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From prime numbers to irreducible
multivariate polynomials

Nicolae Ciprian Bonciocat

Abstract

We present several methods to produce irreducible multivariate poly-
nomials, starting from sufficiently large prime numbers.

1 Introduction

There are many irreducibility criteria for multivariate polynomials in the liter-
ature. Some recent irreducibility results have been obtained for various classes
of polynomials in several variables, such as linear combinations of relatively
prime polynomials [11], compositions of polynomials [6], [1], multiplicative
convolutions [3], polynomials having one coefficient of dominant degree [7],
lacunary polynomials [2], and polynomials obtained from irreducible polyno-
mials in fewer variables [8], [9]. For an excellent account on the techniques
used in the study of reducibility of polynomials over arbitrary fields the reader
is referred to Schinzel’s book [15].

The aim of this expository paper is to present some of the results in [4],
[5], [8] and [9] and to show how to use them to provide methods to pro-
duce irreducible multivariate polynomials starting from sufficiently large prime
numbers. This will be achieved by combining some irreducibility criteria for
multivariate polynomials with some irreducibility criteria for polynomials with
integer coefficients that rely on the use of prime numbers.

The paper is organized as follows. In Section 2, we first present some
classical irreducibility criteria of A. Cohn, J. Brillhart, M. Filaseta and A.
Odlyzko for polynomials with integer coefficients, that are obtained by using
the digits of a prime number. We then present some irreducibility criteria
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for polynomials that have one large coefficient and take a prime value, or a
prime power value. Section 3 is devoted to some recent results that provide
methods to produce irreducible multivariate polynomials over arbitrary fields
from irreducible polynomials in fewer variables. In Section 4 we combine some
of the results in Sections 2 and 3, to provide methods to produce irreducible
multivariate polynomials directly from prime numbers. Some examples of
irreducible multivariate polynomials obtained from prime numbers are given
in the last section of the paper.

2 Irreducible polynomials obtained by using the digits
of a prime number

One of the most elegant irreducibility criterion that relies on the existence of a
suitable prime divisor of the value that a given polynomial takes at a specified
integral argument, is due to A. Cohn (see Pólya and Szegö [16]).

Theorem 2.1. (A. Cohn) If a prime p is expressed in the decimal system
as

p =
n∑

i=0

ai10i, 0 ≤ ai ≤ 9,

then the polynomial
∑n

i=0 aiX
i is irreducible in Z[X].

This result was generalised to an arbitrary base b by Brillhart, Filaseta
and Odlyzko [10].

Theorem 2.2. If a prime p is expressed in the number system with base
b ≥ 2 as

p =
n∑

i=0

aib
i, 0 ≤ ai ≤ b− 1,

then the polynomial
∑n

i=0 aiX
i is irreducible in Z[X].

For elementary proofs of these results and several nice connections between
prime numbers and irreducible polynomials, the reader is referred to [17] and
[14]. As expected, primes are not the only numbers enjoying this nice prop-
erty. In this respect, Filaseta [12] obtained another generalization of Cohn’s
Theorem by replacing the prime p by a composite number wp with w < b:

Theorem 2.3. (Filaseta) Let p be a prime number, w and b positive
integers, b ≥ 2, w < b, wp ≥ b and suppose that wp is expressed in the number
system with base b as

wp =
n∑

i=0

aib
i, 0 ≤ ai ≤ b− 1.
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Then the polynomial
∑n

i=0 aiX
i is irreducible over Q.

Cohn’s Theorem was also generalized in [10] and [13] by allowing the co-
efficients of f to be different from digits. In this respect, the following irre-
ducibility criterion for polynomials with non-negative coefficients was proved
in [13].

Theorem 2.4. (Filaseta) Let f(X) =
∑n

i=0 aiX
i be such that f(10) is

a prime. If the ai’s satisfy 0 ≤ ai ≤ an1030 for each i = 0, 1, . . . , n − 1, then
f(X) is irreducible over Q.

Inspired by these results, we proved in [4] some irreducibility criteria for
polynomials that have one large coefficient and take a prime value.

Theorem 2.5. Let f(X) =
∑n

i=0 aiX
i ∈ Z[X], a0an 6= 0. Suppose that for

an integer m, a prime number p and a nonzero integer q we have f(m) = p · q
and

|a0| >
n∑

i=1

|ai| · (|m|+ |q|)i.

Then f is irreducible over Q.

As an immediate consequence, we obtained the following flexible method
to produce irreducible polynomials from prime numbers.

Corollary 2.6. If we write a prime number as a sum of integers a0, . . . , an,
with a0an 6= 0 and |a0| >

∑n
i=1 |ai|2i, then the polynomial

∑n
i=0 aiX

i is irre-
ducible over Q.

Theorem 2.7. Let f(X) =
∑n

i=0 aiX
i ∈ Z[X], a0an 6= 0. Suppose that

for a prime number p and two nonzero integers m and q with |m| > |q| we
have f(m) = p · q and

|an| >
n−1∑

i=0

|ai| · (|m| − |q|)i−n.

Then f is irreducible over Q.

The conditions in Theorem 2.7 take a simpler form in the case of Littlewood
polynomials (polynomials all of whose coefficients are ±1).

Corollary 2.8. If f is a Littlewood polynomial and f(m) is a prime num-
ber for an integer m with |m| ≥ 3, then f is irreducible over Q.
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We note here that the condition |m| ≥ 3 is the best possible, in the sense
that there exist Littlewood polynomials f such that f(2) or f(−2) is a prime
number, and which are reducible. To see this, one may consider f1(X) = X3−
X2 +X−1 and f2(X) = −X3−X2−X−1. Here f1(2) = 5, f2(−2) = 5, and
f1, f2 are obviously reducible. We also note that one may replace in Corollary
2.8 the Littlewood polynomials by integer polynomials with coefficients of
modulus at most 1.

Theorem 2.9. Let f(X) =
∑n

i=0 aiX
di ∈ Z[X], with 0 = d0 < d1 < · · · <

dn and a0a1 · · · an 6= 0. Suppose that for an integer m, a prime number p
and a nonzero integer q with |m| > |q| we have f(m) = p · q. If for an index
j ∈ {1, . . . , n− 1} we have

|aj | > (|m|+ |q|)dn−dj ·
∑

i 6=j

|ai|,

then f is irreducible over Q.

One may naturally ask whether Cohn’s result will still hold true if we
replace the prime number p with ps, s ≥ 2. This is by no means necessarily
true, as one can see by taking p = 11 and considering the polynomial f(X)
obtained by replacing the powers of 10 by the corresponding powers of X in the
decimal representation of 112. In this case f(10) = 121, and the polynomial
f(X) = X2 + 2X + 1 is obviously reducible. For another example one may
consider the decimal representation of 117. Here f(10) = 117 = 19 487 171,
and the polynomial f(X) is also reducible, being divisible by X + 1:

f(X) = X7 + 9X6 + 4X5 + 8X4 + 7X3 + X2 + 7X + 1
= (X + 1)(X6 + 8X5 − 4X4 + 12X3 − 5X2 + 6X + 1).

In [5] we found some additional conditions that guarantee us the irreducibil-
ity of a polynomial that takes a prime power value, and this allowed us to
complement the results in [4], by extending them to a larger class of poly-
nomials. This was achieved by adding a natural condition on the derivative
of our polynomials. In [5] we also derived upper bounds for the total num-
ber of irreducible factors of such polynomials, instead of irreducibility criteria,
by considering their higher derivatives. The following result, proved in [5],
extends Theorem 2.2 to prime powers, as follows.

Theorem 2.10. If a prime power ps, s ≥ 2, is expressed in the number
system with base b ≥ 2 as ps =

∑n
i=0 aib

i, with 0 ≤ ai ≤ b − 1 and p -∑n
i=1 iaib

i−1, then the polynomial
∑n

i=0 aiX
i is irreducible over Q.
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The following results give irreducibility conditions for polynomials that
have one coefficient of sufficiently large modulus and take a value divisible by
a prime power ps, s ≥ 2.

Theorem 2.11. Let f(X) =
∑n

i=0 aiX
i ∈ Z[X], a0an 6= 0. Suppose that

f(m) = ps · q for some integers m, s, q and a prime number p, with s ≥ 2,
p - qf ′(m) and

|a0| >
n∑

i=1

|ai| · (|m|+ |q|)i.

Then f is irreducible over Q.

In particular, for m = q = 1 we obtained the following flexible irreducibility
criterion, that extends Corollary 2.6 to prime powers.

Corollary 2.12. If we write a prime power ps, s ≥ 2, as a sum of integers
a0, . . . , an with a0an 6= 0, |a0| >

∑n
i=1 |ai|2i, and a1 + 2a2 + · · · + nan is not

divisible by p, then the polynomial
∑n

i=0 aiX
i is irreducible over Q.

Theorem 2.13. Let f(X) =
∑n

i=0 aiX
i ∈ Z[X], a0an 6= 0. Suppose that

f(m) = ps · q, for some integers m, s, q and a prime number p, with s ≥ 2,
|m| > |q|, p - qf ′(m) and

|an| >
n−1∑

i=0

|ai| · (|m| − |q|)i−n.

Then f is irreducible over Q.

Corollary 2.14. Let f be a Littlewood polynomial. If f(m) is a prime
power ps, s ≥ 2, for an integer m with |m| ≥ 3, and p - f ′(m), then f is
irreducible over Q.

Here too, as in Corollary 2.8, one may replace the Littlewood polynomials
by integer polynomials with coefficients of modulus at most 1.

Theorem 2.15. Let f(X) =
∑n

i=0 aiX
di ∈ Z[X], with 0 = d0 < d1 <

· · · < dn and a0a1 · · · an 6= 0. Suppose that f(m) = ps · q, for some integers
m, s, q and a prime number p, with s ≥ 2, |m| > |q| and p - qf ′(m). If for an
index j ∈ {1, . . . , n− 1} we have

|aj | > (|m|+ |q|)dn−dj ·
∑

i 6=j

|ai|,

then f is irreducible over Q.
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In particular, Theorems 2.11, 2.13 and 2.15 show that, if f(m) is a prime
power for an integer m with |m| ≥ 2, f(m) and f ′(m) are relatively prime, and
f has one coefficient of sufficiently large modulus, then f must be irreducible
over Q. For the proof of the results in this section we refer the reader to [4]
and [5].

3 Irreducible multivariate polynomials obtained from ir-
reducible polynomials in fewer variables

The reader may naturally ask whether we can produce irreducible multivariate
polynomials from irreducible polynomials in fewer variables in the same way
in which the irreducible polynomials are constructed from prime numbers in
the theorems in Section 2 above. More precisely, given an arbitrary field
K, one may ask under what hypotheses a polynomial F (X, Y ) ∈ K[X,Y ]
such that F (X,h(X)) is irreducible over K for some h ∈ K[X], is necessarily
irreducible over K(X). Then, instead of asking F (X, h(X)) to be irreducible
over K for some h ∈ K[X], we allow F to satisfy the equality F (X, h(X)) =
f(X)s · g(X), with f, g ∈ K[X], f irreducible over K, g 6= 0, s ≥ 2, and
ask under what hypotheses F will still be irreducible over K(X). In [8] and
[9] we established such hypotheses and obtained some efficient methods to
construct irreducible multivariate polynomials over an arbitrary field, starting
from arbitrary irreducible polynomials in a smaller number of variables. The
following two results provide such hypotheses, expressed in terms of the slopes
of the edges of a Newton polygon, together with a condition involving a partial
derivative of our polynomials.

Theorem 3.1. Let K be a field and F (X, Y ) =
∑n

i=0 ai(X)Y i ∈ K[X, Y ],
with ai ∈ K[X], i = 0, . . . , n, a0an 6= 0. Let us assume that there exist
three polynomials f, g, h ∈ K[X] such that f is irreducible over K, g 6= 0
and F (X, h(X)) = f(X) · g(X). Then F is irreducible over K(X) if either
deg g < deg h and for an index j ∈ {1, . . . , n} with aj 6= 0 we have

max
k<j

deg ak − deg aj

j − k
< deg h < min

k>j

deg ak − deg aj

j − k
, (1)

or if

min
k>0

deg a0 − deg ak

k
> max{deg h, deg g}. (2)

Theorem 3.2. Let K be a field and F (X, Y ) =
∑n

i=0 ai(X)Y i ∈ K[X, Y ],
with ai ∈ K[X], i = 0, . . . , n, a0an 6= 0. Let us assume that there exist
three polynomials f, g, h ∈ K[X] such that f is irreducible over K, g 6= 0,
F (X, h(X)) = f(X)s ·g(X), for an integer s ≥ 2, and ∂F/∂Y (X,h(X)) is not
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divisible by f . Then F is irreducible over K(X) if either deg g < deg h and
for an index j ∈ {1, . . . , n} with aj 6= 0 we have

max
k<j

deg ak − deg aj

j − k
< deg h < min

k>j

deg ak − deg aj

j − k
, (3)

or if

min
k>0

deg a0 − deg ak

k
> max{deg h, deg g}. (4)

For the sake of the reader, we will include here a proof of the Theorem 3.1.
Proof: One may prove this result by using a Newton polygon argument.

Instead, we will give as in [8] a proof based on the study of the location of
the roots of F , regarded as a polynomial in Y with coefficients in K[X]. We
first introduce a nonarchimedean absolute value | · | on K(X), as follows. We
fix an arbitrary real number δ > 1, and for any polynomial u(X) ∈ K[X] we
define |u(X)| by the equality

|u(X)| = δdeg u(X).

We then extend the absolute value | · | to K(X) by multiplicativity. Thus for
any w(X) ∈ K(X), w(X) = u(X)

v(X) , with u(X), v(X) ∈ K[X], v(X) 6= 0, we let

|w(X)| = |u(X)|
|v(X)| . We note here that for any non-zero element u of K[X] one

has |u| ≥ 1. Let now K(X) be a fixed algebraic closure of K(X), and let us
fix an extension of our absolute value | · | to K(X), which we will also denote
by | · |.

Assume by contrary that our polynomial F decomposes as F (X, Y ) =
F1(X, Y ) · F2(X, Y ), with F1, F2 ∈ K[X,Y ], degY F1 = t ≥ 1 and degY F2 =
s ≥ 1. Since

F (X, h(X)) = f(X) · g(X) = F1(X,h(X)) · F2(X, h(X))

and f is irreducible over K, it follows that one of the polynomials F1(X,h(X)),
F2(X, h(X)) must divide g(X), say F1(X, h(X)) | g(X). In particular, one has

deg F1(X, h(X)) ≤ deg g(X). (5)

We consider now the factorisation of the polynomial F (X, Y ) over K(X),
say F (X, Y ) = an(X)(Y − ξ1) · · · (Y − ξn), with ξ1, . . . , ξn ∈ K(X). Since
a0 6= 0 we must have |ξi| 6= 0, i = 1, . . . , n. Let us denote

A = max
k<j

deg ak − deg aj

j − k
and B = min

k>j

deg ak − deg aj

j − k
,
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and notice that by (1) A is strictly smaller than B. Then for each i = 1, . . . , n
we must either have |ξi| ≤ δA, or |ξi| ≥ δB . In order to prove this, let us
assume by contrary that for some index i ∈ {1, . . . , n} we have δA < |ξi| < δB .
Since aj 6= 0 we deduce from δA < |ξi| that |aj | · |ξi|j > |ak| · |ξi|k for each
k < j, while from |ξi| < δB we find that |aj | · |ξi|j > |ak| · |ξi|k for each k > j.
By taking the maximum with respect to k in these inequalities, we obtain

|aj | · |ξi|j > max
k 6=j

|ak| · |ξi|k. (6)

On the other hand, since F (X, ξi) = 0, we must have

0 ≥ |ajξ
j
i | − |

∑
k 6=j

akξk
i | ≥ |aj | · |ξi|j −max

k 6=j
|ak| · |ξi|k,

which contradicts (6).
Now, since F1(X, Y ) is a factor of our polynomial F (X, Y ), it will factorize

over K(X) as F1(X,Y ) = bt(X)(Y − ξ1) · · · (Y − ξt), say, with bt(X) ∈ K[X],
bt(X) 6= 0. In particular, we have

|bt(X)| ≥ 1. (7)

Recalling the definition of our absolute value and using (5) and (7), we then
deduce that

δdeg g ≥ δdeg F1(X,h(X)) = |F1(X,h(X))|

= |bt(X)| ·
t∏

i=1

|h(X)− ξi| ≥
t∏

i=1

|h(X)− ξi|.

Now, for any index i ∈ {1, . . . , t} we either have

|h(X)− ξi| ≥ |h(X)| − |ξi| ≥ δdeg h − δA, if |ξi| ≤ δA,

or
|h(X)− ξi| ≥ |ξi| − |h(X)| ≥ δB − δdeg h, if |ξi| ≥ δB .

Since A < deg h < B it follows that for a large enough δ both the quantities
δdeg h − δA and δB − δdeg h become greater than 1, and hence we must have

δdeg g ≥ min{δdeg h − δA, δB − δdeg h},
since t ≥ 1. On the other hand, by our assumption that A < deg h < B and
deg g < deg h, both the inequalities δdeg g ≥ δdeg h−δA and δdeg g ≥ δB−δdeg h

must fail for a large enough δ, and this completes the proof of the first part of
the theorem.
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Assume now that the inequality (2) holds. In this case all the ξi’s satisfy
|ξi| ≥ δB with B = min

k>0

deg a0−deg ak

k and hence we have |h(X) − ξi| ≥ δB −
δdeg h, for each i ∈ {1, . . . , n}. This implies that for a large enough δ we must
have δdeg g ≥ δB − δdeg h. On the other hand, this inequality can not hold for
a large enough δ, since B > max{deg g, deg h}, and this completes the proof
of the theorem. ¤

Even though Theorems 3.1 and 3.2 may be in some cases difficult to apply,
they have a series of corollaries that are extremely useful to test the irre-
ducibility of a given polynomial on the one hand, and to provide methods to
produce irreducible multivariate polynomials, on the other hand. The first two
such corollaries are the following irreducibility criteria that use the Euclidean
algorithm.

Corollary 3.3. Let K be a field, f, h ∈ K[X], f irreducible over K,
deg h ≥ 1 and express the polynomial f “in base h” via the Euclidean algo-
rithm, say f =

∑n
i=0 aih

i, with a0, a1, . . . , an ∈ K[X]. Then the polynomial∑n
i=0 ai(X)Y i is irreducible over K(X).

Corollary 3.4. Let K be a field, f, g, h ∈ K[X], f irreducible over K,
g 6= 0, deg g < deg h, and assume that for an integer s ≥ 2 the polynomial fs ·g
is expressed “in base” h via the Euclidean algorithm as fs · g =

∑n
i=0 aih

i,
with a0, a1, . . . , an ∈ K[X]. If

∑n
i=1 iaih

i−1 is not divisible by f , then the
polynomial

∑n
i=0 ai(X)Y i ∈ K[X, Y ] is irreducible over K(X).

A more efficient method (that requires no division) to obtain irreducible
multivariate polynomials starting from an irreducible univariate polynomial is
given by the following two results.

Corollary 3.5. If we write an irreducible polynomial f ∈ K[X] as a sum
of polynomials a0, . . . , an ∈ K[X] with deg a0 > max

1≤i≤n
deg ai, then F (X, Y ) =

∑n
i=0ai(X)Y i is irreducible over K(X).

Corollary 3.6. Let f ∈ K[X] be an irreducible polynomial. If for an
integer s ≥ 2 we write fs as a sum of polynomials a0, . . . , an ∈ K[X] with
deg a0 > max

1≤i≤n
deg ai, and a1 + 2a2 + · · ·+ nan is not divisible by f , then the

polynomial F (X,Y ) =
∑n

i=0ai(X)Y i is irreducible over K(X).

Another way to produce irreducible multivariate polynomials is to replace
the monomials bkXk of an irreducible univariate polynomial with monomials
of the form bkXiY j , i + j = k.

Corollary 3.7. Let K be a field, f(X) = b0X
n0 + b1X

n1 + . . . + bkXnk ∈
K[X], 0 = n0 < n1 < · · · < nk, b0 · · · bk 6= 0, f being irreducible over K,
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and construct from f the polynomial F (X,Y ) = b0X
i0Y j0 + b1X

i1Y j1 + . . . +
bkXikY jk ∈ K[X,Y ], with il, jl ≥ 0, il + jl = nl, l = 0, . . . , k. If for an index
t ∈ {0, . . . , k} we have

max
js<jt

is − it
jt − js

< 1 < min
js>jt

is − it
jt − js

,

then F is irreducible over K(X).

Corollary 3.8. Let K be a field, f ∈ K[X] be irreducible over K, and
assume that for an integer s ≥ 2 we have f(X)s = b0X

n0 + b1X
n1 + . . . +

bkXnk ∈ K[X], 0 = n0 < n1 < · · · < nk, b0 · · · bk 6= 0. Let us construct from
fs the polynomial F (X,Y ) = b0X

i0Y j0+b1X
i1Y j1+. . .+bkXikY jk ∈ K[X, Y ],

with il, jl ≥ 0, il + jl = nl, l = 0, . . . , k. If ∂F/∂Y (X, X) is not divisible by f
and for an index t ∈ {0, . . . , k}, we have

max
jv<jt

iv − it
jt − jv

< 1 < min
jv>jt

iv − it
jt − jv

,

then F is irreducible over K(X).

Another method to construct irreducible polynomials in two variables is to
simply replace the variable X by Y in some of the monomials of an irreducible
univariate polynomial f(X).

Corollary 3.9. Let K be a field, f(X) = b0X
n0 + b1X

n1 + . . . + bkXnk ∈
K[X], 0 = n0 < n1 < · · · < nk, b0b1 · · · bk 6= 0, f being irreducible over K.
Then for every partition of the set S = {0, 1, . . . , k} into two disjoint nonempty
subsets S1, S2 with k ∈ S1, the polynomial in two variables

F (X, Y ) =
∑

i∈S1

biX
ni +

∑

i∈S2

biY
ni ∈ K[X, Y ]

is irreducible over K(X).

Corollary 3.10. Let K be a field, f ∈ K[X] irreducible over K, and
assume that for an integer s ≥ 2 we have f(X)s = b0X

n0 + b1X
n1 + . . . +

bkXnk ∈ K[X], 0 = n0 < n1 < · · · < nk, b0 · · · bk 6= 0. Then, for every
partition of the set S = {0, 1, . . . , k} into two disjoint nonempty subsets S1, S2

with k ∈ S1, the polynomial in two variables

F (X, Y ) =
∑

i∈S1

biX
ni +

∑

i∈S2

biY
ni ∈ K[X, Y ]

is irreducible over K(X), if ∂F/∂Y (X, X) is not divisible by f .
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Theorems 3.1 and 3.2 also provide irreducibility criteria for compositions
of polynomials, as follows.

Corollary 3.11. Let K be a field of characteristic 0 and let f1, f2 ∈ K[X]
with deg f1 ≥ 1, deg f2 ≥ 2. If f1 ◦ f2(X) is irreducible over K, then f1 ◦
(f2(X)−X + Y ) ∈ K[X, Y ] is irreducible over K(X).

Corollary 3.12. Let K be a field of characteristic 0 and let f, f1, f2, f3 ∈
K[X] with deg f2 ≥ 2, deg f3 < deg f1 and f irreducible over K. If f1 ◦ f2 +
f3 = fs for an integer s ≥ 2 and f ′1 ◦ f2 + f ′3 is not divisible by f , then the
polynomial f1 ◦ (f2(X)−X +Y )+ f3(Y ) ∈ K[X, Y ] is irreducible over K(X).

As an immediate consequence of previous results, one may formulate simi-
lar irreducibility criteria for polynomials in r ≥ 3 variables X1, X2, . . . , Xr over
K. For any polynomial f ∈ K[X1, . . . , Xr] we denote by degr f the degree of
f as a polynomial in Xr with coefficients in K[X1, . . . , Xr−1]. For instance,
the next result follows from Corollary 3.5 by writing Y for Xr, X for Xr−1

and by replacing K with K(X1, . . . , Xr−2).

Corollary 3.13. If f ∈ K[X1, . . . , Xr−1] is irreducible over K(X1, . . . , Xr−2)
and we write f as a sum of polynomials a0, . . . , an ∈ K[X1, . . . , Xr−1] with
degr−1 a0 > max

1≤i≤n
degr−1 ai, then F (X1, . . . , Xr) =

∑n
i=0ai(X1, . . . , Xr−1)Xi

r

is irreducible over K(X1, . . . , Xr−1).

The above results allow on the one hand to test the irreducibility of various
polynomials when other irreducibility criteria fail, and on the other hand to
construct various classes of irreducible multivariate polynomials from arbitrary
irreducible polynomials in a smaller number of variables. For the proof of the
results in this section we refer the reader to [8] and [9].

4 Irreducible multivariate polynomials obtained from
prime numbers

In this section we give some results that provide methods to obtain irreducible
multivariate polynomials directly from prime numbers, by combining some of
the irreducibility criteria in Sections 2 and 3 above. The first such results
combine the methods in Theorem 2.2 and Corollary 3.5.

Corollary 4.1. If a prime number p is expressed in the number system
with base b ≥ 2 as p = a0 + a1b + · · · + anbn, 0 ≤ ai ≤ b − 1, then for every
permutation σ of the set {0, 1, . . . , n} with σ(0) = 0 and aσ−1(n) 6= 0, the
polynomial

f(X,Y ) =
n∑

i=0

aiX
n−iY σ(i)
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is irreducible over Q(X).

Corollary 4.2. If a prime number p is expressed in the number system
with base b ≥ 2 as p = a0 + a1b + · · · + anbn, 0 ≤ ai ≤ b − 1, then for every
permutation σ of the set {0, 1, . . . , n} with σ(0) = 0 and aσ−1(n) 6= aσ−1(n)+1,
the polynomial

f(X, Y ) =
n∑

i=0

(ai − ai+1)(1 + X + · · ·+ Xi)Y σ(i), an+1 := 0

is irreducible over Q(X).

For the proof of Corollaries 4.1 and 4.2 we first note that one may extend
Corollary 3.5 to a larger class of polynomials, as follows:

Corollary 4.3. If we write an irreducible polynomial f ∈ K[X] as a sum
of polynomials f0, . . . , fn ∈ K[X] with deg f0 > max

1≤i≤n
deg fi, then for every

permutation σ of the set {0, 1, . . . , n} with σ(0) = 0 and fσ−1(n) 6= 0, the
polynomial F (X, Y ) =

∑n
i=0fi(X)Y σ(i) is irreducible over K(X).

Proof. This follows easily by Theorem 3.1 using (2) with F (X,Y ) =∑n
i=0fσ−1(i)(X)Y i, f(X) =

∑n
i=0 fi(X) and g(X) = h(X) = 1. Thus, by

writing an arbitrary irreducible polynomial f ∈ K[X] as f(X) =
∑n

i=0 fi(X)
with deg f0 > max

1≤i≤n
deg fi, one may construct polynomials F (X, Y ) =

∑n
i=0fi(X)Y σ(i) ∈ K[X,Y ] of arbitrarily large degrees with respect to Y , and

which are irreducible over K(X).

In particular, from Corollary 4.3, we obtain the following irreducibility
criterion.

Corollary 4.4. Let f(X) = anXn + · · · + a1X + a0 ∈ K[X] be an irre-
ducible polynomial. Then for every permutation σ of the set {0, 1, . . . , n} with
σ(0) = 0 and an−σ−1(n) 6= 0, the polynomial F (X, Y ) =

∑n
i=0an−iX

n−iY σ(i)

is irreducible over K(X).

Proof. Here we write f(X) =
∑n

i=0 fi(X) with fi(X) = an−iX
n−i, i =

0, 1, . . . , n, and we obviously have deg f0 > max
1≤i≤n

deg fi. The conclusion fol-

lows by Corollary 4.3.

We return now to the proof of Corollaries 4.1 and 4.2. First, by Theorem
2.2, the polynomial f(X) = anXn + · · ·+a1X +a0 is irreducible over Q, hence
its reciprocal f̄(X) = Xnf(1/X) = a0X

n+· · ·+an−1X+an is also irreducible
over Q. Since one may write f̄ as f̄ = f0 + f1 + · · ·+fn with fi(X) = aiX

n−i,
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i = 0, 1, . . . , n, and deg f0 > max
1≤i≤n

deg fi, the proof of Corollary 4.1 follows by

Corollary 4.3 with f replaced by f̄ .
For the proof of Corollary 4.2, we observe that f(X) = anXn + · · ·+a1X +

a0 may be written as f(X) =
∑n

i=0(ai−ai+1)(1+X+· · ·+Xi), with an+1 = 0.
This shows that f may be written as f = f0 + f1 + · · · + fn with fi(X) =
(ai − ai+1)(1 + X + · · ·+ Xi), i = 0, 1, . . . , n. Since deg f0 > max

1≤i≤n
deg fi, the

conclusion follows again by Corollary 4.3.
In a similar way one may produce irreducible multivariate polynomials by

combining the methods in Theorem 2.10 and Corollary 4.4, as follows.

Corollary 4.5. If a prime power ps, s ≥ 2 is expressed in the num-
ber system with base b ≥ 2 as ps =

∑n
i=0 aib

i with 0 ≤ ai ≤ b − 1 and
p -

∑n
i=1 iaib

i−1, then for every permutation σ of the set {0, 1, . . . , n} with
σ(0) = 0 and an−σ−1(n) 6= 0, the polynomial F (X, Y ) =

∑n
i=0an−iX

n−iY σ(i)

is irreducible over Q(X).

Another method to produce irreducible multivariate polynomials from prime
numbers is obtained by combining Corollary 2.8 and Corollary 4.4, as follows.

Corollary 4.6. If we write a prime number as a0 + a1m + · · · + anmn

with ai ∈ {−1, 1} and m an integer with |m| ≥ 3, then for every permutation
σ of the set {0, 1, . . . , n} with σ(0) = 0 and an−σ−1(n) 6= 0, the polynomial
F (X,Y ) =

∑n
i=0an−iX

n−iY σ(i) is irreducible over Q(X).

Proof. By Corollary 2.8, the Littlewood polynomial f(X) =
∑n

i=0 aiX
i

is irreducible over Q, so by Corollary 4.4, F (X, Y ) =
∑n

i=0an−iX
n−iY σ(i) is

irreducible over Q(X).

By combining now Theorem 2.2 and Corollary 3.9, one obtains the follow-
ing result.

Corollary 4.7. If a prime number is expressed in the number system with
base b ≥ 2 as p = a0b

n0 + a1b
n1 + . . . + akbnk , 0 = n0 < n1 < · · · < nk,

a0 · · · ak 6= 0, then for every partition of the set S = {0, 1, . . . , k} into two
disjoint, nonempty subsets S1, S2 with k ∈ S1, the polynomial in two variables

F (X, Y ) =
∑

i∈S1

aiX
ni +

∑

i∈S2

aiY
ni ∈ Q[X,Y ]

is irreducible over Q(X).

The last result in this section combines Theorem 2.2 and Corollary 3.11,
as follows.
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Corollary 4.8. If a prime number p is expressed in the number system
with base b ≥ 2 as p = a0 + a1b

k + a2b
2k + · · · + anbnk with 0 ≤ ai ≤ b − 1,

k ≥ 2, n ≥ 1, then the polynomial

F (X,Y ) =
n∑

i=0

ai · (Xk −X + Y )i

is irreducible over Q(X).

Proof. Here we use the fact that the polynomial f(X) =
∑n

i=0 aiX
ki may

be written as f = f1 ◦ f2 with f1(X) =
∑n

i=0 aiX
i and f2(X) = Xk. By

Theorem 2.2, the polynomial f1 ◦ f2 must be irreducible over Q, hence by
Corollary 3.11 the polynomial in two variables F (X,Y ) =

∑n
i=0 ai · (Xk−X +

Y )i must be irreducible over Q(X).

5 Examples

1) Let p = 20102009200820072006200520042003. Since p is a prime number,
by Cohn’s Theorem, the polynomial

f(X) = 2X31 + X29 + 2X27 + 9X24 + 2X23 + 8X20 + 2X19 + 7X16

+ 2X15 + 6X12 + 2X11 + 5X8 + 2X7 + 4X4 + 2X3 + 3

must be irreducible over Q. Then, by Corollary 3.9, the polynomial

F (X, Y ) = 2X31 + 2X27 + 2X23 + 2X19 + 2X15 + 2X11 + 2X7 + 2X3

+ Y 29 + 9Y 24 + 8Y 20 + 7Y 16 + 6Y 12 + 5Y 8 + 4Y 4 + 3 ∈ Q[X, Y ]

is irreducible over Q(X). We note that in this way one may produce from f(X)
a number of 215−1 polynomials F (X, Y ) ∈ Q[X,Y ] which are irreducible over
Q(X).

2) Let p = 1222333444555666777888999. We may write the prime p as
p = a0 + a1 + a2 + · · ·+ a9 with

a0 = 1024 a5 = 666 · 109

a1 = 222 · 1021 a6 = 777 · 106

a2 = 333 · 1018 a7 = 888 · 103

a3 = 444 · 1015 a8 = 99
a4 = 555 · 1012 a9 = 9

We obviously have |a0| > 2|a1|+22|a2|+ · · ·+29|a9|, so, by Corollary 2.6, the
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polynomial

f(X) = a0 + a1X + · · ·+ a9X
9

= 1024 + 222 · 1021X + 333 · 1018X2 + 444 · 1015X3 + 555 · 1012X4

+ 666 · 109X5 + 777 · 106X6 + 888 · 103X7 + 99X8 + 9X9

is irreducible over Q. Write now f(X) = a0(X) + a1(X) + a2(X) + a3(X) +
a4(X) with

a0(X) = 99X8 + 9X9

a1(X) = 777 · 106X6 + 888 · 103X7

a2(X) = 555 · 1012X4 + 666 · 109X5

a3(X) = 333 · 1018X2 + 444 · 1015X3

a4(X) = 1024 + 222 · 1021X.

Since deg a0 > max{deg a1, deg a2,deg a3, deg a4}, by Corollary 3.5 the poly-
nomial in two variables F (X, Y ) = a0(X) + a1(X)Y + a2(X)Y 2 + a3(X)Y 3 +
a4(X)Y 4 is irreducible over Q(X).

3) Let p = 9988776655443322110053. Since p is a prime number, by Cohn’s
Theorem the polynomial

f(X) = 9X21 + 9X20 + 8X19 + 8X18 + 7X17 + 7X16 + 6X15 + 6X14 + 5X13

+ 5X12 + 4X11 + 4X10 + 3X9 + 3X8 + 2X7 + 2X6 + X5 + X4 + 5X + 3

must be irreducible over Q. By Corollary 4.4 with σ(i) = i + 1 for i =
1, 2, . . . , 20 and σ(21) = 1, the polynomial

F (X,Y ) = 5XY 21 + X4Y 18 + X5Y 17 + 2X6Y 16 + 2X7Y 15 + 3X8Y 14 + 3X9Y 13

+ 4X10Y 12 + 4X11Y 11 + 5X12Y 10 + 5X13Y 9 + 6X14Y 8 + 6X15Y 7

+ 7X16Y 6 + 7X17Y 5 + 8X18Y 4 + 8X19Y 3 + 9X20Y 2 + 3Y + 9X21

is irreducible over Q(X).
4) For an example related to Corollary 4.8, let

p1 = 9007005003001,

p2 = 90007000500030001,

p3 = 9000007000005000003000001.

Since p1, p2 and p3 are prime numbers, by Corollary 4.8 the polynomials

F1 = 1 + 3(X3 −X + Y ) + 5(X3 −X + Y )2 + 7(X3 −X + Y )3 + 9(X3 −X + Y )4

F2 = 1 + 3(X4 −X + Y ) + 5(X4 −X + Y )2 + 7(X4 −X + Y )3 + 9(X4 −X + Y )4

F3 = 1 + 3(X6 −X + Y ) + 5(X6 −X + Y )2 + 7(X6 −X + Y )3 + 9(X6 −X + Y )4
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are irreducible over Q(X).
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