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ON THE CONVERGENCE OF ITERATIVE
SEQUENCES FOR A FAMILY OF
NONEXPANSIVE MAPPINGS AND
INVERSE-STRONGLY MONOTONE
MAPPINGS

Sun Young Cho and Shin Min Kang

Abstract

The purpose of this paper is to introduce a general iterative process
for the problem of finding a common element in the set of common
fixed points of an infinite family of nonexpansive mappings and in the
set of solutions of variational inequalities for inverse-strongly monotone
mappings.

1. Introduction and preliminaries

Throughout this paper, we assume that H is a real Hilbert space, whose
inner product and norm are denoted by (-,-) and || - ||, respectively. Let K be
a nonempty, closed and convex subset of H and A : K — H be a nonlinear
mapping. We denote by Px be the metric projection of H onto the closed
convex subset K. The classical variational inequality problem is to find u € K
such that

(Au,v —u) >0, YvekK. (1.1)
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In this paper, we use VI(K, A) to denote the solution set of the variational
inequality (1.1). For a given z € H,u € K satisfies the inequality (u — z,v —
u) > 0, Vv € K, if and only if u = Pk z. It is known that projection operator
Py is nonexpansive. It is also known that Py satisfies

(x —y, Pkx — Pgy) > ||Pra — PKy||2, Ve, y € H.

One can see that the variational inequality (1.1) is equivalent to a fixed
point problem. The element u € K is a solution of the variational inequality
problem (1.1) if and only if u € K satisfies the relation u = Px (I — AA)u,
where A > 0 is a constant.

Recall that the following definitions.

(1) A mapping A : K — H is said to be inverse-strongly monotone if there
exists a positive real number p such that

(x —y, Az — Ay) > pl| Az — Ay|*, Va,y € K.

For such a case, A is called p-inverse-strongly monotone.
(2) A mapping S : K — K is said to be nonezpansive if

1Sz =Syl < llz —yll, Va,ye K.

In this paper, we use F(S) to denote the fixed point set of S.
(3) A mapping f : K — K is said to be a contraction if there exists a
coefficient o (0 < o < 1) such that

lf(z) = fy)] < allz—vyl, Vr,yeK.

(4) A set-valued mapping T : H — 2/ is said to be monotone if for all
x,y€ H, f € Tx and g € Ty imply (z —y, f — g) > 0. A monotone mapping
T : H — 2" is mazimal if the graph of G(T') of T is not properly contained
in the graph of any other monotone mapping. It is known that a monotone
mapping 7' is maximal if and only if for (x, f) € H x H, {x —y,f —¢g) >0
for every (y,g) € G(T) implies f € Tx. Let A be a monotone map of K into
H and let Ngv be the normal cone to K at v € K, i.e., Nyv = {w € H :
(v —u,w) >0, Yu € K} and define

Av+ Ngv, wveEK,
Tv =
0, v K.

Then T is maximal monotone and 0 € Tw if and only if v € VI(K, A); see
[24].

The classical variational inequality and fixed point problems have been
studied based on iterative methods by many authors; see [3-14,18-23,27,30,31]
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For finding a common element of the set of fixed points of a nonexpansive
mapping S and the solution of the variational inequalities for a pu-inverse-
strongly monotone mapping, Takahashi and Toyoda [27] introduced the fol-
lowing iterative process

21 €K, Tpt1=anty + (1 —an)SPr(r, — MAz,), n>1, (1.2)

where A is a p-inverse-strongly monotone mapping, {«,} is a sequence in
(0,1), and {\,} is a sequence in (0, 24). They showed that, if F'(S)NVI(K, A)
is nonempty, then the sequence {x,} generated in (1.2) converges weakly to
some z € F(S)NVI(K,A).

Recently, Tiduka and Takahashi [8] proposed another iterative scheme as
following

Tnt1 = @p + (1 — ) SPr (2 — A\pAxy,), n>1, (1.3)

where 1 = 2 € K, {a,} is a sequence in (0,1), and {\,} is a sequence
in (0,2u). They proved that the sequence {z,} converges strongly to z €
FSYNVI(K,A).

Very recently, Chen et al. [3] studied the following iterative process

21 €K, zpi1=anf(zn)+ (1 —an)SPk(x, — A\yAx,), n>1, (14)

where A is an inverse-strongly monotone mapping and also obtained a strong
convergence theorem by so-called viscosity approximation method which first
introduced by Moudafi [13] in the framework of Hilbert spaces.

On the other hand, for solving the variational inequality problem in the
finite-dimensional Euclidean space R", Korpelevich [10] introduced the follow-
ing so-called extra-gradient method

To =o€ K,
Yn = Pr(x, — NAz,), (1.5)
Tpt1 = Pr(zn — Ayn), n >0,

where )\ € (O, %)

Recently, Nadezhkina and Takahashi [14], Yao and Yao [30] and Zeng and
Yao [31] proposed some new iterative schemes for finding common elements
in F(S)NVI(K,A) by combining (1.3) and (1.5). In particular, Yao and Yao
[30] introduced the following iterative algorithm

xr1 € K,
Yn = Px(I — M\ A)xy,, (1.6)
Tn+1 = OpU + ann + ’YnSPK(yn - )\nAyn)v n 2 17
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where S is a nonexpansive mapping and A is a inverse-strongly monotone
mapping. They proved that the sequence {x,} generated by (1.6) converges
strongly to some point in FI(S)NVI(K, A).

Concerning a family of nonexpansive mappings has been considered by
many authors; see [2,7,11,12,15,16,18,20,25,29] and the references therein. In
this paper, we consider the mapping W,, defined by

Un,n—i—l - I,

Un,n = 'YnTnUn,n+1 + (1 - ’Yn)la
Un,nfl = ’YnflTnflUn,n + (1 - ’77171)[1

Unke = TeUnkr1 + (1 — )1, (1.7)
Un =1 = Ve—1Tk—1Un ks + (L — yx—1)1,

Uno=7T2U, 3+ (1 —y2)1,
Wyp=Up1 =710 2+ (1 —7)I,
where 1,72, ... are real numbers such that 0 <, <1 and T1,T5,... be an

infinite family of mappings of K into itself. Nonexpansivity of each T; ensures
the nonexpansivity of W,,.

Concerning W,, we have the following lemmas which are important to prove
our main results.

Lemma 1.1. ([25]) Let K be a nonempty closed convex subset of a strictly

conver Banach space E. Let Ty, T, ... be nonexpansive mappings of K into
itself such that N2, F(T,) is nonempty and 1,72, ... be real numbers such

that 0 < v, < b <1 for any n > 1. Then for every x € K and k € N, the
limit lim,, o0 Uy, p exists.

Using Lemma, 1.1, one can define the mapping W of K into itself as follows.

Wz = lim Wyz = lim U, 1z, Ve K. (1.8)
n—oo n— oo
Such a W is called the W-mapping generated by 11,75, ... and v1, 72, .. ..
Throughout this paper, we will assume that 0 < ~,, <b <1 for all n > 1.

Lemma 1.2. ([25]) Let K be a nonempty closed convex subset of a strictly
convexr Banach space E. Let Ty, T5, ... be nonexpansive mappings of K into
itself such that NS F(T,,) is nonempty and 1,72, ... be real numbers such
that 0 < v, <b <1 for anyn >1. Then, F(W) =N, F(T,).
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In this paper, motivated by research work going on in this direction, we
introduce a general iterative process as following

xr1 € K,
Tn+l = Oénf(xn) + ﬁnxn + IYanPK(I - AnA)yn; n> 17

where A and B are pu;-inverse-strongly monotone mappings from K into H,
respectively for i = 1,2, f is a contraction on K and W, is a mapping defined
by (1.7). Tt is proved that the sequence {x,} generated by the above iterative
scheme converges strongly to a common element of the set of common fixed
points of an infinite nonexpansive mappings and the set of solutions of the
variational inequalities for the inverse-strongly monotone mappings, which
solves another variation inequality

(fla) —a,p—q) <0, VpenZ F(T;)NVI(K,A)NVI(K,B).

In order to prove our main results, we also need the following lemmas.

Lemma 1.3. ([28]) Assume that {a,,} is a sequence of nonnegative real num-
bers such that
Op4q S (1 - ’Yn)an + 6717

where {v,} is a sequence in (0,1) and {6} is a sequence such that

(i) 22021 Tn = O

(i) limsup,,_, o i—: <0 or Y710, < oo.
Then lim,_, o0 0ty = 0.
Lemma 1.4. ([26]) Let {x,} and {y,} be bounded sequences in a Banach space
E and {f,} be a sequence in [0, 1] with 0 < liminf, o 8, <limsup,,_, . Bn <

1. Suppose that x,11 = (1 — B,)Yn + By for alln >0 and

lim sup([|yn+1 = Ynll = [[Tn+1 — z0l]) < 0.
n— 00
Then limy, o0 ||yn — x| = 0.

Lemma 1.5. ([17]) Let E be an inner product space. Then for all z,y,z € F
and «, B,y € [0,1] with o+ 5+ v = 1, we have

locw + By +vz[|* < alll* + Bllyll* +7121* — arlle — 2|
—afllz —ylI* = Bylly — 2.



54 SUN YOUNG CHO AND SHIN MIN KANG

2. Main results
Now, we are ready to give our main results.

Theorem 2.1. Let K be a nonempty closed convex subset of a real Hilbert
space H, A : K — H be uj-inverse-strongly monotone mapping and B :
K — H be pg-inverse-strongly monotone mappings. Let f : K — K be a
contraction with the coefficient o, where 0 < a < 1. Let {x,} be a sequence
generated by (1.9), where {a,}, {Bn} and {yn} are sequences in (0,1) and
{\}, {nn} are chosen such that {n, }, {A\n} C [0,2min{u, po}]. Assume that
F=n2,F(T)NVI(K,A)NVI(K,B) # 0. If the control sequences {cu},
{Bn}s {n}, {A\n} and {n,} are chosen such that

(a) ap + Bn +vn =1 for alln > 1,

(b) limy, o0 iy, = 0 and D07, oty = 00;

(¢) 0 < liminf, o B, < limsup,,_, Bn < 1;

(d) limy, o0 |77n+1 - "7n| = limy, 00 |/\n+1 - /\n| = 0;

(e) {nn}, {\n} € [u,v] for some u,v with 0 < v < v < 2min{pu, ua},

then {x,} converges strongly to * € F, where v* = Ppf(x*), which solves
the following variation inequality

<f($*)—$*,p—$*>§0, VPEF

Proof. First, we show that I — A\, A and I — 1, B are nonexpansive for all
n > 1. Indeed, we see from condition (e) that

I(Z = AnA)z — (I = X A)yll?
= |l — y — Ao (Az — Ay)||?
= [l =yl = 2A\u(z — y, Az — Ay) + A} || Az — Ay|f?
<l = yl? + X (n = 2m1) | Az — Ay]|?
< flz - ylP?
from which it follows that I — A, A is nonexpansive, so is I — n, B. Letting
p € F, we have
[yn = pll = 1Pk (I = nnB)an — pl| < [lzn —pl.
It follows that
Zn+1 = pll = llanf(zn) + Brtn + WWaPo (I = \nA)yn — pl|
< anl[f(zn) = pll + Bullzn — pll + mlWoPo(I = AnA)yn — pl|
< anl|f(zn) = Pl + Bullzn — pll +Ynllyn — Pl
< anl| f(zn) = FP) + anllf(p) — pll + (1 — an)llzn — p
=1 —an(l—a))llzn —pl + anllf(p) —pl.
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By simple inductions, we have

p—fp
lzn —pll < max{||;1;1 — |, m}’

which yields that the sequence {x,} is bounded, so is {y, }.
Next, we show the sequence lim,,_, o ||Zn4+1 — Zn|| = 0. Note that

1Yn+1 = yull = 1Px (I = Nns1B)Tpi1 — P (I = B)xn||
<N =1 B)Tpg1 — (L = nuB)zn|
=[|(I = mn41B)zpi1 — (I — gny1B)zy, (2.1)
+ U =1 B)zn — (I —nnB)w,||
< zns1 — @l + [ns1 — ma| M,
where M is an appropriate constant such that M; = sup,,~{||Bx,||}. Putting
pn = P (I — M\, A)y,, we have
lpn+1 = poll = 1P (I = A1) Yn+1 — P (I = A A)ynl|
< NI = A1 Ay — (L = A A)ynl|
= (I = Mp1A)Yns1 — (I = A1 A)yn (2.2)
+ (L = A1 A)yn — (I = XAy ||
= lyn+1 — ynll + [Ans1 — Anlll Aynll-

Substituting (2.1) into (2.2), we arrive at

Hpn+1 - pn” S ||$n+1 - xn” + (‘nnJrl - 77n| + ‘)\n+1 - )\n|)M2a (23)

where Mj is an appropriate constant such that My > max{sup,,>1 |[Ayn||, M1}.
Define a sequence {z,} by

o Tn1 — ﬁnmn

= > 1. .
Zn T Vn >1 (2.4)

It follows that

Zn+1 — 2n
_ Tpy2 — Brg1®ng1 Tng1 — Bnn
1- BTL+1 1-—- ﬂn
- an+1f(zn+1) + Y1t Whir1pni1 o O‘nf(xn) + Y Wapn
N 1- ﬁn+1 1-—- 5n
an+1

= m(f(xnﬂ) —Wati1pns1) + %(Wnpn — f(zn))

+ WnJrlanrl - Wnpn
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This implies that

[2n+1 — 2|
Q1 Qn
< ——(1f @t DI+ [Was1pns1ll) + m—2 (IWapnll + (1 f (@n)])
1 ﬂn+1 1 B"
+ lon+1 = ool + [[Was1pn — Wapnl|-
(2.5)
Since T; and U, ; are nonexpansive, we obtain from (1.7) that
||Wn+1pn - WnPnH = H'YlTlUn-ﬁ-LQpn - 'YlTlUn,?pn”
S Y1 ||Un+1,2pn - Un,2pn||
= Y172 T2Uns1,30n — v2T2Up 390 ||
< 7172||Un+1,3pn - n,3pn||
(2.6)

S Y172 'Yn||Un+1,n+1pn - n,n+1an
n

<Mz [
i=1

where M3 > 0 is an appropriate constant such that | Up+1,n+10n—Unnt10n] <
M for all n > 1. Substituting (2.3) and (2.6) into (2.5), we arrive at

2041 = 2nll = [|Tn41 — 2nl
Ap41 Oy
< ——(1f @t DI+ [Was1pns1ll) + ——2 (Wapnll + (1 £ (@n)]])
1 ﬁn—i—l 1 Bn

+ M,y <|77n+1 - 77n| + |)‘n+1 - /\n| + H%)

i=1

where My is an appropriate constant such that My = max{Ms, M3}. From
the conditions (b), (¢) and (d), we obtain that

limsup(||zn+1 — 2ull = [[Znt1 — 2nl) < 0.
n—o0

From the condition (c) and applying Lemma 1.4, we obtain that
nh_}rr;o l|zn, — zn|| = 0. (2.7)
Consequently, we obtain from (2.4) and the condition (c) that

T ([ — 2l = Tl (1= B2 — 2a] = 0. (2.8)



ON THE CONVERGENCE OF ITERATIVE SEQUENCES FOR A FAMILY OF
NONEXPANSIVE MAPPINGS AND INVERSE-STRONGLY MONOTONE
MAPPINGS 57

Next, we show that
nl;rrgo Wz, —x,|| =0. (2.9)
For any p € F', we have

lyn — plI* = | P (I = 9 B)xs — pl|?
< |(zn — p) — nu(Bz, — Bp)|)?
= ||#n — plI* = 2nn(xn — p, Bz, — Bp) + n,|| Bz, — Bp|®  (2.10)
< |lan — plI* = 20pp2|| Bxn — Bpl|* + 03| By — Bpl|®
< l@n — pII*> + 1 (1 — 2u2)|| Bz, — Bp|)*.

On the other hand, we have
lpn = plI* = 1P (I = Xa A)yn — p]?
< (I = XaA)yn —pl?
= ||yn —Dp— An(Ayn - Ap)||2

, , , (211
= |ym — pII* = 220 (yn — P, Ay — Ap) + X, || Ay, — Ap)|
< lyn — pI1? = 221 [| Ay, — Ap||? + N2 || Ay,, — Ap)|?
< @ = plI? 4+ A (A — 201) || Ayn — Apl|.
It follows from Lemma 1.5 that
fonss = I = llan(F(zn) = 2) + Bulitn =) + 0 Wopn =2 )

< anllf(zn) = pI* + Bullzn — plI* + mll o — pl*.
Substituting (2.11) into (2.12), we arrive at
zn1=pl* < anllf(@n) =Pl +llzn =l +70 A0 (An—2p01) | Ayn— Ap]|*. (2.13)
It follows from condition (e) that
Yntt(2p1 = v)|| Ayn — Ap|®

< anllf(zn) = pII* + 20 = plI* = 2041 — p)?
< an|f@n) = plI* + (2w = pll + 201 = pIDln — 20l

From the conditions (b) and (c¢), we obtain from (2.8) that

li_>m Ay, — Ap|| = 0. (2.14)
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Using (2.12) again, we have
lzns1 = 2l < anllf(@n) = pI* + Bullzn = plI* + vully —plI%,  (2.15)
which combines with (2.10) yields that
lzns1 = plI* < anllf(@n) = plI* + |20 = pI* + Yot (0 = 2012) | Ban — Bp|*.
From condition (e), we arrive at
Yntt(2p12 = v)|| Bzy, — Bp|®

< anllf(zn) = pII* + 20 = pII* = 2041 — )2
< anllf(@n) = pI* + (lzn = pll + llznr1 = pIDlzn = 2l

It follows from the condition (b) and (2.8) that
ILm ||Bx,, — Bpl|| = 0. (2.16)
On the other hand, we have

lyn — plI* = | Px (I — 12 B)xn, — Prc(I — 1, B)pl|?
<A =muB)xp — (I = 90 B)p, yn — p)

1
= U = B)an — (I - maB)pll” + llyn — pl?
- ”(I - nnB)l'n - (I - UnB)p - (yn _p)||2}
1
< S{llzn =217+ llyn = I* = (@0 = yn) = na(Ban — Bp)[*}
1
= 5 {llen - P> + llyn — plI*> = |2n — yall* = n3 || B2y, — Bpl|?
+ 277n<$n — Yn, an - Bp>},
which yields that
1y = pII” <llan — plI* = 120 — yall® + 20nllen — yull| Bz, — Bpll.  (2.17)
In a similar way, we can prove that
lon = plI> <l@n — 21> = o0 — Ynll® + 2Anllon — ynllll Ay — Apll.  (2.18)

Substitute (2.18) into (2.12) yields that

201 = plI* < anllf(@n) = I + 20 = DI = mllon — yall®
+ 2’7n)\n||pn - ynHHAyn - Ap”
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It follows that

Yllon = ynll® < anllf(@n) = pI? + |20 = plI* = 201 — plI?
+ 29 A0l on — ynlll| Ayn — Apl|
< anllf(zn) = PI* + (|2 — pll + 201 — Pl |20 — Zsal
+ 29 A0 llpn = ynll | Ay — Ap].

In view of the conditions (b) and (c), we see from (2.8) and (2.14) that

Jim {|pn =yl =0 (2.19)
Similarly, substituting (2.17) into (2.15), we can prove that

Jim [z, — ya| = 0. (2.20)
On the other hand, we have

Tppr — o = an(f(2n) = n) + M (Wnpn — 2n).
It follows that
VllWapn — ol < lznt1 — 2ol + anllf(zn) — 2all.
In view of conditions (b) and (c), we see from (2.8) that
Timn [Wpo — 20 = 0. (2.21)

Observe that

Whzn — 2|l < [Wazn — Wapnll + [[Wapn — 24|
< Nlzn = pull + [[Wipn — x|
S ||xn - yn” + Hyn - pn” + HWnpn - xn”

Tt follows from (2.19)-(2.21) that

le Wy — 2, = 0. (2.22)

From Remark 3.3 of [29], see also [7], we have ||Wz, — W,x,|| — 0 as n — oc.
It follows that (2.9) holds. Observe that Pgrf is a contraction. Indeed, for all
z,y € C, we have

1Ppf(x) = Pef)ll < [1f(z) = f@)] < alle -yl
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Banach’s contraction mapping principle guarantees that Pgrf has a unique
fixed point, say «* € C. That is, 2* = Prf(z*).
Next, we show that

limsup(f(z*) — 2, 2, — 2*) < 0. (2.23)

n—o0

To show it, we choose a subsequence {z,,} of {z,} such that

lim sup(f(z*) — 2*,n — &%) = lim (f(&") = &, 2, — 2°).
n—»00 100

As {zn,} is bounded, we have that there is a subsequence {xn, } of {zn,}

converges weakly to . Without loss of generality, we may assume that z,, —

Z. From (2.19) and (2.20), we also have y,,, — Z and p,, — T, respectively.
Next, we have T € F. Indeed, let us first show that z € VI(K, A). Put

Av+ Ngv, veEK,
Tv =
0, vé¢ K.

Then T is maximal monotone. Let (v, w) € G(T). Since w — Av € Ngv and
pn € K, we have
(v — pp,w— Av) > 0.

On the other hand, we see from p,, = Px (I — A\, A)y, that
(V= pn,pn — (I = AnA)yn) >0

and hence

<U—Pn’ pn/\_ on +Ayn> > 0.

It follows that

(v = pn;yw) = (v = pn;, Av)

= <U - pnmAv - Apni> + <U - pnmApm - Aym>

(e t)
nq

Prn; — Yn;
Z <U 7pn7‘,7Ap77«7‘, - Ayn7> - <U — Pnys )\>7
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which implies that (v—2,w) > 0. We have z € T~'0 and hence 7 € VI(K, A).
In a similar way, we can show z € VI(K, B).

Next, let us show Z € N2, F(T;). Since Hilbert spaces are Opial’s spaces,
we obtain from (2.9) that

liminf ||2,, — Z|| <liminf ||z,, — WZ||
1— 00 1—00
—liminf |z, — Wan, + Wan, — Wi
1— 00
<liminf |Wa,, — WZ||
1—> 00

<liminf ||2,, — Z|,
11— 00

which derives a contradiction. Thus, we have Z € F(W) = N2, F(T;). On the
other hand, we have

limsup(f(z*) — 2", x, —2") = lim (f(z") — 2", 2, — ™)
n—00 n—o0

(f(x*)—a", 7 —2") <0.

That is, (2.23) holds. It follows that
limsup(f(z*) — 2", zp41 — z*) <O0. (2.24)
n— oo

Finally, we show that x,, — z* as n — co. Note that
1 — "2
= (an(f(zn) = 2") + Bul(zn — %) + Y (Wapn — %), Tns1 — 27)
= an(f(zn) — 2%, Tpy1 — &) + Bp(Tn — 2%, Tpi1 — 27)
F Y (Wapn — 2™, pp1 — a¥)
= an(f(zn) = f(2"), Tn1 — 27) + an(f(2") — 27, 2np1 — 27)
+ ﬁn<xn — 2", Tygy — x*> + '7n<Wnpn — 2", Tyg1 — $*>
< anllf(zn) = f@)[lenir — 27 + an(f(2") — 2% 2ppr — 27)
+ Bullen — 2 lzntr — 2|+ [Wapn — 2% |[lzna — 27|
< anallzy = |lzn — 2" + an(f(z7) = 2%, 2 y1 —27)
+ Bullzn — 2" (llznts — 2™ + Wllzn — 2% |20 — 27|

= —an(l = a)llzn = 2" |lznir — 27| + an(f(2") — 27, 2np1 — 27)

1—a,(l-a) . .
s llzn—2 1>+ |#nsa — 2*||%)

T an(f(@") = 2, B — 27)

1—ap(l—a) N 1 .
<1l L — o)
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It follows that
[2nt1 — 2P <1 = an(l = a)lllzn — 2*]* + 200 (f(2*) — 2%, g1 — 2¥).

From (2.24) and applying Lemma 1.3, we can obtain the desired conclusion
immediately. This completes the proof.

Let A = B and f(z) = x; for all # € K in Theorem 2.1. We can obtain
the following result easily.

Corollary 2.2. Let K be a nonempty closed convex subset of a real Hilbert
space H and A : K — H be p-inverse-strongly monotone mappings. Let {x,}
be a sequence generated by the following iterative process

T € K,
Yn = PK(I - nnA)xvu
Tn4+1 = Qp1 + ann + 'VanPK(I - )\nA)yna n > ]-7

where W, is defined by (1.8), {an}, {Bn} and {yn} are sequences in (0,1) and
{\n}, {nn} are chosen such that {n,}, {\} C [0,2min{puy, p2}]. Assume that
F=nX,F(T;)NVI(K,A) # 0. If the control sequences {an}, {Bn}, {1},
{A\n} and {n,} are chosen such that

(a) ap + Bn +vn =1 for alln > 1;

(b) limy, o0, =0 and Y07 | oy = 00;
(¢) 0 < liminf, o B, < limsup,, . Bn < 1;

(e) {nn}, {Mn} € [u,v] for some u,v with 0 < u < v < 2min{us, o},
then {x,} converges strongly to x* € F, where x* = Ppxy, which solves the
following variation inequality

(x1 —a",p—2") <0, VpeF.

Remark 2.3. Corollary 2.2 mainly improves the corresponding result of Yao
and Yao [30] from a single nonexpansive mapping to an infinite family nonex-
pansive mappings.

As some applications of our main results, we next consider another class
of important nonlinear operator: strict pseudo-contractions.

Recall that a mapping S : K — K is said to be a k-strict pseudo-
contraction if there exists a constant k € [0,1) such that

1Sz = SylI* < o —yll* + k(I = S)z — (I = S)yl*, Va,y € K.
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Note that the class of k-strict pseudo-contractions strictly includes the class
of nonexpansive mappings.
Put A=1- S, where S : K — K is a k-strict pseudo-contraction. Then

A is L5k inverse-strongly monotone; see [1].

Theorem 2.4. Let K be a nonempty closed convex subset of a real Hilbert
space H, S1 : K — K be a ky-strict pseudo-contraction and So : K — K
be a ky-strict pseudo-contraction. Let f : K — K be a contraction with the
coefficient o (0 < a < 1). Let {x,,} be a sequence generated by the following
iterative process

T € K,
Tn+1 = anf(xn) + 571(571 + ’Yan((]- - )\n)yn + Anslyn)a n> ]-7

where W, is defined by (1.8), {an}, {Bn} and {y»} are sequences in (0,1) and
{\n}, {nn} are chosen such that {n,}, { .} C [0,2min{(1 — k1), (1 — k2)}].
Assume that F = N, F(T;) N F(S1) N F(S2) # 0. If the control sequences
{an}t, {Bn}, {m}, {Mn} and {n,} are chosen such that

(a) ap + Bn +vn =1 for alln > 1;

(b) limy, o0, =0 and Y07 | vy = 00;

(¢) 0 < liminf, o B, < limsup,, . Bn < 1;

(d) limy, o0 [Mnt1 = Ml = limy 00 [Ang1 — An| = 05

(e) {nn}, { M} € [u,v] for some u,v with 0 < v < v < 2min{puy, us},
then {x,} converges strongly to ©* € F, where * = Ppf(x*), which solves
the following variation inequality

(f(«") —a*,p—2") <0, VpeF

Proof. Put A=1—-S5; and B =1 — 55. Then A is %—inverse—strongly
monotone and B is 1=*2-inverse-strongly monotone, respectively. We have
F(S1) =VI(K,A), F(So) = VI(K,B), Px(I-=\A)yn = (1=X0)Yn+ A S19n
and Pr (I—n,B)x, = (1—n,)Tn+0n522,. It is easy to conclude from Theorem
2.1 the desired conclusion.
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