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THE EQUATIONS OF GENERALIZED
COMPLEX STRUCTURES ON COMPLEX
2-TORI

Neculae Dinuta and Roxana Dinuta

Abstract

We obtain the equations verified by any generalized complex struc-
ture on a complex 2-torus and we remark that the deformations in the
sense of generalized complex structures, of the standard complex struc-
ture on a complex 2-torus, verify these equations.

1 Introduction

Nigel Hitchin defined in the paper [6] a generalized complex structure to be a
complex structure, not on the tangent bundle T of a manifold, but on T'& T,
unifying in this way the complex geometry and the symplectic geometry in
some sense.

In this paper we obtain the equations verified by an arbitrary generalized
complex structure on a complex 2-torus. Then, we remark that the generalized
complex structures from the complete smooth family of deformations (in the
sense of generalized complex structures) of the standard complex structure on
a complex 2-torus, obtained in [3], verify these equations (for similar results
on Kodaira surfaces see [2], [4]).
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2 Generalized complex structures on manifolds

A generalized complex structure on a manifold M (see [6], [5]) is defined to
be a complex structure J (J? = —1) on the sum Ty & T3, of the tangent
and cotangent bundles, which is required to be orthogonal with respect to the
natural inner product on sections X + o, Y 4+ 7 € C*(Ty & T;;) defined by

1
(X+o,Y+71)= 5(0’(}/) + 7(X)).
This is only possible if dimg M = 2n, which we suppose.
In addition, the (+i)-eigenbundle

Lc(TueTy)oC

of .J is required to be involutive with respect to the Courant bracket, a skew
bracket operation on smooth sections of T @ Ty, defined by

1
[X+O’,Y+T] = [X,Y]—FﬁaxT—L‘sz—id(ixT—Z'yO'),

where £x and ix denote the Lie derivative and interior product operations
on forms.

Since J is orthogonal with respect to (-, -), the (+i)-eigenbundle L is a max-
imal isotropic subbundle of (T &T5;)®C of real index zero (i.e. LNL = {0}).
In fact, a generalized complex structure on M is completely determined by a
maximal isotropic subbundle of (Th @ Tj;) ® C of real index zero, which is
Courant involutive (see [5], [6]). For such a subbundle we have the decompo-
sition

and we may use the inner product (-, -) to identify L = L*.

3 Generalized complex structures on 2-tori

Let N = C/A be a complex 2-torus, where C? denotes the space of two complex
variables (z,w) and A C C? is an integral lattice of rank 4 (see, for example
).

We shall identify C? with R*, the space of four real variables (z,y,u,v)
by z = z + iy, w = u + iv. From the point of view of differential structure,
a complex 2-torus is a parallelizable manifold, i.e. the tangent bundle Ty
is globally generated by invariant vector fields {X,Y,U, V'} with all Poisson
brackets zero. The complex structure endomorphism J is acting on Ty by

JX=Y JY=-X, JU=V, JV=-U.
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Let

T= %(X —iY), W= %(U—iV).

Then, the tangent bundle Ty is globally generated by {T, W, T, W} and
the cotangent bundle T7%; is globally generated by the dual basis of 1-forms

{w,p, @, p}.
‘We have

JT =iT, JW =iW, JT = —iT, JW = —iW.

Now, we shall obtain the equations satisfied by any generalized complex
structure on a complex 2-torus N. Recall (see [5]) that a generalized complex
structure on N is completely determined by a maximal isotropic subbundle
L C (Tn ®Ty)® C of real index zero, which is Courant involutiv.

Let L = {v1,v9,v3,v4}™ with dimg L = 4, where

vj = YT 4+ Y2;W + 73T + Y4, W + 61w + 25 + 83,00 + 645p, § = 1,2,3,4,
and L = {0y, 02, 03,04}, where
O = Y1k T + Y2k W + Y3k T + Jax W + 15 + Sopp+
+03pw + dapp,  k=1,2,3,4.
We have Yijs 5,‘]' S GOO(N), v 1,7 =1,2,3,4.
The subbundle L is of real index zero (i.e. LN L = {0}) if and only if

the set {v1, va,vs, v4, U1, U2, U3, U4} is a linearly independent system. A simple
computation as in [4] gives us the following result:

Lemma 3.1. The subbundle L is of real index zero if and only if the following
condition holds:

I' T
(%) det i 20,
A Asgyro
with entries the matrices
I'= (vijhi<ig<a A= (0ij)1<ij<a

and T'sq12, and Asq1o their conjugate matrices with lines in the order (3,4,1,2).

The next result is the following:
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Lemma 3.2. The subbundle L is isotropic if and only if the following condi-
tions hold:

4
() > (Wil + YeiOri) =0, i,j =1,2,3,4.
k=1

Proof. The subbundle L is isotropic if and only if (v,w) = 0V v,w €
C>°(L). Since the inner product (-, -) is bilinear, these conditions are equivalent
to the conditions (v;,v;) =0, V4,5 = 1,2,3,4, i.e. to the conditions (**).

Now, we shall study the Courant involutivity of the subbundle L. We need
to compute the Nijenhuis operator

Nij(A,B,C) = é(([A, BJ,C) +([B,C], 4) +([C, A], B)) ,

where A, B,C € C®((Ty & T7) ® C). We have the following result:

Lemma 3.3. For any A,B,C € C®((Tn ®T5%)®C) and any f € C°(N) we
have the formula:

3Nij(A, fB,C) = 3fNij(A, B, C)+(w(A) f+(df, A))(B, C)—(m(C) f+(df,C))(A, B).
where m: T © Ty — Ty is the natural projection.

Proof. (see [4]).
We get the following result as in [4]:

Proposition 3.4. The mazimal isotropic subbundle L C (Tn & T5%) ® C is
Courant involutive if and only if

Nij(vi,vj,vp) =0 YV 4,5,k=1,2,3,4.
Proof By Lemma 4.3 we get
3Nij(vi, fvj,vr) = 3fNij(vi, v, vp)+
+(m(va) f + (df s vi)) (vj, vn) = (m(0r) f + (df, vk)) (vi, 05), ¥ f € C(N).
Since L is isotropic we obtain
3Nij (v, fvj,vr) = 3fNij(vi, v}, vg).

Now, the result follows by using the additivity of the operator Nij and the
Proposition 3.27 of [5]..
We shall use the following notation:

v, =X;+& €C((ITn @ Ty)®C),
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where
Xj = 31T +725W + 43, T + 74;W € €2 (Ty @ C)

and
§j = 01w + bajp + 030 + b45p € C= (T ® C).

By definition, we have:
1 .
[vi, v5] = [Xi, Xg] + £x.& = Lx,6 = 5(ix& — ix,&)-
By direct computation, we get (see [3], Lemma 3.2):

(X, Xj] = (Xi(v1y) = X (7)) T + (Xi(ye5) — Xj(y2:) )W+

(1) _ _
+H(Xi(v35) — X (93))T + (Xi(ya5) — X (vai)) + W
For any Y = ayT + asW + a3T + auW € C®(Ty ® C), we have
(Lx,§)(Y) = Xi(&(Y)) — &([Xi, YY)

and, after computation we get:

(Lx, &)Y ZakX (Oks) + Z Ors Y (Vhi)-
Analogously, we have

(Lx,;&)( Z%X (Oki) +Z5kz (Vkj)-

By direct computation, we get:

(dix, & —ix,&))(Y) =

= Y b1 (kY (ki) + YaiY (Ong) = 0¥ (Vi) — s Y (Ora)-
Now, a tedious but direct computation gives:
Lemma 3.5. The Courant brackets are:

[’Ui,’()j] = [Xi,Xj] —‘r’l)ij, [X“Xj] € GOO(TN ®C>, Vij € GOO(T;: ®(C),
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where

vij = (X;(015) — X;(61:)+
+= Z 6k}j sz Z 61@1 'Vkrj Z 'Ykz 6’6]
4
+§ Z Wi T(Oki))w + (Xi(825) = X;(02:) + 5 D ki W (ki) —
1 - k=1
—= Z OkiW (kj) Z Yei W (r5)+
@ T3 Z Vi W (0ki))p + (Xi(835) — X;(J5:)+
4
+§ Z O1s T (Yi) — 5 Z S1i T (g ) —
k=1 k=1
I - I -
—3 Z Vi (6r5) + = Z Vg T (Oxi) ) o+
k=1
+(Xz (643) 541 Z 6/(7] ’7k7, -3 Z 6k1 fyk]
5 Z ,Ykz 6/4:] Z 'yk] 6kz

Now, we shall compute the Nijenhuis operator:
(3) 6Nij(vi, vj,v1) = 2([vs, v;], v) + 2([vj, v, vi) + 2([vg, vi], v5).
We have;

N | =

[, vj], 1) = 2([Xi, Xj] 4 vig, X + &) =
= vi;(X1) + &([X5, Xj]).
We shall change the notation by
T=e, W=eq, T:€3, W =ey

and

Then,

4 4

k

X;= E Ve ks &5 = E Oxje”,
k=1 k=1
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and we obtain by (1):

4

&[Xi, X;1) Z&l D (wkier (1) — Yrjer (vsi))
k=1

s=1

respectively, by (2):

4
v (Xy) = Z YsiVki€k (0s5) — VerVrjer(0si))+
s,k=1

4

1

3 Z (VstOrjes(Yri) — Vs1Ori€s(Vrj) — VsiVki€s(Onj) + Vst Vrjes(Oki))-
s, k=1

Now, a tedious but direct computation gives the following result:

Theorem 3.6. The Courant involutive condition Nij(v;,v;,v) =0 is equiv-
alent to the condition:

4
Z (V1055 — YrjOst)er (Vsi) + (Vridst — Yridsi)er(Vsj)+
s,k=1
(Vkj0si — Yrilsj)ew(Vs1))+
(o % %)
4
+ 3 (o vt = Yot )en(8s) + (Yaivis — Mavsi)en(8s5)+
s,k=1

+(VsiVks — VkiVsi)er(ds1)) = 0.
Finally, we get the main result:

Corollary 3.7. The equations of a generalized complex structure on a complex
2-torus are given by the conditions; (*), (**) and (**%).

Remark 3.1. The generalized complex structures on a complex 2-torus N
obtained by deformation theory in [3] are given by the subbundle

LE = {Ulav25U37U4}N
, where
v1 =t T+t W + T — t32p,v9 = t1oT + tosW + W — t3200,

v3 = —tuW +w —t110 — t12p, v4 = t1aT + p — to1w — t22p.

By direct computation it follows that these generalized complex structures
verify the equations (*), (**) and (***).
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