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ON THE NONLINEAR ELASTIC SIMPLY

SUPPORTED BEAM EQUATION

Marek Galewski

Abstract

Using a direct variational approach, we consider the existence of so-

lutions and their dependence on a functional parameter for the elastic

beam equation by means of investigating the critical points to the rele-

vant Euler action functional.

1 Introduction

In this research we intend to investigate a fourth order Dirichlet problem
connected with the elastic beam equation with simply supported ends via
direct variational approach. In the recent literature, see for example [3], [14],
[17], where also critical point theory is applied, mainly the simplified form of
the beam equation

d4

dt4
x = f (t, x) (1)

pertaining to rigidly fastened boundary conditions

x (0) = x (1) = ẋ (0) = ẋ (1) = 0 (2)

or simply supported conditions

x (0) = x (1) = ẍ (0) = ẍ (1) = 0 (3)
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is considered. Since equation (1) does not fully reflect the real physical object,
we investigate the following model

d2

dt2

(

E (t) I (t)
d2

dt2
x (t)

)

+ w (t)x (t) = f (t, x (t)) (4)

with suitable assumptions on f ; here E : [0, 1] → R is Young’s modulus of
elasticity for the beam, I : [0, 1] → R is the moment of inertia of cross section
of the beam and w is the load density (force per unit length of a beam); it is
natural to assume that w (t) > 0, E (t) ≥ E0 > 0, I (t) ≥ I0 > 0 for t ∈ [0, 1]
and E, I, w ∈ L∞ (0, 1). However, the simplified version (1) of the beam equa-
tion (4) seems to be easier tackled by mathematical methods and therefore a
variety of methods could be applied in investigating the existence of solu-
tions. The three critical point theorem due to Ricerri, the Sturm comparison
theorem combined with the shooting method and also the Guo-Krasnosel’skij
fixed point theorem of cone-expansion compression type were used in [3], [14],
[17]. Apart from these methods, there were used the method of upper and
lower solutions together with a type of a Landesman-Lazer condition, Leray-
Schauder fixed point theorem, degree-theoretic methods, semiorder method
on cones of Banach space, minimax method, a priori estimates together with
the Krasnosel’skij theorem on cones, see [1], [2], [7], [8], [12], [16].

The case is not as easy with (4) due to the form of the left hand side of the
beam equation. Although we may put functions E, I to be fixed constants,
we may not put w = 0 on [0, 1] without altering the original model. Let
H = H1

0 (0, 1) ∩H2 (0, 1) considered with the norm
√

√

√

√

∥

∥

∥

∥

d

dt
x

∥

∥

∥

∥

2

L2(0,1)

+

∥

∥

∥

∥

d2

dt2
x

∥

∥

∥

∥

2

L2(0,1)

.

Via a direct approach in the space we will look for solutions to the following
problem

d2

dt2

(

E (t) I (t) d2

dt2
x (t)

)

+ w (t)x (t) + F 1
x (t, x (t)) = F 2

x (t, x (t))u (t) ,

x (0) = x (1) = ẍ (0) = ẍ (1) = 0.

(5)

A functional parameter u : [0, 1] → R belongs to the set

LM = {u : [0, 1] → R : u is measurable, |u (t)| ≤ m for a.e. t ∈ [0, 1]} ,

m > 0 is a fixed real number; functions F 1, F 2 are subject to the following
conditions:
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A1 F 1, F 1
x : [0, 1]×R → R are Caratheodory functions; F 1 is continuously

differentiable and convex with respect to the second variable in R for a. e.
t ∈ [0, 1]; t → F 1 (t, 0) is integrable on [0, 1]; function t → F 1

x (t, 0) belongs to
L2 (0, 1); function t → maxx∈[−d,d]

∣

∣F 1 (t, x)
∣

∣ is integrable for any d > 0.

A2 F 1, F 1
x : [0, 1] × R → R are Caratheodory functions, functions t →

F 1 (t, 0) and t →
(

F 1
)∗

(t, 0) are integrable on [0, 1]; function

t → max
x∈[−d,d]

∣

∣F 1 (t, x)
∣

∣

is integrable for any d > 0.

A3 F 2, F 2
x : [0, 1] × R → R are Caratheodory functions, there exists a

function a ∈ L2 (0, 1) such that

∣

∣F 2 (t, x)
∣

∣ ≤ a (t) for a.e. t ∈ [0, 1] and all x ∈ R. (6)

(

F 1
)∗

denotes the Fenchel-Young transform of a function F 1 with respect
to the second variable, [9], namely

(

F 1
)∗

(t, v) = sup
x∈R

{

xv − F 1 (t, x)
}

for a.e. t ∈ [0, 1] .

Remark 1.1. We observe that for any x ∈ H the following estimation holds

|ẋ (t)− ẋ (s)| =
∣

∣

∣

∫ t

s
ẍ (τ) dτ

∣

∣

∣
≤

√
t− s

∫ t

s
ẍ2 (τ) dτ

≤
√

|t− s| ‖ẍ‖L2(0,1) ≤ ‖ẍ‖L2(0,1) .

For any bounded sequence {xk}∞k=1 ⊂ H, the sequence of derivatives {ẋk}∞k=1

is uniformly convergent (up to the subsequence) by the Ascoli-Arzela Theorem
and thus strongly convergent in H1

0 (0, 1). Moreover, we have the following
Poincaré type inequalities for any v ∈ H, see [10]

‖v‖L2(0,1) ≤
1

π
‖v̇‖L2(0,1) and ‖v̇‖L2(0,1) ≤

1

π
‖v̈‖L2(0,1) . (7)

The paper is organized as follows. Firstly we investigate the dependence
on a functional parameter for the action functionals. Next we investigate the
existence of a solution for problem (5) and its dependence on a parameter.
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2 Dependence of the argument of a minimum on a func-

tional parameter

The Euler action functional Ju : H → R associated with (5) is given by

Ju (x) =
1
2

∫ 1

0
E (t) I (t)

(

d2

dt2
x (t)

)2

dt+ 1
2

∫ 1

0
w (t)x2 (t) dt+

−
∫ 1

0
F 2 (t, x (t))u (t) dt+

∫ 1

0
F 1 (t, x (t)) dt.

Ju is well defined with either A1-A3 or A2-A3. We mention here that as-
sumptions A1-A3 or A2-A3 do not provide the Gâteaux differentiability of
Ju. It is interesting to note that the dependence on functional parameter u

can be investigated for the arguments of a minimum for Ju without invoking
its differentiability contrary to what is done in [6].

Lemma 2.1. Suppose that either A1-A3 or A2-A3 hold. For any fixed
u ∈ LM functional is coercive and weakly l.s.c. on H. For any fixed u ∈ LM

there exists xu ∈ H such that infx∈H Ju (x) = Ju (xu).

Let us fix u ∈ LM and let {xn}∞n=1 ⊂ H be such a sequence that xn converges
to x weakly in H. By Remark 1.1 sequence {xn}∞n=1 contains a subsequence,
denoted by {xn}∞n=1, convergent strongly in H1

0 (0, 1) and also convergent uni-
formly. The Lebesgue Dominated Convergence Theorem and (6) show that

∫ 1

0

F 2 (t, xn (t))u (t) dt →
∫ 1

0

F 2 (t, x (t))u (t) dt as n → ∞.

Since {xn}∞n=1 is uniformly convergent, there exists a number d > 0 such that
|xn (t)| ≤ d for all t ∈ [0, 1]. Hence, by the Lebesgue dominated convergence

∫ 1

0

F 1 (t, xn (t)) dt →
∫ 1

0

F 1 (t, x (t)) dt as n → ∞.

Since the remaining terms of Ju are convex and l.s.c., these are also weakly
l.s.c. on H and so Ju is weakly l.s.c.

By the convexity of F 1 with respect to the second variable and by A1 we
see that

∫ 1

0
F 1 (t, x (t)) dt ≥

∫ 1

0
F 1 (t, 0) dt+

∫ 1

0
F 1
x (t, 0)x (t) dt ≥

∫ 1

0
F 1 (t, 0) dt−

∥

∥F 1
x (·, 0)

∥

∥

L2(0,1)
‖x‖L2(0,1)

(8)
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for any x ∈ H. By (8) and by relation

−
∫ 1

0

∣

∣F 2 (t, x (t))u (t)
∣

∣ dt ≥ −m

∫ 1

0

|a (t)| dt. (9)

Ju is coercive on H with assumptions A1-A3.

Let as assume A2-A3. By inequality

∫ 1

0

F 1 (t, x (t)) dt ≥ −
∫ 1

0

(

F 1
)∗

(t, 0) dt (10)

and by (9) we see that Ju is coercive.

Finally, since Ju is coercive and weakly l.s.c. in both cases, there exists
xu ∈ H such that Ju (xu) = infx∈H Ju (x).

Theorem 2.1. We suppose that either A1, A3 or A2, A3 hold. Let
{uk}∞k=1, uk ∈ LM , be such a sequence that limk→∞ uk = u weakly in L2 (0, 1).
For each k = 1, 2, ... the set

Vuk
=

{

x ∈ H : Ju (x) = inf
v∈H

Ju (v)

}

is nonempty and for any sequence {xk}∞k=1 , xk ∈ Vuk
, of arguments of a

minimum of Juk
corresponding to uk, there exists a subsequence {xkn

}∞n=1 ⊂ H

and an element x ∈ Vu such that limn→∞ xkn
= x (strongly in C (0, 1), strongly

in H1
0 (0, 1), weakly in H2 (0, 1)) and Ju (x) = infx∈H Ju (x).

Proof. Firstly, we investigate the convergence of the sequence of the arguments
of a minimum. Secondly, we show the last assertion.

By Lemma 2.1 for each k = 1, 2, ... there exists

xk ∈ Vuk
⊂ Sk = {x : Juk

(x) ≤ Juk
(0)} .

With A1, A3 for any x ∈ Sk we have

−
∫ 1

0

F 2 (t, 0)uk (t) dt+

∫ 1

0

F 2 (t, x (t))uk (t) dt ≤ 2m

∫ 1

0

|a (t)| dt. (11)

By (8) we obtain

∫ 1

0

F 1 (t, 0) dt−
∫ 1

0

F 1 (t, x (t)) dt ≤ −
∥

∥F 1
x (·, 0)

∥

∥

L2(0,1)
‖x‖L2(0,1) .
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By writing 0 ≤ Juk
(0)− Juk

(xk) explicitly we see that

0 ≤ − 1
2

∫ 1

0
E (t) I (t)

(

d2

dt2
xk (t)

)2

dt− 1
2

∫ 1

0
w (t)x2

k (t) dt

≤ 2m
∫ 1

0
|a (t)| dt−

∥

∥F 1
x (·, 0)

∥

∥

L2(0,1)
‖xk‖L2(0,1) .

By (7) we obtain

1
2E0I0

∥

∥

∥

d2

dt2
xk

∥

∥

∥

2

L2(0,1)
− 1

π2

∥

∥F 1
x (·, 0)

∥

∥

L2(0,1)

∥

∥

∥

d2

dt2
xk

∥

∥

∥

L2(0,1)
≤

2m
∫ 1

0
|a (t)| dt.

(12)

With A2, A3 we also have (11). By (10) we see that

1
2

∫ 1

0
E0I0

(

d2

dt2
xk (t)

)2

dt ≤

2m
∫ 1

0
|a (t)| dt+

∫ 1

0
F 1 (t, 0) dt+

∫ 1

0

(

F 1
)∗

(t, 0) dt.

(13)

Therefore either by (12) or by (13) there exists a subsequence {xkn
}∞n=1 of

{xk}∞k=1 weakly convergent in H, which up to a subsequence may be assumed
to be strongly convergent in H1

0 (0, 1) and so convergent uniformly.

Next,by Lemma 2.1 applied with u there exists x0 ∈ H such that Ju (x0) =
infx∈H Ju (x). We suppose that Ju (x0) < Ju (x) and investigate the right hand
side of the equivalent inequality

δ <
(

Jukn
(xkn

)− Ju (x0)
)

−
(

Jukn
(xkn

)− Jukn
(x)

)

−
(

Jukn
(x)− Ju (x)

)

,

(14)

where δ > 0 is certain constant such that δ < Ju (x) − Ju (x0). By Lebesgue
Dominated Convergence Theorem, we see that

lim
n→∞

(

Jukn
(x)− Ju (x)

)

= 0.

By the generalized Krasnosel’skij Theorem, see [5], and by (15) we see that
limn→∞ F 2 (·, xkn

(·)) = F 2 (·, x (·)) strongly in L2 (0, 1). Since limn→∞ ukn
=

u weakly in L2 (0, 1), we see that

lim
n→∞

∫ 1

0

F 2 (t, xkn
(t))ukn

(t) dt =

∫ 1

0

F 2 (t, x (t))u (t) dt.
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Thus we have limn→∞

(

Jukn
(xkn

)− Jukn
(x)

)

= 0. By similar arguments we

show that limkn→∞

(

Jukn
(x0)− Ju (x0)

)

= 0. Now, since xkn
minimizes Jukn

over H we get

lim
n→∞

(

Jukn
(xkn

)− Ju (x0)
)

≤ lim
kn→∞

(

Jukn
(x0)− Ju (x0)

)

= 0.

Therefore we obtain in (14) that δ < 0. Thus Ju (x) = infx∈H Ju (x) and so
u ∈ Vu.

3 Existence of solutions to beam equation and their de-

pendence on a parameter

Now we proceed to investigate the existence of solutions to (5) and their de-
pendence on a functional parameter u. We must make additional assumptions
which would ensure that Ju is differentiable in the sense of Gâteaux.

A4 For any d ∈ R there exists a function f ∈ L2 (0, 1) (depending on d),
fd (t) > 0 for a.e. t ∈ [0, 1], such that

max
{
∣

∣F 1
x (t,−b)

∣

∣ ,
∣

∣F 1
x (t, b)

∣

∣

}

≤ fd (t) for a.e. t ∈ [0, 1] . (15)

there exists a function b ∈ L2 (0, 1) such that

∣

∣F 2
x (t, x)

∣

∣ ≤ b (t) for all x ∈ R and for a.e.t ∈ [0, 1] ;

A5 For any d > 0 there exists a function fd ∈ L2 (0, 1) (depending on d),
fd (t) > 0 for a.e. t ∈ [0, 1], such that

∣

∣F 1
x (t, x)

∣

∣ ≤ fd (t) , for all x ∈ [−d, d], for a.e. t ∈ [0, 1] ; (16)

there exists a function b ∈ L2 (0, 1) such that

∣

∣F 2
x (t, x)

∣

∣ ≤ b (t) for all x ∈ R and for a.e.t ∈ [0, 1] .

Lemma 3.1. Suppose that A1-A3-A4 or A2-A3-A5 hold. For any fixed
u ∈ LM the functional Ju has an argument of a minimum over H which
satisfies (5) in the weak sense, i.e. for any g ∈ H we have

∫ 1

0
E (t) I (t) d2

dt2
x (t) d2

dt2
g (t) dt+

∫ 1

0
w (t)x (t) g (t) dt

+
∫ 1

0
(−F 2

x (t, x (t))u (t) g (t) + F 1
x (t, x (t)) g (t))dt = 0.

(17)
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Proof. It is easy to see that with either assumptions A1-A3-A4 or A2-A3-

A5 functional Ju has a Gâteaux derivative d
dx
Ju at any x ∈ H. Only the

differentiability of the term
∫ 1

0
F 1 (t, x (t)) dt requires some explanation due to

the lack of a global growth conditions. We observe that for any v ∈ H there
exists a constant dv > 0 such that v (t) ∈ [−dv, dv] for a.e. t ∈ [0, 1]. Now, by
either A4 or A5 we see that for any ε > 0 and any fixed g ∈ H a function
t → F 1

x (t, x (t) + εg (t)) belongs to L2 (0, 1). It is obvious with A5 while with
A4 it follows by the same argument since the derivative of a convex function
is nondecreasing.

Proof. Summarizing Ju is coercive, weakly l.s.c. and Gâteaux differentiable
on H and so it has an argument of a minimum xu for which d

dx
Ju (xu) = 0,

i.e. for which (17) holds.

Finally, we have the following theorem

Theorem 3.1. Suppose that either A1, A3, A4 or A2, A3, A5 hold. Let
u ∈ LM be fixed. There exists

xu ∈ Vu =

{

x ∈ H : Ju (x) = inf
v∈H

Ju (v) and
d

dx
Ju (x) = 0

}

and such that xu satisfies (5) in the weak sense (17). Moreover, xu sat-
isfies (5) for a.e. t ∈ [0, 1] and is subject to boundary conditions (3) and
d2

dt2

(

E (·) I (·) d2

dt2
xu (·)

)

∈ L2 (0, 1).

Proof. By Lemma 3.1 it remains to be shown that xu satisfies (5) for a.e.
t ∈ [0, 1] and that it is subject to boundary conditions (3). We mention that
the last assertion does not follow by the definition of the weak solution. Since
relation (17) holds for any g ∈ H, it holds also for any g ∈ C∞

0 (0, 1). Now by
the application of the higher order version of the Fundamental Lemma of the
calculus of variations, see [13], we obtain that xu satisfies (5) for a.e. t ∈ [0, 1].

Obviously now d2

dt2

(

E (·) I (·) d2

dt2
xu (·)

)

∈ L2 (0, 1).

Proof. Next, given any g ∈ H, we integrate (17) by parts to obtain

∫ 1

0
d2

dt2

(

E (t) I (t) d2

dt2
xu (t)

)

g (t) dt+ (ġ (1) ẍu (1)− ġ (0) ẍu (0))

∫ 1

0
w (t)xu (t) g (t) dt+

∫ 1

0
(−F 2

x (t, xu (t))u (t) g (t) + F 1
x (t, xu (t)) g (t))dt = 0.
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Since xu satisfies (5) a.e. we see that ġ (1) ẍu (1)− ġ (0) ẍu (0) = 0. Since g is
arbitrary we must have ẍu (1) = ẍu (0) = 0.

Theorem 3.2. We suppose that either A1, A3, A4 or A2, A3, A5 hold.
Let {uk}∞k=1, uk ∈ LM , be such a sequence that limk→∞ uk = u weakly in
L2 (0, 1). For each k = 1, 2, ... the set Vuk

is nonempty and for any se-
quence {xk}∞k=1 of solutions xk ∈ Vuk

to the problem (5) corresponding to
uk, there exists a subsequence {xkn

}∞n=1 ⊂ H and an element x ∈ H such
that limn→∞ xkn

= x (strongly in C (0, 1), strongly in H1
0 (0, 1), weakly in

H2 (0, 1)) and Ju (x) = infx∈H Ju (x). Moreover, x ∈ Vu and satisfies for a.e.
t ∈ [0, 1]

d2

dt2

(

E (t) I (t) d2

dt2
x (t)

)

+ w (t)x (t) = F 2
x (t, x (t))u (t)− F 1

x (t, x (t)) ,

x (0) = x (1) = d2

dt2
x (0) = d2

dt2
x (1) = 0.

(18)

Proof. All the assertions of the Theorem follow by Theorem 2.1 apart from
the last one. Since Ju is differentiable in the sense of Gâteaux we have x ∈ Vu

and since Ju (x) = infx∈H Ju (x) it follows that x satisfies (18).

4 Examples

Finally, we give examples of nonlinear terms satisfying our assumptions.

Example 4.1 (ConditionsA1, A3, A4). Let F 2 (t, x) = a (t) f2 (x), F
1 (t, x) =

g (t) f1 (x), where a, g ∈ L2 (0, 1), f1, f2 ∈ C1 (R), f1 is convex (say, f1 (x) =
ex ) and f2 is bounded and has a bounded derivative (say, f2 (x) = arctanx
). Then

∣

∣F 2
x (t, x)

∣

∣ =
∣

∣a (t) d
dx
f2 (x)

∣

∣ ≤ |a (t)| supx∈R

∣

∣

d
dx
f2 (x)

∣

∣ and since

F 1
x (t, x) = g (t) d

dx
f2 (x) we see that for any fixed x ∈ R function t → F 1

x (t, x)
belongs to L2 (0, 1).

Example 4.2 (Conditions A2, A3, A5). Let F 2 (t, x) = f (t) g(x), g ∈ C1

has a bounded derivative and F 1 (t, x) = 1
4g1 (t)x

4 − 1
2g2 (t)x

2, where f ∈
L2 (0, 1) , g1, g2 ∈ L∞ (0, 1), g1 (t) , g2 (t) > 0 for a.e. t ∈ [0, 1]. Then

∣

∣F 2
x (t, x)

∣

∣ =

∣

∣

∣

∣

f (t)
d

dx
g (x)

∣

∣

∣

∣

≤ |f (t)| sup
x∈R

∣

∣

∣

∣

d

dx
g (x)

∣

∣

∣

∣

= a (t) and a ∈ L2 (0, 1)

and
F 1 (t, x) = g1 (t)x

3 − g2 (t)x.

Again, for any fixed x ∈ R the function t → |g1 (t)|x3 + |g2 (t)|x belongs to
L2 (0, 1). We remark that F 1 need not be convex on R and that t →

(

F 1
)∗

(t, 0)
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is integrable. Indeed, for a.e. (fixed) t ∈ [0, 1] function x → − 1
4g1 (t)x

4 +
1
2g2 (t)x

2 has its maximum xM satisfying g1 (t)x
3 − g2 (t)x = 0 so either

xM = 0 and
(

F 1
)∗

(t, 0) = sup
x∈R

{

−1

4
g1 (t)x

4 +
1

2
g2 (t)x

2

}

= 0

or

x2
M =

g2 (t)

g1 (t)
and

(

F 1
)∗

(t, 0) = −1

2

(g2 (t))
2

g1 (t)
.
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