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MULTIPLIERS ON SOME LORENTZ

SPACES

İlker Eryilmaz and Cenap Duyar

Abstract

This paper is concerned with the characterization of the spaces of
bounded linear operators commuting with translation operators on some
Lorentz spaces which are defined on a locally compact abelian group
with Haar measure. These characterizations are motivated by those of
Figà-Talamanca [8, 9], Avcı and Gürkanlı [1] wherein the concept of
tensor product is used as a basic tool for obtaining them.

1 Introduction

Let G be a locally compact abelian group with Haar measure dx. For 1 <

p1, p2 < ∞, 1 ≤ q1, q2 ≤ ∞ or p1, p2 = 1 = q1, q2, p1, p2 = ∞ = q1, q2, Avcı
and Gürkanlı defined the space Ap2,q2

p1,q1
(G) by regarding convolution operator’s

allowance which is acting on Lorentz spaces and showed some topological
properties of Ap2,q2

p1,q1
(G) spaces. Again, under some assumptions, they found

L (p1, q1) ⊗L1(G) L (p2, q2) ∼= Ap2,q2
p1,q1

(G) and some important results in [1].
Also in [5], the space of multipliers from Beurling algebra to a subspace of a
weighted Lorentz space is examined by relative completion method.

Throughout the paper, Cc(G) and C0 (G) will denote the space of complex-
valued continuous functions on G with compact support and the space of
complex-valued continuous functions on G vanishing at infinity, respectively.
Also, Ly (Ry) will stand for the left (right) translation operators which are
given by Lyf (x) = f (x− y) (Ryf (x) = f (x+ y)) for all x, y ∈ G.
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Certain well-known terms such as multiplier, module homomorphism, (semi)
homogeneous Banach space, rearrangement invariant Banach function space
etc. are used frequently in the paper. We will not give their definitons and
properties explicitly. One can find more about these terms in [2,3,12]. For the
convenience of the reader, we will now review briefly what we need from the
theory of Lorentz spaces.

Let (G,Σ, µ) be a positive measure space and let f be a complex-valued,
measurable function on G. Then the rearrangement function of f on (0,∞) is
defined by

f∗ (t) = inf {y > 0 : λf (y) = µ {x ∈ G : |f (x)| > y} ≤ t } , t ≥ 0

where inf φ = ∞. Also the average(maximal) function of f is defined by

f∗∗(t) =
1

t

t
∫

0

f∗ (s) ds , t > 0.

If the functions are defined as

‖f‖
∗

p,q = ‖f‖
∗

p,q,µ =





q

p

∞
∫

0

[f∗ (t)]
q
t
q

p
−1dt





1

q

for p, q ∈ (0,∞)

and
‖f‖

∗

p,∞ = sup
t>0

t
1

p f∗ (t) for 0 < p, q = ∞,

then the Lorentz spaces denoted by L (p, q) (G) is defined to be the vector
space of all (equivalence classes of) measurable functions f on G such that
‖f‖

∗

p,q < ∞. We know that, for 1 ≤ p ≤ ∞, ‖f‖
∗

p,p = ‖f‖p and Lp (G) =
L (p, p) (G). It is also known that the usage of f∗∗ instead of f∗ causes a norm
‖·‖p,q on L (p, q) (G) for 1 < p < ∞ and 1 ≤ q ≤ ∞ with

‖f‖
∗

p,q ≤ ‖f‖p,q ≤
p

p− 1
‖f‖

∗

p,q (1)

for each f ∈ L (p, q) (G).

The space
(

L (p, q) (G) , ‖·‖pq

)

is a reflexive rearrangment-invariant Ba-

nach function spaces with its associate space
(

L (p′, q′) (G) , ‖·‖p′q′

)

where

p, q ∈ (1,∞) and 1
p
+ 1

p′
= 1 = 1

q
+ 1

q′
[2,10]. We also know that

L (p, q1) (G) ⊂ L (p, q2) (G) (2)
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if p ∈ (0,∞) , 0 < q1 ≤ q2 ≤ ∞ and

L (p2, q2) (G) ⊂ L (p2,∞) (G) ⊂ L (p1, q1) (G) (3)

provided that µ (G) < ∞ and p1 ≤ p2 [10]. For further properties of Lorentz
spaces, we refer to [2,4,10,16].

Let ℘ (p, q, r, s,G) be the set of all complex-valued functions f which can
be written as

f = f1 + f2 with (f1, f2) ∈ L (p, q) (G)× L (r, s) (G) .

If we define a norm on ℘ (p, q, r, s,G) by

‖f‖℘ = inf
(

‖f1‖p,q + ‖f2‖r,s

)

, (4)

where the infimum is taken over all such decompositions of f , then ℘ (p, q, r, s,G)
is a Banach space under this norm. This can be derived from [10] and [14].
Similarly, if D (p, q, r, s,G) denotes the set of all complex-valued functions de-
fined on G which are in L (p, q) (G) ∩ L (r, s) (G), then we can introduce a
norm by

‖g‖D = max
(

‖g‖p,q , ‖g‖r,s

)

. (5)

Hence D (p, q, r, s,G) is also a Banach space with the norm ‖·‖D due to [10,
14]. It is not hard to see that D (p, q, r, s,G) is a Banach L1 (G)−module
where 1 < p, r < ∞, 1 ≤ q, s < ∞.

Again, it is easy to see that D (p, q, r, s,G) and ℘ (p, q, r, s,G) are reflexive
rearrangment-invariant Banach function spaces for 1 < p, q, r, s < ∞ and

D (p, q, r, s,G)
∗ ∼= ℘ (p′, q′, r′, s′, G) , (6)

where 1
p
+ 1

p′
= 1, 1

q
+ 1

q′
= 1, 1

r
+ 1

r′
= 1 and 1

s
+ 1

s′
= 1 [10, 14].

2 Multipliers Spaces

In this section, we will introduce the space of multipliers acting on some
Lorentz spaces. Before starting to define multipliers spaces, we will give the
following theorems whose proofs can be found in [2], [16] and [17] respectively.

Theorem 1. Let T be a convolution operator and h = T (f, g) = f ∗ g.
T can be uniquely extended so that if f ∈ L (p1, q1) (G) , 1 < p1 < ∞ and
g ∈ L (p2, q2) (G) where 1

p1

+ 1
p2

= 1, 1
q1

+ 1
q2

≥ 1, then h ∈ L∞ (G) and

‖h‖
∞

≤ C ‖f‖p1,q1
‖g‖p2,q2

,

where C is a constant depending on q1 and q2.
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Theorem 2. If T is a convolution operator h = T (f, g) = f ∗ g for f ∈
L (p1, q1) (G) , g ∈ L (p2, q2) (G) with 1

p1

+ 1
p2

> 1, then h ∈ L (r, s) (G), where
1
p1

+ 1
p2

− 1 = 1
r
and s ≥ 1 is any number such that 1

q1
+ 1

q2
≥ 1

s
. Morever

‖h‖r,s ≤ 3r ‖f‖p1,q1
‖g‖p2,q2

. (7)

Theorem 3. if f ∈ L (m, q2) (G)∩L (n, q2) (G) and m < n then f ∈ L (p2, q2) (G)
for all m < p2 < n. Morever

‖f‖
∗

p2,q2
≤
(

‖f‖
∗

m,q2

)β (

‖f‖
∗

n,q2

)1−β

, (8)

where β =
(

1
p2

− 1
n

)

(

1
m

− 1
n

)−1
.

2.1 Multipliers from L (p1, q1) (G) into ℘ (m′, q′2, n
′, q′2)

By taking Theorem 3 into consideration, define K (G) to be set of all functions
h which can be written in the form

h =

∞
∑

i=1

fi ∗ gi,

where fi ∈ Cc (G) ⊂ L (p1, q1) (G), gi ∈ D (m, q2, n, q2, G) with

∞
∑

i=1

‖fi‖p1,q1
‖gi‖D < ∞

and m < n. Here m′, q′2, n
′, q′2 are conjugates of m, q2, n, q2 respectively. If we

define a norm on K (G) by

|‖h‖| = inf

{

∞
∑

i=1

‖fi‖p1,q1
‖gi‖D : h =

∞
∑

i=1

fi ∗ gi, h ∈ K (G)

}

,

where the infimum is taken over all such representations of h in K (G), then
evidently, the function |‖·‖| is a norm of K (G) and K (G) is a Banach space
under this norm. If we pay attention to Theorem 2 and condition (8), we get

‖f ∗ g‖r,s ≤ ‖f‖p1,q1
‖g‖p2,q2

≤ ‖f‖p1,q1
‖g‖D ,

for f ∈ Cc (G) ⊂ L (p1, q1) (G) and g ∈ L (m, q2) (G) ∩ L (n, q2) (G) where
m < p2 < n, 1

p1

+ 1
p2

> 1, 1
p1

+ 1
p2

− 1 = 1
r
and s ≥ 1 is any number such that

1
q1

+ 1
q2

≥ 1
s
. It is easy to see that K (G) ⊂ L (r, s) (G) and the topology so

defined is not weaker than the topology induced from L (r, s) (G).
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Theorem 4. Let G be a locally compact abelian group. If condition (8) is
satisfied and 1

p1

+ 1
p2

> 1, 1
p1

+ 1
p2

−1 = 1
r
and s ≥ 1 is any number such that 1

q1
+

1
q2

≥ 1
s
, then the space of multipliers M (L (p1, q1) (G) , ℘ (m′, q′2, n

′, q′2, G)) is

isometrically isomorphic to (K (G))
∗
, the dual space of K (G).

Proof. For any T ∈ M (L (p1, q1) (G) , ℘ (m′, q′2, n
′, q′2)), define

t (h) =

∞
∑

i=1

Tfi ∗ gi (0) ,

for h =
∞
∑

i=1

fi ∗ gi in K (G). Firstly, we will show that t is well-defined,

i.e. t (h) is independent of the particular representation of h chosen. To

this end, it is sufficent to show that if h =
∞
∑

i=1

fi ∗ gi = 0 in K (G) and

∞
∑

i=1

‖fi‖p1,q1
‖gi‖D < ∞, then

∞
∑

i=1

Tfi ∗ gi (0) = 0.

It is known by [1] that L (p, q) (G) has an approximate identity {eα}α∈I in
L1 (G) with compactly supported such that ‖eα‖1 = 1 for each α ∈ I. Then
for each f ∈ L (p1, q1) (G), we have

lim
α

‖eα ∗ f − f‖p1,q1
= 0. (9)

Therefore using (9) and the fact that T is a multiplier, we obtain

|T (eα ∗ fi) ∗ gi (0)− Tfi ∗ gi (0)| ≤ ‖T‖ ‖eα ∗ fi − fi‖p1,q1
‖gi‖D , (10)

for all gi ∈ D (m, q2, n, q2, G) and so

lim
α
T (eα ∗ fi) ∗ gi (0) = Tfi ∗ gi (0) . (11)

Also for each eα ∈ Cc (G) and fi ∈ Cc (G), we have

T (eα ∗ fi) = Teα ∗ fi, (12)

by [12] or [7, Lemma 2.1]. Since h =
∞
∑

i=1

fi ∗ gi = 0 and the series
∞
∑

i=1

fi ∗ gi

converges uniformly, we get

∞
∑

i=1

T (eα ∗ fi) ∗ gi (0) =

∞
∑

i=1

∫

G

T (eα) (−y) (fi ∗ gi) (y) dy (13)

=

∫

G

T (eα) (−y)
∞
∑

i=1

(fi ∗ gi) (y) dy = 0.
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by (12). Now we will show that
∞
∑

i=1

T (eα ∗ fi)∗gi (0) converges uniformly with

respect to α. Since
∣

∣

∣

∣

∣

∞
∑

i=1

T (eα ∗ fi) ∗ gi (0)

∣

∣

∣

∣

∣

≤

∞
∑

i=1

‖T (eα ∗ fi)‖℘ ‖gi‖D (14)

≤ ‖T‖
∞
∑

i=1

‖eα ∗ fi‖p1,q1
‖gi‖D

≤ ‖T‖

∞
∑

i=1

‖fi‖p1,q1
‖gi‖D < ∞,

we have

lim
α

∞
∑

i=1

T (eα ∗ fi) ∗ gi (0) =

∞
∑

i=1

Tfi ∗ gi (0) = 0, (15)

by using (11) and (13). Thus t is well-defined.
It is obvious that the mapping T → t is linear and an isometry. Indeed,

|t (h)| ≤

∞
∑

i=1

|Tfi ∗ gi (0)|

≤
∞
∑

i=1

‖Tfi‖℘ ‖gi‖D

≤ ‖T‖

∞
∑

i=1

‖fi‖p1,q1
‖gi‖D

implies that
|t (h)| ≤ ‖T‖ |‖h‖| .

Hence ‖t‖ ≤ ‖T‖. On the other hand, according to (6) we obtain

‖T‖ = sup
{

|Tf ∗ g (0)| : ‖f‖p1,q1
≤ 1, ‖g‖D ≤ 1

}

= sup
{

|t (f ∗ g)| : ‖f‖p1,q1
≤ 1, ‖g‖D ≤ 1

}

≤ ‖t‖ .

Therefore ‖t‖ = ‖T‖. Finally we will show that the mapping T → t is surjec-
tive. If we take t ∈ (K (G))

∗
, f ∈ Cc (G) ⊂ L (p1, q1) (G) and define

g → t (f ∗ g) ,

for all g ∈ D (m, q2, n, q2, G), then we get

|t (f ∗ g)| ≤ ‖t‖ · ‖f‖p1,q1
‖g‖D . (16)
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This implies that the mapping gives a bounded linear functional onD (m, q2, n, q2, G).
Hence there is a unique element, denoted by Tf , in ℘ (m′, q′2, n

′, q′2, G) by (6)
such that

Tf ∗ g(0) = t(f ∗ g), (17)

for all g ∈ D (m, q2, n, q2, G) and ‖Tf‖℘ ≤ ‖t‖ ‖f‖p1,q1
by (16) and (17). Hence

T is a continuous (and bounded) operator from Cc(G) into ℘ (m′, q′2, n
′, q′2, G)

and can be extended uniquely as a bounded linear operator on L (p1, q1) (G).
It remains to show that this extended bounded linear operator T is actually a
multiplier. Indeed, for any f ∈ L (p1, q1) (G) , g ∈ D (m, q2, n, q2, G) and y ∈
G, we see that Lyf ∈ L (p1, q1) (G) and Lyg ∈ D (m, q2, n, q2, G). Therefore,

TLyf ∗ g (0) = t (Lyf ∗ g) = t (f ∗ Lyg) = Tf ∗ Lyg (0) = LyTf ∗ g (0)

holds for all g ∈ D (m, q2, n, q2, G). Then, we have

TLyf = LyTf

and TLy = LyT . This shows that T ∈ M (L (p1, q1) (G) , ℘ (m′, q′2, n
′, q′2, G)) .

2.2 Multipliers from D (m, q2, n, q2, G) to L (p1, q1) (G)

Let f ∈ D (m, q2, n, q2, G), with m < n. Then f ∈ L (p2, q2) (G) for all m <

p2 < n and ‖f‖
∗

p2,q2
≤
(

‖f‖
∗

m,q2

)β (

‖f‖
∗

n,q2

)1−β

where β =
(

1
p2

− 1
n

)

(

1
m

− 1
n

)−1

by Theorem 3. Define the space A (G) to be the set of all functions h (x) of
the form

h =
∞
∑

i=1

fi ∗ gi ; fi ∈ Cc (G) ⊂ D (m, q2, n, q2, G) , gi ∈ L (p′1, q
′

1) (G)

with
∞
∑

i=1

‖fi‖D ‖gi‖p′

1
,q′

1

< ∞ where 1
p1

+ 1
p′

1

= 1
q1

+ 1
q′
1

= 1. Now define

h → |‖h‖| by

|‖h‖| = inf

{

∞
∑

i=1

‖fi‖D ‖gi‖p′

1
,q′

1

: h =

∞
∑

i=1

fi ∗ gi, h ∈ A (G)

}

,

where the infimum is taken over all such representations of h in A (G). It is
easy to see that, the function |‖·‖| is a norm and A (G) is a Banach space with
this norm. Since

‖f ∗ g‖r,s ≤ ‖f‖p2,q2
‖g‖p′

1
,q′

1

≤ ‖f‖D ‖g‖p′

1
,q′

1

< ∞,



100 İlker Eryilmaz and Cenap Duyar

for f ∈ Cc (G) ⊂ D (m, q2, n, q2, G), g ∈ L (p′1, q
′

1) (G) with(8), 1
p2

− 1
p1

= 1
r
> 0

and 1− 1
q1

+ 1
q2

≥ 1
s
, we have A (G) ⊂ L (r, s) (G).

Theorem 5. Let G be a locally compact abelian group, condition (8) be sat-
isfied and 1

p2

− 1
p1

= 1
r
> 0 and 1− 1

q1
+ 1

q2
≥ 1

s
. Then the space of multipliers

M (D (m, q2, n, q2, G) , L (p1, q1) (G)) is isometrically isomorphic to (A (G))
∗
,

the dual space of A (G).

Proof. Using the same method as in the proof of Theorem 4, we can conclude
our assertion.

2.3 Multipliers from D (p1, q1, p2, q2, G) to ℘ (m′

1, n
′

1,m
′

2, n
′

2, G)

Suppose that 1
pi

+ 1
mi

> 1, 1
pi

+ 1
mi

− 1 = 1
ri

and si ≥ 1 are numbers such

that 1
qi

+ 1
ni

≥ 1
si

for i = 1, 2. Also let m′

i, n
′

i be conjugate numbers of mi, ni

respectively for i = 1, 2. If D (r1, s1, r2, s2, G) denotes the set of all complex-
valued functions defined on G which are in L (r1, s1) (G)∩L (r2, s2) (G), then
we can introduce a norm by

‖f‖
r2,s2
r1,s1

= max
(

‖f‖r1,s1 , ‖f‖r2,s2

)

.

D (r1, s1, r2, s2, G) is also a Banach space with this norm.
To obtain the space of multipliers fromD (p1, q1, p2, q2, G) to ℘ (m′

1, n
′

1,m
′

2, n
′

2, G)
as a dual space, we define the space K (G) to be the set of all functions h which
can be written in the form

h =

∞
∑

i=1

fi ∗ gi,

where fi ∈ Cc (G) ⊂ D (p1, q1, p2, q2, G) and gi ∈ D (m1, n1,m2, n2, G)

with
∞
∑

i=1

‖fi‖D ‖gi‖D < ∞. It is not hard to see that Cc (G) is dense in

D (p1, q1, p2, q2, G). Define a function h → ‖|h|‖ by

‖|h|‖ = inf

{

∞
∑

i=1

‖fi‖D ‖gi‖D

}

,

where the infimum is taken over all such representations of h. It is easy to
verify that ‖|·|‖ defines a norm on K (G) and that the latter is a Banach space.

Now, let f ∈ Cc (G) ⊂ D (p1, q1, p2, q2, G) and g ∈ D (m1, n1,m2, n2, G).
It follows from (7) that f ∗ g ∈ L (r1, s1) (G) ,

‖f ∗ g‖r1,s1 ≤ ‖f‖p1,q1
‖g‖m1,n1

≤ ‖f‖D ‖g‖D
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and f ∗ g ∈ L (r2, s2) (G) ,

‖f ∗ g‖r2,s2 ≤ ‖f‖p2,q2
‖g‖m2,n2

≤ ‖f‖D ‖g‖D

so that

‖f ∗ g‖
r2,s2
r1,s1

≤ ‖f‖D ‖g‖D .

From this, it is clear thatK (G) ⊂ D (r1, s1, r2, s2, G) and that the topology on

K (G) is not weaker than the topology induced by
(

D (r1, s1, r2, s2, G) , ‖·‖
r2,s2
r1,s1

)

.

Theorem 6. Let G be a locally compact abelian group and 1
pi

+ 1
mi

> 1,
1
pi
+ 1

mi
−1 = 1

ri
and si ≥ 1 are any numbers such that 1

qi
+ 1

ni
≥ 1

si
for i = 1, 2.

The space of multipliers from D (p1, q1, p2, q2, G) into ℘ (m′

1, n
′

1,m
′

2, n
′

2, G) is
isometrically isomorphic to (K (G))

∗
, the dual space of K (G).

Proof. We use the same method employed in the proof of the theorem 4.

Remark 7. a) If p1 = m1 and q1 = n1 then Theorem 6 coincides with
Corollary 3.6 in [1].
b) If µ (G) < ∞, then we can induce the problem to the usual Lebesgue spaces
as in [9].

2.4 Multipliers on D (p, q, r, s,G)

Let 1 < p, q, r, s < ∞ and p′, q′, r′, s′ be conjugate numbers of p, q, r, s re-
spectively. Define the space A (G) to be the set of all functions h (x) of the
form

h =

∞
∑

i=1

fi ∗ gi ; fi ∈ D (p, q, r, s,G) , gi ∈ Cc (G) ⊂ ℘ (p′, q′, r′, s′, G) ,

with
∞
∑

i=1

‖fi‖D ‖gi‖℘ < ∞ and define h → |‖h‖| by

|‖h‖| = inf

{

∞
∑

i=1

‖fi‖D ‖gi‖℘ : h =
∞
∑

i=1

fi ∗ gi, h ∈ A (G)

}

,

where the infimum is taken over all such representations of h in A (G). The
function |‖·‖| is a norm of A (G) and since

‖f ∗ g‖
∞

≤ ‖f‖D ‖g‖℘ ,
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for f ∈ D (p, q, r, s,G) and g ∈ Cc (G) ⊂ ℘ (p′, q′, r′, s′, G) where 1
p
+ 1

p′
=

1, 1
q
+ 1

q′
≥ 1, 1

r
+ 1

r′
= 1 and 1

s
+ 1

s′
≥ 1, it is easy to see that A (G) is a dense

linear subspace of C0 (G) and is a Banach space with respect to the norm |‖·‖|
. Also the topology so defined is not weaker than the uniform norm topology.

Theorem 8. Let G be a locally compact abelian group. The multiplier space
M (D (p, q, r, s,G)) is isometrically isomorphic to (A (G))

∗
, the conjugate space

of A (G).

Proof. For any T ∈ M (D (p, q, r, s,G)), define

µ (h) =

∞
∑

i=1

Tfi ∗ gi (0) ,

for h =
∞
∑

i=1

fi∗gi in A (G). Firstly, we will show that µ is well-defined, i.e. µ (h)

is independent of the particular representation of h chosen. To this end, it is

sufficent to show that if h =
∞
∑

i=1

fi ∗ gi = 0 in A (G) and
∞
∑

i=1

‖fi‖D ‖gi‖℘ < ∞,

then
∞
∑

i=1

Tfi ∗ gi (0) = 0.

Let {eα}α∈I be an approximate identity for L1 (G) with ‖eα‖1 = 1 for each
α ∈ I. Since L1 (G) ∗ L (p, q) (G) = L (p, q) (G) for 1 < p < ∞, 1 ≤ q < ∞ by
[4], we have eα ∗ f ∈ D (p, q, r, s,G) for each α and

lim
α

‖eα ∗ f − f‖D = 0, (18)

for all f ∈ D (p, q, r, s,G). Therefore using (18) and the fact that T is a
multiplier, we obtain

|T (eα ∗ fi) ∗ gi (0)− Tfi ∗ gi (0)| ≤ ‖T‖ ‖eα ∗ fi − fi‖D ‖gi‖℘ (19)

and

lim
α
T (eα ∗ fi) ∗ gi (0) = Tfi ∗ gi (0) . (20)

Also for each f ∈ D (p, q, r, s,G) and g ∈ Cc (G), we have

T (f ∗ g) = Tf ∗ g, (21)

by Lemma 2.1 in [7]. Since h =
∞
∑

i=1

fi ∗ gi = 0 , the series
∞
∑

i=1

fi ∗ gi converges
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uniformly and using equality (21), we get

∞
∑

i=1

T (eα ∗ fi) ∗ gi (·) =

∞
∑

i=1

T (eα ∗ fi ∗ gi) (·)

= T

(

eα ∗

∞
∑

i=1

(fi ∗ gi)

)

(·) = 0 (22)

and then, for any large integer N ,

∣

∣

∣

∣

∣

∞
∑

i=1

T (eα ∗ fi) ∗ gi (0)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∞
∑

i=1

Tfi ∗ gi (0)−
∞
∑

i=1

T (eα ∗ fi) ∗ gi (0)

∣

∣

∣

∣

∣

(23)

≤

∣

∣

∣

∣

∣

N
∑

i=1

Tfi ∗ gi (0)−

N
∑

i=1

T (eα ∗ fi) ∗ gi (0)

∣

∣

∣

∣

∣

+ 2 ‖T‖
∞
∑

i=N+1

‖fi‖D ‖gi‖℘ ,

the right hand side of (23) can be made arbitrary small by taking a sufficiently
large positive integer N , and then passing to the limit with respect to α, we
see that

lim
α

∞
∑

i=1

T (eα ∗ fi) ∗ gi (0) =

∞
∑

i=1

Tfi ∗ gi (0) = 0. (24)

Thus µ is well-defined. It is obvious that the mapping T → µ is linear. Now
we will show that it is an isometry. Indeed,

|µ (h)| ≤
∞
∑

i=1

|Tfi ∗ gi (0)|

≤

∞
∑

i=1

‖Tfi‖D ‖gi‖℘

≤ ‖T‖

∞
∑

i=1

‖fi‖D ‖gi‖℘

implies that

|µ (h)| ≤ ‖T‖ |‖h‖| .
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Hence ‖µ‖ ≤ ‖T‖. On the other hand by (6), we have

‖T‖ = sup
{

|Tf ∗ g (0)| : ‖f‖D ≤ 1, ‖g‖℘ ≤ 1
}

= sup
{

|µ (f ∗ g)| : ‖f‖D ≤ 1, ‖g‖℘ ≤ 1
}

≤ sup {|µ (f ∗ g)| : |‖f ∗ g‖| ≤ 1}

≤ ‖µ‖ .

Therefore ‖µ‖ = ‖T‖. Finally we will show that the mapping T → µ is
surjective. Suppose that µ ∈ (A (G))

∗
, f ∈ D (p, q, r, s,G) and define

g → µ (f ∗ g) = u (g)

on Cc (G) ⊂ ℘ (p′, q′, r′, s′, G). Then

|u (g)| = |µ (f ∗ g)| ≤ ‖µ‖ · ‖f‖D ‖g‖℘ .

This implies that the mapping u can be extended to a bounded linear func-
tional on ℘ (p′, q′, r′, s′, G) by Hahn-Banach Theorem and

|µ (f ∗ g)| ≤ ‖µ‖ · ‖f‖D ‖g‖℘

for all f ∈ D (p, q, r, s,G) and g ∈ ℘ (p′, q′, r′, s′, G). It follows from (6) that
there is a unique element, denoted by Tf , in D (p, q, r, s,G) such that

Tf ∗ g(0) = µ(f ∗ g) = u (g) ,

for g ∈ Cc (G) ⊂ ℘ (p′, q′, r′, s′, G) and ‖Tf‖D ≤ ‖µ‖ ‖f‖D. Hence T is a
continuous operator on D(p, q, r, s,G). It remains to show that this bounded
linear operator T is actually a multiplier onD(p, q, r, s,G). Indeed, for any f ∈
D (p, q, r, s,G) , g ∈ ℘ (p′, q′, r′, s′, G) and y ∈ G, we have Lyf ∈ D (p, q, r, s,G)
and Lyg ∈ ℘ (p′, q′, r′, s′, G). Therefore,

TLyf ∗ g (0) = t (Lyf ∗ g) = t (f ∗ Lyg) = Tf ∗ Lyg (0) = LyTf ∗ g (0)

holds for all g ∈ ℘ (p′, q′, r′, s′, G). Since we have

TLyf = LyTf ∈ D(p, q, r, s,G) ∼= ℘∗ (p′, q′, r′, s′, G)

for every f ∈ D (p, q, r, s,G), TLy = LyT can be written. Therefore T ∈
M (D (p, q, r, s,G)) .

Remark 9. a) If p = q and r = s then D (p, q, r, s,G) = Lp (G)∩Lr (G) and
Theorem 8 coincides with Theorem 3.2 in [11].
b) If p = q = r = s then D (p, q, r, s,G) = Lp (G) and Theorem 8 coincides
with Theorem 1 in [8].
c) If µ (G) < ∞, then we can induce the problem to usual Lebesgue spaces as
in [12].
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In [17], it was found that B (G) = L1 (G) ∩ L (p, q) (G) is a Segal Algebra
with the norm ‖·‖B defined by

‖·‖B = ‖·‖1 + ‖·‖p,q . (25)

Also, it is showed that M (B(G)), the multipliers space of this Segal algebra
is isometrically isomorphic to the multipliers space of certain Banach algebras
of operators in [6].

Seperately, using the argument like in Theorem 8, mutadis mutandis, we
can characterize the multipliers space of B(G) for 1 < p, q < ∞. If we use the
following norm

‖·‖
B
= max

{

‖·‖1 , ‖·‖p,q

}

which is equivalent to the norm showed in (25), we can define the multipliers
space of B(G). Let r, s be the conjugate numbers of p and q respectively and
define the space

S0
r,s (G) = {g : g = g1 + g2 with (g1, g2) ∈ C0 (G)× L (r, s) (G)}

with the norm by

‖g‖S = inf
{

‖g1‖∞ + ‖g2‖r,s : g = g1 + g2, (g1, g2) ∈ C0 (G)× L (r, s) (G)
}

where the infimum is taken over all decompositions of g. Following Theorem
5 in [13], it is easy to see that

(

S0
r,s (G)

)∗ ∼= B(G) where
1

p
+

1

r
= 1,

1

q
+

1

s
= 1.

Define the space A1
p,q (G) to be the set of all functions u of the form:

u =

∞
∑

i=1

fi∗gi , fi ∈ B (G) , gi ∈ Cc (G) ⊂ S0
r,s (G) with

∞
∑

i=1

‖fi‖
B
‖gi‖S < ∞ .

If we equip the space A1
p,q (G) with the norm

‖u‖
1
p,q = inf

{

∞
∑

i=1

‖fi‖
B
‖gi‖S : u =

∞
∑

i=1

fi ∗ gi in A1
p,q (G)

}

,

where the infimum being taken over all fi ∈ B (G) and gi ∈ Cc (G) ⊂ S0
r,s (G)

for the representation of u ∈ A1
p,q (G), then by using the same argument of

the Theorem 8, we have the following theorem.

Theorem 10. The multipliers space M (B (G)) is isometrically isomorphic
to
(

A1
p,q (G)

)∗

, the dual space of A1
p,q (G).
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