

1. U is bipotent iff T is empty.

2. ∀x ∈ U : ex = 0 ⇒ x = 0.

This is a consequence of ST4. We have ex = e0, hence x + 0 = 0.

3. If x1, . . . , xn ∈ U and x1 + · · ·+ xn = 0, then all xi = 0.

Indeed, we have
ex1 + · · ·+ exn = 0,

and exi ≥ 0 for each i. Since U is totally ordered, it follows that each
exi = 0, hence xi = 0.
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The second remark indicates a special role of the zero element of U . Infor-
mally it may be considered as both tangible and ghost.

We mention that there exists a completely explicit construction which gives
us all supertropical semirings (with ST5), cf. [IKR1, Construction 3.16].

A basic intuition about ghost elements is that they are “noise” perturbing
the tangible elements. This can be formulated as follows:

Definition 3.2. Given x, y ∈ U we say that x surpasses y by ghost, and
write x |

gs
= y, if there exists some z ∈ eU with x = y + z.

We call the relation |
gs
= the ghost surpassing relation, or GS-relation,

for short.

We state two remarkable properties of the GS-relation.

1. |
gs
= is a partial ordering on the set U , which is compatible with multipli-

cation, i.e., x |
gs
= y implies xz |

gs
= yz for any z ∈ U . (The remarkable

thing here is that |
gs
= is antisymmetric.)

2. If x ∈ T ∪ {0}, y ∈ U , then x |
gs
= y implies x = y.

Thus if an element of U is perturbed by adding a ghost, the resulting element
can never be tangible.

4 Supervaluations

We now introduce supervaluations.

Definition 4.1. A supertropical semifield is a supertropical semiring U
for which the monoids (T(U), · ) and (G(U), · ) are groups.

Here we have to apologize for an inconsistency of language: The ghost
elements of a supertropical semifield are not invertible in U but only in G(U).
Thus U is not a semifield as defined in §1, only M := eU is a semifield.

Definition 4.2. A supervaluation on a semiring R is a map ϕ : R → U
from R to a supertropical semifield U with ϕ(0) = 0, ϕ(1) = 1, and, for any
a, b ∈ R,

ϕ(ab) = ϕ(a) · ϕ(b),

eϕ(a + b) ≤ eϕ(a) + eϕ(b).
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If ϕ : R → U is a supervaluation, then the map

v : R → M = eU, v(a) := eϕ(a)

clearly is a valuation (as defined in §2). We say that ϕ covers the valuation
v, and write v = eϕ.

Starting with a valuation v : R → U with values in some bipotent semifield
M we usually have very many supervaluations ϕ : R → U covering v, where
U runs through the class of all supertropical semifields with M ⊂ U and
eU = M . We obtain a hierarchy between these supervaluations by a relation
of “dominance”, to be explained now.

Lemma 4.3. If ϕ : R → U is a supervaluation,
then the set

〈ϕ(R)〉 := ϕ(R) ∪ eϕ(R)

is a subsemiring of U (and hence a supertropical semiring itself).

This can be easily verified.

Definition 4.4.

(a) Given supervaluations ϕ : R → U and ψ : R → V we say that ϕ domi-
nates ψ, and write ϕ ≥ ψ, if there exists a semiring homomorphism

α : 〈ϕ(R)〉 → 〈ψ(R)〉,

necessarily surjective, such that ψ(a) = α(ϕ(a)) for every a ∈ R.

(b) We call ϕ and ψ equivalent, and write ϕ ∼ ψ, of both ϕ ≥ ψ and
ψ ≥ ϕ.

(c) We denote the equivalence class of a supervaluation ϕ covering v by [ϕ],
and denote the set of all these classes by Cov(v).

We obtain on the set Cov(v) a partial ordering by declaring that

[ϕ] ≥ [ψ] iff ϕ ≥ ψ.

We now have a fairly remarkable fact:

Theorem 4.5. The partially ordered set Cov(v) is a complete lattice.

As every complete lattice Cov(v) has a top element and a bottom element.
The top element can be described explicitly, cf. [IKR1, Example 4.5]. The
bottom element is the class [v] of the supervaluation v : R → M , viewed as
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a supervaluation. {N.B. We regard M as a supertropical semifield without
tangible elements.}

Starting from now, until the end of the paper, we assume that v : R → M
is a strong valuation (e.g. R is a ring), and we focus on a particularly good
natured class of supervaluations covering v, to be defined as follows.

Definition 4.6. A supervaluation ϕ : R → U covering v is strong if

∀a, b ∈ R : ϕ(a) + ϕ(b) ∈ T(U) ⇒ ϕ(a + b) = ϕ(a) + ϕ(b).

The strong supervaluations turn out to be “nearly” semiring homomor-
phisms in the GS-sense. More precisely

Proposition 4.7. A supervaluation ϕ : R → U covering v is strong iff for all
a, b ∈ R

ϕ(a) + ϕ(b) |
gs
= ϕ(a + b).

We call a supervaluation ϕ : R → U tangible if all its values are tangible
or zero; ϕ(R) ⊂ T(U) ∪ {0}.

In the next section the strong valuations which are also tangible will play a
significant role. We quote the following important fact, to be found in [IKR1,
§10].

Theorem 4.8. The subset Covt,s(v) of Cov(v) consisting of all classes [ϕ] ∈
Cov(v) with ϕ tangible and strong is a complete sublattice of Cov(v). In par-
ticular Covt,s(v) is not empty.

Again the top and the bottom elements of Covt,s(v) can be described
explicitly, cf. [IKR1, Theorem 10.8 and Example 9.16].

5 A supertropical version of Kapranov’s lemma

Assume that R is a semiring, ϕ : R → U is a strong supervaluation covering
v : R → M , and λ = (λ1, . . . , λn) is a set of variables. We start out to extend
ϕ to a supervaluation on the polynomial semiring R[λ] in various ways.

We first extend ϕ to a map

ϕ̃ : R[λ] → U [λ]

by the formula

ϕ̃

( ∑

i

ciλ
i

)
:=

∑

i

ϕ(ci)λi.
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Here we use that standard monomial notation: i runs through the set of tuples
i = (i1, . . . , in) with i1, . . . , in in N0; λi means λi1

i · · ·λin
n ; only finitely many

ci are not zero. In the same way we have a map ṽ : R[λ] → M [λ],

ṽ

( ∑

i

ciλ
i

)
:=

∑

i

v(ci)λi.

Now we choose a tuple a = (a1, . . . , an) in Rn.
It gives us tuples ϕ(a) = (ϕ(a1), . . . , ϕ(an)) in Un and v(a) = (v(a1), . . . , v(an))

in Mn. Associated with these tuples we obtain evaluation maps

εa : R[λ] → R, εϕ(a) : U [λ] → U, εv(a) : M [λ] → M,

by inserting the tuples for the variables into the polynomials. For example

εϕ(a)

( ∑

i

γiλ
i

)
:=

∑

i

γiϕ(a)i (γi ∈ U).

These maps are semiring homomorphisms.
It is then fairly obvious that the map v ◦ εa : R[λ] → M is a valuation and

ϕ ◦ εa : R[λ] → U is a supervaluation covering v ◦ εa. With some work it can
be seen that also εv(a) ◦ ṽ : R[λ] → M is a valuation and εϕ(a) ◦ ṽ : R[λ] → U
is a supervaluation covering εv(a) ◦ ṽ. {Here it is important to assume that ϕ
is strong.}∗

Now most often the diagram

R[λ]

ϕ̃

²²

εa // R

ϕ

²²
U [λ]

εϕ(a) // U

does not commute. Instead we have

Theorem 5.1. [IKR1, §11] For any f ∈ R[λ]

εϕ(a)ϕ̃(f) |
gs
= ϕεa(f).

The theorem says in more imaginative terms that the supervaluation εϕ(a)ϕ̃
is a perturbation of ϕεa by noise.

∗The valuations and supervaluations on R[λ] ocuring here are again strong, but this will
not matter for the following.
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Theorem 5.1 has close relation to an initial key observation of tropical
geometry, Kapranov’s Lemma ([EKL, Lemma 2.1.4]). Let us briefly indicate
what it says.

Assume that R is a field and f =
∑

ciλ
i is a polynomial over R. It gives

us the hypersurface

Z(f) := {a ∈ Rn | f(a) = 0}.

In tropical geometry one relates Z(f) to the so called “corner locus”, or “trop-
ical hypersurface”, of the polynomial

ṽ(f) =
∑

i

v(ci)λi ∈ M [λ].

Notice that, if a tuple ξ ∈ Mn is given, then

ṽ(f)(ξ) = max
i

(v(ci)ξi).

The corner locus Z0(ṽ(f)) is defined as the set of all tuples ξ ∈ Mn, where
this maximum is attained at least at two indices. Kapranov’s lemma states
that

v(Z(f)) ⊂ Z0(ṽ(f)),

cf. [EKL, Lemma 2.1.4].
It can be deduced from Theorem 5.1 as follows.
We choose a tangible strong supervaluation ϕ : R → U covering v, which

is possible by Theorem 4.8. Let a ∈ Z(f). Then ϕεa(f) = ϕ(f(a)) = 0.
Theorem 5.1 tells us that

εϕ(a)ϕ̃(f) =
∑

i

ϕ(ci)ϕ(a)i |
gs
= 0,

i.e., this sum is ghost. But each summand ϕ(ci)ϕ(a)i is tangible or zero. From
the law ST3 in §3 we infer that the maximum of the values

eϕ(ci)ϕ(a)i = (eϕ(ci))(eϕ(a)i) = v(ci)v(a)i

is attained by more than one index. In other words, v(a) is an element of the
corner locus Z0(ṽ(f)). Thus indeed v(Z(f)) ⊂ Z0(ṽ(f)).

Theorem 5.1 says more than the classical Kapranov lemma, not only since
a semiring R instead of a field R is admitted, but also since it contains a
statement about points a ∈ Rn with f(a) 6= 0.

Finally, if ϕ and ψ are strong supervaluations covering v with ϕ ≥ ψ, the
statement of Theorem 5.1 for ϕ formally implies the same statement for ψ.
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Thus Theorem 5.1 seems to be “best”, if ϕ is the top element of Covt,s(v), at
least if we focus on tangible supervaluations.

To exploit all this, more work will be needed than what has been done in
[IKR1].
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