An. St. Univ. Ovidius Constanta Vol. 19(1), 2011, 109-120

ON THE NONLINEAR ELASTIC SIMPLY
SUPPORTED BEAM EQUATION

Marek Galewski

Abstract

Using a direct variational approach, we consider the existence of so-
lutions and their dependence on a functional parameter for the elastic
beam equation by means of investigating the critical points to the rele-
vant Euler action functional.

1 Introduction

In this research we intend to investigate a fourth order Dirichlet problem
connected with the elastic beam equation with simply supported ends via
direct variational approach. In the recent literature, see for example [3], [14],
[17], where also critical point theory is applied, mainly the simplified form of
the beam equation

d4
At = f(tz) (1)

pertaining to rigidly fastened boundary conditions
z(0)=2(1)=20)=2(1)=0 (2)

or simply supported conditions

z(0)=z(1)=#(0)=i(1)=0 (3)
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is considered. Since equation (1) does not fully reflect the real physical object,
we investigate the following model

2 2
iz (BO10) Z00) + w00 = f 0 0) (W

with suitable assumptions on f; here E : [0,1] — R is Young’s modulus of
elasticity for the beam, I : [0,1] — R is the moment of inertia of cross section
of the beam and w is the load density (force per unit length of a beam); it is
natural to assume that w (t) > 0, E(t) > Eq > 0, I (t) > Iy > 0 for t € [0,1]
and E, I,w € L* (0,1). However, the simplified version (1) of the beam equa-
tion (4) seems to be easier tackled by mathematical methods and therefore a
variety of methods could be applied in investigating the existence of solu-
tions. The three critical point theorem due to Ricerri, the Sturm comparison
theorem combined with the shooting method and also the Guo-Krasnosel’skij
fixed point theorem of cone-expansion compression type were used in [3], [14],
[17]. Apart from these methods, there were used the method of upper and
lower solutions together with a type of a Landesman-Lazer condition, Leray-
Schauder fixed point theorem, degree-theoretic methods, semiorder method
on cones of Banach space, minimax method, a priori estimates together with
the Krasnosel’skij theorem on cones, see [1], [2], [7], [8], [12], [16].

The case is not as easy with (4) due to the form of the left hand side of the
beam equation. Although we may put functions E, I to be fixed constants,

we may not put w = 0 on [0,1] without altering the original model. Let
H = H{ (0,1) N H?(0,1) considered with the norm

2 2

d2
2"

"

4y
dt

Via a direct approach in the space we will look for solutions to the following
problem

L2(0,1) L2(O,1)'

2

L (BOIT0) S ) +w@)e @)+ F (e 1) = F2 (L (1) u(), 5
2(0) == (1) =i (0) = & (1) = 0.

A functional parameter u : [0,1] — R belongs to the set
Ly ={u:[0,1] — R: wu is measurable, |u ()| < m for a.e. t € [0,1]},

m > 0 is a fixed real number; functions F'!, F'? are subject to the following
conditions:
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A1 F' FE!:[0,1]x R — R are Caratheodory functions; F! is continuously
differentiable and convex with respect to the second variable in R for a. e.
t € [0,1]; t — F1(t,0) is integrable on [0,1]; function t — EL (¢,0) belongs to
L?(0,1); function t — maxXye|—d,d) ’Fl (t, x)| 1s integrable for any d > 0.

A2 F1 F! :[0,1] x R — R are Caratheodory functions, functions t —
FL(,0) and t — (Fl)* (t,0) are integrable on [0,1]; function

1
t— wen[l—a;fd] |F* (t,2)]

is integrable for any d > 0.

A3 F% F? : [0,1] x R — R are Caratheodory functions, there exists a
function a € L?(0,1) such that

|F?(t,x)| < a(t) forae te[0,1] and all z € R. (6)

(Fl)* denotes the Fenchel-Young transform of a function F'' with respect
to the second variable, [9], namely

(FY)" (t,v) = 222 {zv—F'(t,x)} for ae. t €[0,1].

Remark 1.1. We observe that for any x € H the following estimation holds
[6(t) =@ ()| = | 13 (r) dr| < VE= [ 3 () dr
< VIt =] ”‘;E.HL?(O,l) < ||i||L2(0,1) :

For any bounded sequence {xy},-, C H, the sequence of derivatives {iy}-
is uniformly convergent (up to the subsequence) by the Ascoli-Arzela Theorem
and thus strongly convergent in H} (0,1). Moreover, we have the following
Poincaré type inequalities for any v € H, see [10]

1 1
v < —|v and |0 < — v . 7
lollz20.) < = 16020,y 92 16l a0y < — 61l 20,1 ™)
The paper is organized as follows. Firstly we investigate the dependence
on a functional parameter for the action functionals. Next we investigate the

existence of a solution for problem (5) and its dependence on a parameter.
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2 Dependence of the argument of a minimum on a func-
tional parameter

The Euler action functional J, : H — R associated with (5) is given by
2
Ju(z) =1L [LE@)I (1) (;Tx (t)) dt+ 1 [T w () 2? (¢) di+

— [y F2(t,x () u (t)dt + [ F* (t,2(t))dt.

Jy, is well defined with either A1-A3 or A2-A3. We mention here that as-
sumptions A1-A3 or A2-A3 do not provide the Gateaux differentiability of
Jy. It is interesting to note that the dependence on functional parameter u
can be investigated for the arguments of a minimum for J,, without invoking
its differentiability contrary to what is done in [6].

Lemma 2.1. Suppose that either A1-A8 or A2-A3 hold. For any fized
u € Ly functional is coercive and weakly l.s.c. on H. For any fixed u € Ly
there exists x,, € H such that inf,.cpy J, () = Jy (z4).

Let usfix u € Ly and let {xn}zozl C H be such a sequence that x,, converges
to x weakly in H. By Remark 1.1 sequence {z,}, -, contains a subsequence,
denoted by {z,} —,, convergent strongly in H (0,1) and also convergent uni-
formly. The Lebesgue Dominated Convergence Theorem and (6) show that

/1F2(t,gcn(t))u(t)dt—>/1F2 (t,x (t)) u(t) dt as n — oo.
0 0

Since {z,, },-, is uniformly convergent, there exists a number d > 0 such that
|z, ()] < d for all ¢ € [0,1]. Hence, by the Lebesgue dominated convergence

/IF1 (t,mn(t))dt%/lFl (t,z (t)) dt as n — oc.
0 0

Since the remaining terms of .J, are convex and l.s.c., these are also weakly
l.s.c. on H and so J, is weakly l.s.c.

By the convexity of F'! with respect to the second variable and by A1l we
see that

[y FY (¢ () dt > [ F'(+,0)dt + [, F}(t,0)a (t) dt >
(8)
1
fO Fl (t70) dt — Hle ('a O)HLZ(O,l) ||$||L2(0,1)
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for any € H. By (8) and by relation

1 1
—/ |F2 (t, 2 (t)u(t)| dt > —m/ la (t)| dt. (9)
0 0
Jy is coercive on H with assumptions A1-A3.

Let as assume A2-A3. By inequality

/1 FY(t,x(t)dt > — /1 (FY)" (t,0) dt (10)
0 0

and by (9) we see that .J, is coercive.

Finally, since J, is coercive and weakly l.s.c. in both cases, there exists
z, € H such that J, (x,) = inf ey Jy, (2).

Theorem 2.1. We suppose that either A1, A3 or A2, A3 hold. Let
{ur}re,, uk € L, be such a sequence that limy,_, o u, = U weakly in L* (0,1).
For each k =1,2,... the set

Vi, = {er:Ju(x) ZvlélIf{Ju(U)}

18 monempty and for any sequence {xk}zi1 , ¢ € V., of arguments of a
minimum of J,, corresponding to uy, there exists a subsequence {xy, } —, C H
and an element T € Vi such that lim, . 2, =T (strongly in C (0, 1), strongly
in H} (0,1), weakly in H?(0,1)) and J (%) = inf e J (2).

Proof. Firstly, we investigate the convergence of the sequence of the arguments
of a minimum. Secondly, we show the last assertion.

By Lemma 2.1 for each k = 1,2, ... there exists

With A1, A3 for any = € S; we have
1 1 1
—/ F2 (£, 0) ug (£) dt +/ F2 (2 (£) s () dt < 2m/ a(®]dt. (1)
0 0 0
By (8) we obtain

1 1
/OFl(t,o)dt—/o Fl(t7x(t))dt§—||F$(.70)HL2(0,1)Hx||L2(071).
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By writing 0 < J,,, (0) — J,,, (zx) explicitly we see that
0<—1 OlE(t)I(t)(%xk ) dt — 1 [} w t)dt
< 2mf0 la (t)|dt — || F (-, HL2<0,1) ||xk||L2(071).

By (7) we obtain

2
1 d? 1 1 d?
fEOIO‘ ka} 201 ™ I ("O)H”(Oal) ‘ ka‘ £2(0,1) : (12)
2mf0 la (t)] dt.
With A2, A3 we also have (11). By (10) we see that
11 d’ ?
L1 Bl (dek (t)) dt <
(13)

2mf0 la (t |dt+f0 F1(t,0) dt+f0 (FY)" (t,0) dt.

Therefore either by (12) or by (13) there exists a subsequence {xy, },-, of
{xk},?;l weakly convergent in H, which up to a subsequence may be assumed
to be strongly convergent in Hg (0,1) and so convergent uniformly.

Next,by Lemma 2.1 applied with @ there exists 2y € H such that Jz (zg) =
inf,ec g Jz (x). We suppose that Jz (20) < Jz (%) and investigate the right hand
side of the equivalent inequality

0 < (Jur, (@) = Ja (0)) = (Jur,, (@r,) = Juy, (T))

- (Jukn (E) - JU (f)) )

where 6 > 0 is certain constant such that § < Jz (T) — Jz (20). By Lebesgue
Dominated Convergence Theorem, we see that

(14)

nhHH;O (Jup, (@) — Jz(T)) = 0.
By the generalized Krasnosel’skij Theorem, see [5], and by (15) we see that
lim,, oo F2 (-, 21, (+)) = F2 (-, 7 (+)) strongly in L? (0,1). Since lim,,_,o ug, =
u weakly in L? (0, 1), we see that

i [ F2 (6w, (1) un, (£)dt = /O F2 (47 ()7 (8) dt.

n—r 00 0
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Thus we have limp, o0 (Ju,, (Zk,) — Ju,, (Z)) = 0. By similar arguments we
show that limg, o0 (Jukn (x9) — J7 (xo)) = 0. Now, since zj, minimizes J,,
over H we get

lim (Ju,, (#r,) = Ja(20)) < lim (Jy, (20) — Ja(wo)) =0.

n—00 kp—r00

Therefore we obtain in (14) that § < 0. Thus Jz (%) = inf,cy Jz (z) and so
u e Vy. OJ

3 Existence of solutions to beam equation and their de-
pendence on a parameter

Now we proceed to investigate the existence of solutions to (5) and their de-
pendence on a functional parameter u. We must make additional assumptions
which would ensure that .J, is differentiable in the sense of Gateaux.

A4 For any d € R there exists a function f € L?(0,1) (depending on d),
fa(t) >0 for a.e. t €[0,1], such that

max { ’Fa} (t,—b)

ES (40)|} < fa(t) for ae. t €10,1]. (15)
there exists a function b € L?(0,1) such that

|F§ (t,z)| <b(t) for all z € R and for a.e.t € [0,1];

A5 For any d > 0 there exists a function fq € L?(0,1) (depending on d),
fa(t) >0 for a.e. t €10,1], such that

|F} (t,2)| < fa(t), for all x € [—d,d], for a.e. t € [0,1]; (16)
there exists a function b € L? (0,1) such that
|FZ (t,x)| < b(t) for all € R and for a.e.t € [0,1].

Lemma 3.1. Suppose that A1-A3-A4 or A2-A3-A5 hold. For any fized
w € Lyps the functional J, has an argument of a minimum over H which
satisfies (5) in the weak sense, i.e. for any g € H we have

JYE@ ) Sr(t) g t)dt+ [, w(t)x(t)g(t)dt -
+ [y (F2 (Lo () ut) g (1) + FL(tx () g (t)dt = 0.
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Proof. 1t is easy to see that with either assumptions A1-A3-A4 or A2-A3-
A5 functional J, has a Gateaux derivative d%Ju at any x € H. Only the
differentiability of the term fol F1(t,x (t)) dt requires some explanation due to
the lack of a global growth conditions. We observe that for any v € H there
exists a constant d,, > 0 such that v () € [—d,,d,] for a.e. t € [0,1]. Now, by
either A4 or A5 we see that for any € > 0 and any fixed g € H a function
t — FL(t,z (t) + g (t)) belongs to L? (0,1). It is obvious with A5 while with
A4 it follows by the same argument since the derivative of a convex function
is nondecreasing. ]

Proof. Summarizing J,, is coercive, weakly ls.c. and Gateaux differentiable
on H and so it has an argument of a minimum =z, for which %Ju (zy) =0,
i.e. for which (17) holds. O

Finally, we have the following theorem

Theorem 3.1. Suppose that either A1, A3, A4 or A2, A3, A5 hold. Let
u € Ly be fixed. There exists

d
u [ H:J, = inf u d —Jy =
Ty €V, {xe Ju () vlgHJ (v) an de (x) 0}

and such that x, satisfies (5) in the weak sense (17). Moreover, x, sat-
isfies (5) for a.e. t € [0,1] and is subject to boundary conditions (3) and

L (BEOT() () € L2 (0,1).

Proof. By Lemma 3.1 it remains to be shown that x, satisfies (5) for a.e.
t € [0,1] and that it is subject to boundary conditions (3). We mention that
the last assertion does not follow by the definition of the weak solution. Since
relation (17) holds for any g € H, it holds also for any g € C§° (0,1). Now by
the application of the higher order version of the Fundamental Lemma of the
calculus of variations, see [13], we obtain that x,, satisfies (5) for a.e. ¢t € [0, 1].

Obviously now % (E ()I() j%xu ()) € L%(0,1). O

Proof. Next, given any g € H, we integrate (17) by parts to obtain

2

fol w (t) xy, (t) g (t) dt+

o (“F2 (t, 2 () u(t) g (1) + FL (t, 2 () g ())dt = 0.
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Since x,, satisfies (5) a.e. we see that ¢ (1) Z, (1) — ¢ (0) &, (0) = 0. Since g is
arbitrary we must have i, (1) = &, (0) = 0. O

Theorem 3.2. We suppose that either A1, A3, A4 or A2, A3, A5 hold.
Let {ur}rey, up € Las, be such a sequence that limg_,oo up = U weakly in
L?(0,1). For each k = 1,2,... the set V,, is nonempty and for any se-
quence {xy}—, of solutions ), € V,, to the problem (5) corresponding to
uy, there exists a subsequence {xy,} —, C H and an element T € H such
that lim,, oo zx, = T (strongly in C(0,1), strongly in H} (0,1), weakly in
H?(0,1)) and Jz (Z) = inf ey Jz (x). Moreover, T € Vi and satisfies for a.e.
te[0,1]

L (BT &70) +w®)T () =F2 (47 0)a @) - F 7)),

(18)

Proof. All the assertions of the Theorem follow by Theorem 2.1 apart from
the last one. Since Jz is differentiable in the sense of Gateaux we have T € Vg
and since Jz (T) = inf,epy Jz () it follows that T satisfies (18). O

4 Examples

Finally, we give examples of nonlinear terms satisfying our assumptions.

Example 4.1 (Conditions A1, A3, Ad4). Let F% (t,z) = a(t) f2 (x), F* (¢, )

g (t) fi (x), where a, g € L*(0,1), f1, fo € C' (R), f1 is convex (say, fi (z) =
e® ) and fy is bounded and has a bounded derivative (say, f2(x) = arctanz
). Then |F2(t,2)] = |a(t) £ f2(2)| < |a(t)|sup,er | f2(x)| and since
Fl(t,2) = g (t) & fo (z) we see that for any fired x € R function t — F} (t,z)
belongs to L? (0,1).

Example 4.2 (Conditions A2, A3, A5). Let F? (t x) =
has a bounded derivative and F' (t,z) = +g1 (t)a* — 3
L?(0,1), g1, g2 € L™ (0,1), g1 (t), g2 (t) > 0 for a.e. t €

ft)g(x). g€ Ct
(t) 2, where f €
0,1

92
[0,1]. Then

< |f (t)] sup dig(x) =a(t) and a € L?(0,1)

|FZ (t,z)| =
TxER

and

Flt,z) =g (t)2® —go ()
Again, for any fized * € R the function t — |g1 (t)| 23 + |g2 (t)| z belongs to
L?(0,1). We remark that F* need not be convex on R and thatt — (Fl)* (t,0)
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is integrable. Indeed, for a.e. (fized) t € [0,1] function v — —1gi (t)a* +
392 (t) @ has its mazimum x; satisfying g1 (t) z® — g2 (t) 2 = 0 so either

* 1 1
zy =0 and (F')" (t,0) = sup {—gl (t)z* + ~go (t) x2} =0
TER 4 2

g2 (1)

(92 (1))
g1 (1) '

1
2 g1 (t)

i = and (Fl)* (t,0) = —
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