# THE EQUATIONS OF GENERALIZED COMPLEX STRUCTURES ON COMPLEX 2-TORI 

Neculae Dinuţă and Roxana Dinuţă


#### Abstract

We obtain the equations verified by any generalized complex structure on a complex 2 -torus and we remark that the deformations in the sense of generalized complex structures, of the standard complex structure on a complex 2 -torus, verify these equations.


## 1 Introduction

Nigel Hitchin defined in the paper [6] a generalized complex structure to be a complex structure, not on the tangent bundle $T$ of a manifold, but on $T \oplus T^{*}$, unifying in this way the complex geometry and the symplectic geometry in some sense.

In this paper we obtain the equations verified by an arbitrary generalized complex structure on a complex 2-torus. Then, we remark that the generalized complex structures from the complete smooth family of deformations (in the sense of generalized complex structures) of the standard complex structure on a complex 2 -torus, obtained in [3], verify these equations (for similar results on Kodaira surfaces see [2], [4]).

[^0]
## 2 Generalized complex structures on manifolds

A generalized complex structure on a manifold $M$ (see [6], [5]) is defined to be a complex structure $J\left(J^{2}=-1\right)$ on the sum $T_{M} \oplus T_{M}^{*}$ of the tangent and cotangent bundles, which is required to be orthogonal with respect to the natural inner product on sections $X+\sigma, Y+\tau \in \mathcal{C}^{\infty}\left(T_{M} \oplus T_{M}^{*}\right)$ defined by

$$
\langle X+\sigma, Y+\tau\rangle=\frac{1}{2}(\sigma(Y)+\tau(X)) .
$$

This is only possible if $\operatorname{dim}_{\mathbb{R}} M=2 n$, which we suppose. In addition, the $(+\mathbf{i})$-eigenbundle

$$
L \subset\left(T_{M} \oplus T_{M}^{*}\right) \otimes \mathbb{C}
$$

of $J$ is required to be involutive with respect to the Courant bracket, a skew bracket operation on smooth sections of $T_{M} \oplus T_{M}^{*}$ defined by

$$
[X+\sigma, Y+\tau]=[X, Y]+\mathcal{L}_{X} \tau-\mathcal{L}_{Y} \sigma-\frac{1}{2} d\left(i_{X} \tau-i_{Y} \sigma\right)
$$

where $\mathcal{L}_{X}$ and $i_{X}$ denote the Lie derivative and interior product operations on forms.

Since $J$ is orthogonal with respect to $\langle\cdot, \cdot\rangle$, the $(+\mathbf{i})$-eigenbundle $L$ is a maximal isotropic subbundle of $\left(T_{M} \oplus T_{M}^{*}\right) \otimes \mathbb{C}$ of real index zero (i.e. $L \cap \bar{L}=\{0\}$ ). In fact, a generalized complex structure on $M$ is completely determined by a maximal isotropic subbundle of $\left(T_{M} \oplus T_{M}^{*}\right) \otimes \mathbb{C}$ of real index zero, which is Courant involutive (see [5], [6]). For such a subbundle we have the decomposition

$$
\left(T_{M} \oplus T_{M}^{*}\right) \otimes \mathbb{C}=L \oplus \bar{L},
$$

and we may use the inner product $\langle\cdot, \cdot\rangle$ to identify $\bar{L} \equiv L^{*}$.

## 3 Generalized complex structures on 2-tori

Let $N=\mathbb{C} / \Lambda$ be a complex 2-torus, where $\mathbb{C}^{2}$ denotes the space of two complex variables $(z, w)$ and $\Lambda \subset \mathbb{C}^{2}$ is an integral lattice of rank 4 (see, for example [1]).

We shall identify $\mathbb{C}^{2}$ with $\mathbb{R}^{4}$, the space of four real variables $(x, y, u, v)$ by $z=x+\mathbf{i} y, w=u+\mathbf{i} v$. From the point of view of differential structure, a complex 2 -torus is a parallelizable manifold, i.e. the tangent bundle $T_{N}$ is globally generated by invariant vector fields $\{X, Y, U, V\}$ with all Poisson brackets zero. The complex structure endomorphism $J$ is acting on $T_{N}$ by

$$
J X=Y \quad J Y=-X, \quad J U=V, \quad J V=-U
$$

Let

$$
T=\frac{1}{2}(X-\mathbf{i} Y), \quad W=\frac{1}{2}(U-\mathbf{i} V)
$$

Then, the tangent bundle $T_{N}$ is globally generated by $\{T, W, \bar{T}, \bar{W}\}$ and the cotangent bundle $T_{N}^{*}$ is globally generated by the dual basis of 1-forms $\{\omega, \rho, \bar{\omega}, \bar{\rho}\}$.

We have

$$
J T=\mathbf{i} T, \quad J W=\mathbf{i} W, \quad J \bar{T}=-\mathbf{i} \bar{T}, \quad J \bar{W}=-\mathbf{i} \bar{W}
$$

Now, we shall obtain the equations satisfied by any generalized complex structure on a complex 2 -torus $N$. Recall (see [5]) that a generalized complex structure on $N$ is completely determined by a maximal isotropic subbundle $L \subset\left(T_{N} \oplus T_{N}^{*}\right) \otimes \mathbb{C}$ of real index zero, which is Courant involutiv.

Let $L=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}^{\sim}$ with $\operatorname{dim}_{\mathbb{R}} L=4$, where
$v_{j}=\gamma_{1 j} T+\gamma_{2 j} W+\gamma_{3 j} \bar{T}+\gamma_{4 j} \bar{W}+\delta_{1 j} \omega+\delta_{2 j} \rho+\delta_{3 j} \bar{\omega}+\delta_{4 j} \bar{\rho}, j=1,2,3,4$, and $\bar{L}=\left\{\bar{v}_{1}, \bar{v}_{2}, \bar{v}_{3}, \bar{v}_{4}\right\}^{\sim}$, where

$$
\begin{gathered}
\bar{v}_{k}=\bar{\gamma}_{1 k} \bar{T}+\bar{\gamma}_{2 k} \bar{W}+\bar{\gamma}_{3 k} T+\bar{\gamma}_{4 k} W+\bar{\delta}_{1 k} \bar{\omega}+\bar{\delta}_{2 k} \bar{\rho}+ \\
+\bar{\delta}_{3 k} \omega+\bar{\delta}_{4 k} \rho, \quad k=1,2,3,4 .
\end{gathered}
$$

We have $\gamma_{i j}, \delta_{i j} \in \mathcal{C}^{\infty}(N), \forall i, j=1,2,3,4$.
The subbundle $L$ is of real index zero (i.e. $L \cap \bar{L}=\{0\}$ ) if and only if the set $\left\{v_{1}, v_{2}, v_{3}, v_{4}, \bar{v}_{1}, \bar{v}_{2}, \bar{v}_{3}, \bar{v}_{4}\right\}$ is a linearly independent system. A simple computation as in [4] gives us the following result:

Lemma 3.1. The subbundle $L$ is of real index zero if and only if the following condition holds:

$$
\operatorname{det}\left(\begin{array}{cc}
\Gamma & \bar{\Gamma}_{3412}  \tag{*}\\
\Delta & \bar{\Delta}_{3412}
\end{array}\right) \neq 0
$$

with entries the matrices

$$
\Gamma=\left(\gamma_{i j}\right)_{1 \leq i, j \leq 4} \quad \Delta=\left(\delta_{i j}\right)_{1 \leq i, j \leq 4}
$$

and $\Gamma_{3412}$, and $\bar{\Delta}_{3412}$ their conjugate matrices with lines in the order $(3,4,1,2)$.
The next result is the following:

Lemma 3.2. The subbundle $L$ is isotropic if and only if the following conditions hold:

$$
\begin{equation*}
\sum_{k=1}^{4}\left(\gamma_{k i} \delta_{k j}+\gamma_{k j} \delta_{k i}\right)=0, \quad i, j=1,2,3,4 \tag{**}
\end{equation*}
$$

Proof. The subbundle $L$ is isotropic if and only if $\langle v, w\rangle=0 \forall v, w \in$ $\mathcal{C}^{\infty}(L)$. Since the inner product $\langle\cdot, \cdot\rangle$ is bilinear, these conditions are equivalent to the conditions $\left\langle v_{i}, v_{j}\right\rangle=0, \forall i, j=1,2,3,4$, i.e. to the conditions $\left(^{* *}\right)$.

Now, we shall study the Courant involutivity of the subbundle $L$. We need to compute the Nijenhuis operator

$$
N i j(A, B, C)=\frac{1}{3}(\langle[A, B], C\rangle+\langle[B, C], A\rangle+\langle[C, A], B\rangle)
$$

where $A, B, C \in \mathcal{C}^{\infty}\left(\left(T_{N} \oplus T_{N}^{*}\right) \otimes \mathbb{C}\right)$. We have the following result:
Lemma 3.3. For any $A, B, C \in \mathcal{C}^{\infty}\left(\left(T_{N} \oplus T_{N}^{*}\right) \otimes \mathbb{C}\right)$ and any $f \in \mathcal{C}^{\infty}(N)$ we have the formula:
$3 N i j(A, f B, C)=3 f N i j(A, B, C)+(\pi(A) f+\langle d f, A\rangle)\langle B, C\rangle-(\pi(C) f+\langle d f, C\rangle)\langle A, B\rangle$.
where $\pi: T_{N} \oplus T_{N}^{*} \rightarrow T_{N}$ is the natural projection.
Proof. (see [4]).
We get the following result as in [4]:
Proposition 3.4. The maximal isotropic subbundle $L \subset\left(T_{N} \oplus T_{N}^{*}\right) \otimes \mathbb{C}$ is Courant involutive if and only if

$$
N i j\left(v_{i}, v_{j}, v_{k}\right)=0 \quad \forall \quad i, j, k=1,2,3,4
$$

Proof By Lemma 4.3 we get

$$
\begin{gathered}
3 N i j\left(v_{i}, f v_{j}, v_{k}\right)=3 f N i j\left(v_{i}, v_{j}, v_{k}\right)+ \\
+\left(\pi\left(v_{i}\right) f+\left\langle d f, v_{i}\right\rangle\right)\left\langle v_{j}, v_{k}\right\rangle-\left(\pi\left(v_{k}\right) f+\left\langle d f, v_{k}\right\rangle\right)\left\langle v_{i}, v_{j}\right\rangle, \forall f \in \mathcal{C}^{\infty}(N) .
\end{gathered}
$$

Since $L$ is isotropic we obtain

$$
3 N i j\left(v_{i}, f v_{j}, v_{k}\right)=3 f N i j\left(v_{i}, v_{j}, v_{k}\right)
$$

Now, the result follows by using the additivity of the operator $N i j$ and the Proposition 3.27 of [5]..

We shall use the following notation:

$$
v_{j}=X_{j}+\xi_{j} \in \mathcal{C}^{\infty}\left(\left(T_{N} \oplus T_{N}^{*}\right) \otimes \mathbb{C}\right)
$$

where

$$
X_{j}=\gamma_{1 j} T+\gamma_{2 j} W+\gamma_{3 j} \bar{T}+\gamma_{4 j} \bar{W} \in \mathcal{C}^{\infty}\left(T_{N} \otimes \mathbb{C}\right)
$$

and

$$
\xi_{j}=\delta_{1 j} \omega+\delta_{2 j} \rho+\delta_{3 j} \bar{\omega}+\delta_{4 j} \bar{\rho} \in \mathcal{C}^{\infty}\left(T_{N}^{*} \otimes \mathbb{C}\right)
$$

By definition, we have:

$$
\left[v_{i}, v_{j}\right]=\left[X_{i}, X_{j}\right]+\mathcal{L}_{X_{i}} \xi_{j}-\mathcal{L}_{X_{j}} \xi_{i}-\frac{1}{2}\left(i_{X_{i}} \xi_{j}-i_{X_{j}} \xi_{i}\right)
$$

By direct computation, we get (see [3], Lemma 3.2):
(1)

$$
\begin{aligned}
& {\left[X_{i}, X_{j}\right]=\left(X_{i}\left(\gamma_{1 j}\right)-X_{j}\left(\gamma_{1 i}\right)\right) T+\left(X_{i}\left(\gamma_{2 j}\right)-X_{j}\left(\gamma_{2 i}\right)\right) W+} \\
& +\left(X_{i}\left(\gamma_{3 j}\right)-X_{j}\left(\gamma_{3 i}\right)\right) \bar{T}+\left(X_{i}\left(\gamma_{4 j}\right)-X_{j}\left(\gamma_{4 i}\right)\right)+\bar{W}
\end{aligned}
$$

For any $Y=\alpha_{1} T+\alpha_{2} W+\alpha_{3} \bar{T}+\alpha_{4} \bar{W} \in \mathcal{C}^{\infty}\left(T_{N} \otimes \mathbb{C}\right)$, we have

$$
\left(\mathcal{L}_{X_{i}} \xi_{j}\right)(Y)=X_{i}\left(\xi_{j}(Y)\right)-\xi_{j}\left(\left[X_{i}, Y\right]\right)
$$

and, after computation we get:

$$
\left(\mathcal{L}_{X_{i}} \xi_{j}\right)(Y)=\sum_{k=1}^{4} \alpha_{k} X_{i}\left(\delta_{k j}\right)+\sum_{k=1}^{4} \delta_{k j} Y\left(\gamma_{k i}\right)
$$

Analogously, we have

$$
\left(\mathcal{L}_{X_{j}} \xi_{i}\right)(Y)=\sum_{k=1}^{4} \alpha_{k} X_{j}\left(\delta_{k i}\right)+\sum_{k=1}^{4} \delta_{k i} Y\left(\gamma_{k j}\right)
$$

By direct computation, we get:

$$
\begin{aligned}
& \left(d\left(i_{X_{i}} \xi_{j}-i_{X_{j}} \xi_{i}\right)\right)(Y)= \\
& =\sum_{k=1}^{4}\left(\delta_{k j} Y\left(\gamma_{k i}\right)+\gamma_{k i} Y\left(\delta_{k j}\right)-\delta_{k i} Y\left(\gamma_{k j}\right)-\gamma_{k j} Y\left(\delta_{k i}\right)\right) .
\end{aligned}
$$

Now, a tedious but direct computation gives:
Lemma 3.5. The Courant brackets are:

$$
\left[v_{i}, v_{j}\right]=\left[X_{i}, X_{j}\right]+v_{i j}, \quad\left[X_{i}, X_{j}\right] \in \mathcal{C}^{\infty}\left(T_{N} \otimes \mathbb{C}\right), \quad v_{i j} \in \mathcal{C}^{\infty}\left(T_{n}^{*} \otimes \mathbb{C}\right)
$$

where

$$
\begin{align*}
& v_{i j}=\left(X_{i}\left(\delta_{1 j}\right)-X_{j}\left(\delta_{1 i}\right)+\right. \\
& +\frac{1}{2} \sum_{k=1}^{4} \delta_{k j} T\left(\gamma_{k i}\right)-\frac{1}{2} \sum_{k=1}^{4} \delta_{k i} T\left(\gamma_{k j}\right)-\frac{1}{2} \sum_{k=1}^{4} \gamma_{k i} T\left(\delta_{k j}\right)+ \\
& \left.+\frac{1}{2} \sum_{k=1}^{4} \gamma_{k j} T\left(\delta_{k i}\right)\right) \omega+\left(X_{i}\left(\delta_{2 j}\right)-X_{j}\left(\delta_{2 i}\right)+\frac{1}{2} \sum_{k=1}^{4} \delta_{k j} W\left(\gamma_{k i}\right)-\right. \\
& -\frac{1}{2} \sum_{k=1}^{4} \delta_{k i} W\left(\gamma_{k j}\right)-\frac{1}{2} \sum_{k=1}^{4} \gamma_{k i} W\left(\delta_{k j}\right)+ \\
& \left.+\frac{1}{2} \sum_{k=1}^{4} \gamma_{k j} W\left(\delta_{k i}\right)\right) \rho+\left(X_{i}\left(\delta_{3 j}\right)-X_{j}\left(\delta_{3 i}\right)+\right.  \tag{2}\\
& +\frac{1}{2} \sum_{k=1}^{4} \delta_{k j} \bar{T}\left(\gamma_{k i}\right)-\frac{1}{2} \sum_{k=1}^{4} \delta_{k i} \bar{T}\left(\gamma_{k j}\right)- \\
& \left.-\frac{1}{2} \sum_{k=1}^{4} \gamma_{k i} \bar{T}\left(\delta_{k j}\right)+\frac{1}{2} \sum_{k=1}^{4} \gamma_{k j} \bar{T}\left(\delta_{k i}\right)\right) \bar{\omega}+ \\
& +\left(X_{i}\left(\delta_{4 j}\right)-X_{j}\left(\delta_{4 i}\right)+\frac{1}{2} \sum_{k=1}^{4} \delta_{k j} \bar{W}\left(\gamma_{k i}\right)-\frac{1}{2} \sum_{k=1}^{4} \delta_{k i} \bar{W}\left(\gamma_{k j}\right)-\right. \\
& \left.-\frac{1}{2} \sum_{k=1}^{4} \gamma_{k i} \bar{W}\left(\delta_{k j}\right)+\frac{1}{2} \sum_{k=1}^{4} \gamma_{k j} \bar{W}\left(\delta_{k i}\right)\right) \bar{\rho} .
\end{align*}
$$

Now, we shall compute the Nijenhuis operator:

$$
\begin{equation*}
6 N i j\left(v_{i}, v_{j}, v_{l}\right)=2\left\langle\left[v_{i}, v_{j}\right], v_{l}\right\rangle+2\left\langle\left[v_{j}, v_{l}\right], v_{i}\right\rangle+2\left\langle\left[v_{l}, v_{i}\right], v_{j}\right\rangle . \tag{3}
\end{equation*}
$$

We have;

$$
\begin{gathered}
2\left\langle\left[v_{i}, v_{j}\right], v_{l}\right\rangle=2\left\langle\left[X_{i}, X_{j}\right]+v_{i j}, X_{l}+\xi_{l}\right\rangle= \\
=v_{i j}\left(X_{l}\right)+\xi_{l}\left(\left[X_{i}, X_{j}\right]\right)
\end{gathered}
$$

We shall change the notation by

$$
T=e_{1}, \quad W=e_{2}, \quad \bar{T}=e_{3}, \quad \bar{W}=e_{4}
$$

and

$$
\omega=e^{1}, \quad \rho=e^{2}, \quad \bar{\omega}=e^{3}, \bar{\rho}=e^{4}
$$

Then,

$$
X_{j}=\sum_{k=1}^{4} \gamma_{k_{j}} e_{k}, \quad \xi_{j}=\sum_{k=1}^{4} \delta_{k j} e^{k}
$$

and we obtain by (1):

$$
\left.\xi_{l}\left[X_{i}, X_{j}\right]\right)=\sum_{s=1}^{4} \delta_{s l} \cdot \sum_{k=1}^{4}\left(\gamma_{k i} e_{k}\left(\gamma_{s j}\right)-\gamma_{k j} e_{k}\left(\gamma_{s i}\right)\right)
$$

respectively, by (2):

$$
\begin{aligned}
& v_{i j}\left(X_{l}\right)=\sum_{s, k=1}^{4}\left(\gamma_{s l} \gamma_{k i} e_{k}\left(\delta_{s j}\right)-\gamma_{s l} \gamma_{k j} e_{k}\left(\delta_{s i}\right)\right)+ \\
& \frac{1}{2} \sum_{s, k=1}^{4}\left(\gamma_{s l} \delta_{k j} e_{s}\left(\gamma_{k i}\right)-\gamma_{s l} \delta_{k i} e_{s}\left(\gamma_{k j}\right)-\gamma_{s l} \gamma_{k i} e_{s}\left(\delta_{k j}\right)+\gamma_{s l} \gamma_{k j} e_{s}\left(\delta_{k i}\right)\right) .
\end{aligned}
$$

Now, a tedious but direct computation gives the following result:
Theorem 3.6. The Courant involutive condition $\operatorname{Nij}\left(v_{i}, v_{j}, v_{l}\right)=0$ is equivalent to the condition:

$$
\begin{aligned}
& \sum_{s, k=1}^{4}\left(\left(\gamma_{k l} \delta_{s j}-\gamma_{k j} \delta_{s l}\right) e_{k}\left(\gamma_{s i}\right)+\left(\gamma_{k i} \delta_{s l}-\gamma_{k l} \delta_{s i}\right) e_{k}\left(\gamma_{s j}\right)+\right. \\
& \left.+\left(\gamma_{k j} \delta_{s i}-\gamma_{k i} \delta_{s j}\right) e_{k}\left(\gamma_{s l}\right)\right)+ \\
& +\sum_{s, k=1}^{4}\left(\left(\gamma_{s j} \gamma_{k l}-\gamma_{s l} \gamma_{k j}\right) e_{k}\left(\delta_{s i}\right)+\left(\gamma_{s l} \gamma_{k i}-\gamma_{k l} \gamma_{s i}\right) e_{k}\left(\delta_{s j}\right)+\right. \\
& \left.+\left(\gamma_{s i} \gamma_{k j}-\gamma_{k i} \gamma_{s j}\right) e_{k}\left(\delta_{s l}\right)\right)=0 .
\end{aligned}
$$

Finally, we get the main result:
Corollary 3.7. The equations of a generalized complex structure on a complex 2-torus are given by the conditions; ( ${ }^{*}$ ), ( ${ }^{* *}$ ) and ( ${ }^{* * *}$ ).

Remark 3.1. The generalized complex structures on a complex 2-torus $N$ obtained by deformation theory in [3] are given by the subbundle

$$
L_{\varepsilon}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}^{\sim}
$$

, where

$$
\begin{aligned}
& v_{1}=t_{11} T+t_{21} W+\bar{T}-t_{32} \bar{\rho}, v_{2}=t_{12} T+t_{22} W+\bar{W}-t_{32} \bar{\omega} \\
& v_{3}=-t_{14} W+\omega-t_{11} \bar{\omega}-t_{12} \bar{\rho}, v_{4}=t_{14} T+\rho-t_{21} \bar{\omega}-t_{22} \bar{\rho}
\end{aligned}
$$

By direct computation it follows that these generalized complex structures verify the equations $\left({ }^{*}\right),\left({ }^{* *}\right)$ and $\left({ }^{* * *}\right)$.

## References

[1] V. Brinzanescu, Holomorphic Vector Bundles over Compact Complex Surfaces, Lecture Notes in Math., 1624, Springer, 1996.
[2] V. Brinzanescu, O.A. Turcu, Generalized complex structures on Kodaira surfaces, J. Geom. Phys., 60(1), (2010), 60-67.
[3] V. Brinzanescu, N. Dinuta, R. Dinuta, Generalized complex structures on complex 2-tori, Bull. Math. Soc. Sci. Math. Roumanie., $52(100)$, No. 3(2009), 263-270.
[4] L. Brinzanescu, V. Brinzanescu, N. Dinuta, The equations of generalized complex structures on Kodaira surfaces, to appear in An. Univ. Timisoara, seria Mat.-Inform.
[5] M. Gualtieri, Generalized complex geometry, D. Phil. Thesis, St. John's College, University of Oxford, 2003.
[6] N. Hitchin, Generalized Calabi-Yau manifolds, Q. J. Math., 54(3), (2003), 281-308.

University of Pitesti,
Str. Targu din Vale, nr.1, 110040 Pitesti, Romania
Email: Neculae.Dinuta@yahoo.com


[^0]:    Key Words: Generalized complex manifolds, complex 2-torus.
    Mathematics Subject Classification: 53C56, 32Q99, 53D99
    Received: April, 2010
    Accepted: December, 2011

