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THE EQUATIONS OF GENERALIZED

COMPLEX STRUCTURES ON COMPLEX

2-TORI

Neculae Dinuţă and Roxana Dinuţă

Abstract

We obtain the equations verified by any generalized complex struc-

ture on a complex 2-torus and we remark that the deformations in the

sense of generalized complex structures, of the standard complex struc-

ture on a complex 2-torus, verify these equations.

1 Introduction

Nigel Hitchin defined in the paper [6] a generalized complex structure to be a
complex structure, not on the tangent bundle T of a manifold, but on T ⊕T ∗,
unifying in this way the complex geometry and the symplectic geometry in
some sense.

In this paper we obtain the equations verified by an arbitrary generalized
complex structure on a complex 2-torus. Then, we remark that the generalized
complex structures from the complete smooth family of deformations (in the
sense of generalized complex structures) of the standard complex structure on
a complex 2-torus, obtained in [3], verify these equations (for similar results
on Kodaira surfaces see [2], [4]).
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2 Generalized complex structures on manifolds

A generalized complex structure on a manifold M (see [6], [5]) is defined to
be a complex structure J (J2 = −1) on the sum TM ⊕ T ∗

M of the tangent
and cotangent bundles, which is required to be orthogonal with respect to the
natural inner product on sections X + σ, Y + τ ∈ C

∞(TM ⊕ T ∗
M ) defined by

〈X + σ, Y + τ〉 =
1

2
(σ(Y ) + τ(X)).

This is only possible if dimR M = 2n, which we suppose.
In addition, the (+i)-eigenbundle

L ⊂ (TM ⊕ T ∗
M )⊗ C

of J is required to be involutive with respect to the Courant bracket, a skew
bracket operation on smooth sections of TM ⊕ T ∗

M defined by

[X + σ, Y + τ ] = [X,Y ] + LXτ − LY σ −
1

2
d(iXτ − iY σ),

where LX and iX denote the Lie derivative and interior product operations
on forms.

Since J is orthogonal with respect to 〈·, ·〉, the (+i)-eigenbundle L is a max-
imal isotropic subbundle of (TM⊕T ∗

M )⊗C of real index zero (i.e. L∩L̄ = {0}).
In fact, a generalized complex structure on M is completely determined by a
maximal isotropic subbundle of (TM ⊕ T ∗

M ) ⊗ C of real index zero, which is
Courant involutive (see [5], [6]). For such a subbundle we have the decompo-
sition

(TM ⊕ T ∗
M )⊗ C = L⊕ L̄,

and we may use the inner product 〈·, ·〉 to identify L̄ ≡ L∗.

3 Generalized complex structures on 2-tori

LetN = C/Λ be a complex 2-torus, where C2 denotes the space of two complex
variables (z, w) and Λ ⊂ C

2 is an integral lattice of rank 4 (see, for example
[1]).

We shall identify C
2 with R

4, the space of four real variables (x, y, u, v)
by z = x + iy, w = u + iv. From the point of view of differential structure,
a complex 2-torus is a parallelizable manifold, i.e. the tangent bundle TN

is globally generated by invariant vector fields {X,Y, U, V } with all Poisson
brackets zero. The complex structure endomorphism J is acting on TN by

JX = Y JY = −X, JU = V, JV = −U.
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Let

T =
1

2
(X − iY ), W =

1

2
(U − iV ).

Then, the tangent bundle TN is globally generated by {T,W, T̄ , W̄} and
the cotangent bundle T ∗

N is globally generated by the dual basis of 1-forms
{ω, ρ, ω̄, ρ̄}.

We have

JT = iT, JW = iW, JT̄ = −iT̄ , JW̄ = −iW̄ .

Now, we shall obtain the equations satisfied by any generalized complex
structure on a complex 2-torus N . Recall (see [5]) that a generalized complex
structure on N is completely determined by a maximal isotropic subbundle
L ⊂ (TN ⊕ T ∗

N )⊗ C of real index zero, which is Courant involutiv.

Let L = {v1, v2, v3, v4}
∼ with dimR L = 4, where

vj = γ1jT + γ2jW + γ3j T̄ + γ4jW̄ + δ1jω + δ2jρ+ δ3jω̄ + δ4j ρ̄, j = 1, 2, 3, 4,

and L̄ = {v̄1, v̄2, v̄3, v̄4}
∼, where

v̄k = γ̄1kT̄ + γ̄2kW̄ + γ̄3kT + γ̄4kW + δ̄1kω̄ + δ̄2kρ̄+

+δ̄3kω + δ̄4kρ, k = 1, 2, 3, 4.

We have γij , δij ∈ C
∞(N), ∀ i, j = 1, 2, 3, 4.

The subbundle L is of real index zero (i.e. L ∩ L̄ = {0}) if and only if
the set {v1, v2, v3, v4, v̄1, v̄2, v̄3, v̄4} is a linearly independent system. A simple
computation as in [4] gives us the following result:

Lemma 3.1. The subbundle L is of real index zero if and only if the following
condition holds:

(∗) det

(

Γ Γ̄3412

∆ ∆̄3412

)

6= 0,

with entries the matrices

Γ = (γij)1≤i,j≤4 ∆ = (δij)1≤i,j≤4

and Γ3412, and ∆̄3412 their conjugate matrices with lines in the order (3, 4, 1, 2).

The next result is the following:
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Lemma 3.2. The subbundle L is isotropic if and only if the following condi-
tions hold:

(∗∗)

4
∑

k=1

(γkiδkj + γkjδki) = 0, i, j = 1, 2, 3, 4.

Proof. The subbundle L is isotropic if and only if 〈v, w〉 = 0 ∀ v, w ∈
C
∞(L). Since the inner product 〈·, ·〉 is bilinear, these conditions are equivalent

to the conditions 〈vi, vj〉 = 0, ∀ i, j = 1, 2, 3, 4, i.e. to the conditions (**).
Now, we shall study the Courant involutivity of the subbundle L. We need

to compute the Nijenhuis operator

Nij(A,B,C) =
1

3
(〈[A,B], C〉+ 〈[B,C], A〉+ 〈[C,A], B〉) ,

where A,B,C ∈ C
∞((TN ⊕ T ∗

N )⊗ C). We have the following result:

Lemma 3.3. For any A,B,C ∈ C
∞((TN ⊕ T ∗

N )⊗C) and any f ∈ C
∞(N) we

have the formula:

3Nij(A, fB,C) = 3fNij(A,B,C)+(π(A)f+〈df,A〉)〈B,C〉−(π(C)f+〈df, C〉)〈A,B〉.

where π : TN ⊕ T ∗
N → TN is the natural projection.

Proof. (see [4]).
We get the following result as in [4]:

Proposition 3.4. The maximal isotropic subbundle L ⊂ (TN ⊕ T ∗
N ) ⊗ C is

Courant involutive if and only if

Nij(vi, vj , vk) = 0 ∀ i, j, k = 1, 2, 3, 4.

Proof By Lemma 4.3 we get

3Nij(vi, fvj , vk) = 3fNij(vi, vj , vk)+

+(π(vi)f + 〈df, vi〉)〈vj , vk〉 − (π(vk)f + 〈df, vk〉)〈vi, vj〉, ∀ f ∈ C
∞(N).

Since L is isotropic we obtain

3Nij(vi, fvj , vk) = 3fNij(vi, vj , vk).

Now, the result follows by using the additivity of the operator Nij and the
Proposition 3.27 of [5]..

We shall use the following notation:

vj = Xj + ξj ∈ C
∞((TN ⊕ T ∗

N )⊗ C),
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where

Xj = γ1jT + γ2jW + γ3j T̄ + γ4jW̄ ∈ C
∞(TN ⊗ C)

and

ξj = δ1jω + δ2jρ+ δ3jω̄ + δ4j ρ̄ ∈ C
∞(T ∗

N ⊗ C).

By definition, we have:

[vi, vj ] = [Xi, Xj ] + LXi
ξj − LXj

ξi −
1

2
(iXi

ξj − iXj
ξi).

By direct computation, we get (see [3], Lemma 3.2):

(1)
[Xi, Xj ] = (Xi(γ1j)−Xj(γ1i))T + (Xi(γ2j)−Xj(γ2i))W+

+(Xi(γ3j)−Xj(γ3i))T̄ + (Xi(γ4j)−Xj(γ4i)) + W̄ .

For any Y = α1T + α2W + α3T̄ + α4W̄ ∈ C
∞(TN ⊗ C), we have

(LXi
ξj)(Y ) = Xi(ξj(Y ))− ξj([Xi, Y ])

and, after computation we get:

(LXi
ξj)(Y ) =

4
∑

k=1

αkXi(δkj) +

4
∑

k=1

δkjY (γki).

Analogously, we have

(LXj
ξi)(Y ) =

4
∑

k=1

αkXj(δki) +
4
∑

k=1

δkiY (γkj).

By direct computation, we get:

(d(iXi
ξj − iXj

ξi))(Y ) =

=
∑4

k=1(δkjY (γki) + γkiY (δkj)− δkiY (γkj)− γkjY (δki)).

Now, a tedious but direct computation gives:

Lemma 3.5. The Courant brackets are:

[vi, vj ] = [Xi, Xj ] + vij , [Xi, Xj ] ∈ C
∞(TN ⊗ C), vij ∈ C

∞(T ∗
n ⊗ C),
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where

(2)

vij = (Xi(δ1j)−Xj(δ1i)+

+
1

2

4
∑

k=1

δkjT (γki)−
1

2

4
∑

k=1

δkiT (γkj)−
1

2

4
∑

k=1

γkiT (δkj)+

+
1

2

4
∑

k=1

γkjT (δki))ω + (Xi(δ2j)−Xj(δ2i) +
1

2

4
∑

k=1

δkjW (γki)−

−
1

2

4
∑

k=1

δkiW (γkj)−
1

2

4
∑

k=1

γkiW (δkj)+

+
1

2

4
∑

k=1

γkjW (δki))ρ+ (Xi(δ3j)−Xj(δ3i)+

+
1

2

4
∑

k=1

δkj T̄ (γki)−
1

2

4
∑

k=1

δkiT̄ (γkj)−

−
1

2

4
∑

k=1

γkiT̄ (δkj) +
1

2

4
∑

k=1

γkj T̄ (δki))ω̄+

+(Xi(δ4j)−Xj(δ4i) +
1

2

4
∑

k=1

δkjW̄ (γki)−
1

2

4
∑

k=1

δkiW̄ (γkj)−

−
1

2

4
∑

k=1

γkiW̄ (δkj) +
1

2

4
∑

k=1

γkjW̄ (δki))ρ̄.

Now, we shall compute the Nijenhuis operator:

(3) 6Nij(vi, vj , vl) = 2〈[vi, vj ], vl〉+ 2〈[vj , vl], vi〉+ 2〈[vl, vi], vj〉.

We have;

2〈[vi, vj ], vl〉 = 2〈[Xi, Xj ] + vij , Xl + ξl〉 =

= vij(Xl) + ξl([Xi, Xj ]).

We shall change the notation by

T = e1, W = e2, T̄ = e3, W̄ = e4

and
ω = e1, ρ = e2, ω̄ = e3, ρ̄ = e4.

Then,

Xj =

4
∑

k=1

γkj
ek, ξj =

4
∑

k=1

δkje
k,
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and we obtain by (1):

ξl[Xi, Xj ]) =

4
∑

s=1

δsl ·

4
∑

k=1

(γkiek(γsj)− γkjek(γsi))

respectively, by (2):

vij(Xl) =
4
∑

s,k=1

(γslγkiek(δsj)− γslγkjek(δsi))+

1

2

4
∑

s,k=1

(γslδkjes(γki)− γslδkies(γkj)− γslγkies(δkj) + γslγkjes(δki)).

Now, a tedious but direct computation gives the following result:

Theorem 3.6. The Courant involutive condition Nij(vi, vj , vl) = 0 is equiv-
alent to the condition:

(∗ ∗ ∗)

4
∑

s,k=1

((γklδsj − γkjδsl)ek(γsi) + (γkiδsl − γklδsi)ek(γsj)+

+(γkjδsi − γkiδsj)ek(γsl))+

+

4
∑

s,k=1

((γsjγkl − γslγkj)ek(δsi) + (γslγki − γklγsi)ek(δsj)+

+(γsiγkj − γkiγsj)ek(δsl)) = 0.

Finally, we get the main result:

Corollary 3.7. The equations of a generalized complex structure on a complex
2-torus are given by the conditions; (*), (**) and (***).

Remark 3.1. The generalized complex structures on a complex 2-torus N
obtained by deformation theory in [3] are given by the subbundle

Lε = {v1, v2, v3, v4}
∼

, where

v1 = t11T + t21W + T̄ − t32ρ̄, v2 = t12T + t22W + W̄ − t32ω̄,

v3 = −t14W + ω − t11ω̄ − t12ρ̄, v4 = t14T + ρ− t21ω̄ − t22ρ̄.

By direct computation it follows that these generalized complex structures
verify the equations (*), (**) and (***).
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