
An. Şt. Univ. Ovidius Constanţa Vol. 19(1), 2011, 373–381

Independence Number and Minimum Degree
for the Existence of (g, f, n)-Critical Graphs

Sizhong Zhou, Quanru Pan, Yang Xu

Abstract

Let G be a graph, and let g, f be two integer-valued functions defined
on V (G) with 0 ≤ g(x) ≤ f(x) for each x ∈ V (G). Then a spanning
subgraph F of G is called a (g, f)-factor if g(x) ≤ dF (x) ≤ f(x) holds
for each x ∈ V (G). A graph G is said to be (g, f, n)-critical if G − N
has a (g, f)-factor for each N ⊆ V (G) with |N | = n. In this paper, we
obtain an independence number and minimum degree condition for a
graph G to be a (g, f, n)-critical graph. Moreover, it is showed that the
result in this paper is best possible in some sense.

1 Introduction

Many physical structures can conveniently be modelled by networks. Exam-
ples include a communication network with the nodes and links modelling
cities and communication channels, respectively, or a railroad network with
nodes and links representing railroad stations and railways between two sta-
tions, respectively. Factors and factorizations in networks are very useful in
combinatorial design, network design, circuit layout, and so on. It is well
known that a network can be represented by a graph. Vertices and edges
of the graph correspond to nodes and links between the nodes, respectively.
Henceforth we use the term graph instead of network.
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All graphs considered in this paper will be finite and undirected graphs
without loops or multiple edges. Let G be a graph. We denote by V (G)
and E(G) the set of vertices and the set of edges, respectively. For x ∈
V (G), the degree of x and the set of vertices adjacent to x in G are denoted
by dG(x) and NG(x), respectively. We write NG[x] for NG(x) ∪ {x}. The
independence number and the minimum degree of G are denoted by α(G) and
δ(G), respectively. For any subset S ⊆ V (G), we denote by G[S] the subgraph
of G induced by S, and G− S = G[V (G) \ S]. If S and T are disjoint subsets
of V (G), then eG(S, T ) denotes the number of edges that join a vertex in S
and a vertex in T .

Let g, f be two integer-valued functions defined on V (G) with 0 ≤ g(x) ≤
f(x) for each x ∈ V (G). Then a spanning subgraph F of G is called a (g, f)-
factor if g(x) ≤ dF (x) ≤ f(x) holds for each x ∈ V (G). Let a and b be two
integers with 0 ≤ a ≤ b. If g(x) = a and f(x) = b for each x ∈ V (G), then a
(g, f)-factor is called an [a, b]-factor. A graph G is said to be (g, f, n)-critical
if G − N has a (g, f)-factor for each N ⊆ V (G) with |N | = n. If g(x) = a
and f(x) = b for each x ∈ V (G), then a (g, f, n)-critical graph is called an
(a, b, n)-critical graph. If a = b = k, then an (a, b, n)-critical graph is simply
called a (k, n)-critical graph. If k = 1, then a (k, n)-critical graph is simply
called an n-critical graph.

Many authors have investigated (g, f)-factors [1,2,8] and [a, b]-factors [4,12].
O. Favaron [3] studied the properties of n-critical graphs. G. Liu and Q.
Yu [10] studied the characterization of (k, n)-critical graphs. G. Liu and J.
Wang [9] gave the characterization of (a, b, n)-critical graph with a < b. S.
Zhou [15,16,17,19,20] gave some sufficient conditions for graphs to be (a, b, n)-
critical graphs. J. Li [5,6] gave three sufficient conditions for graphs to be
(a, b, n)-critical graphs. A necessary and sufficient condition for a graph to be
(g, f, n)-critical was given by Li and Matsuda [7]. Zhou [13,14,18] obtained
some sufficient conditions for graphs to be (g, f, n)-critical graphs. Liu [11]
showed a binding number and minimum degree condition for a graph to be
(g, f, n)-critical.

The following results on (a, b, n)-critical graphs and (g, f, n)-critical graphs
are known.

Zhou [20] obtained the following result on neighborhoods of independent
sets for graphs to be (a, b, n)-critical graphs.

Theorem 1. [20] Let a, b and n be nonnegative integers with 1 ≤ a < b, and
let G be a graph of order p with p ≥ (a+b)(a+b−2)

b + n. Suppose that

|NG(X)| > (a− 1)p + |X|+ bn− 1
a + b− 1
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for every non-empty independent subset X of V (G), and

δ(G) >
(a− 1)p + a + b + bn− 2

a + b− 1
.

Then G is an (a, b, n)-critical graph.

Li [6] obtained the following results for the existence of (a, b, n)-critical
graphs.

Theorem 2. [6] Let a, b, m and n be integers such that 1 ≤ a < b, and let G

be a graph of order m with m ≥ (a+b)(k(a+b)−2)
b + n. If δ(G) ≥ (k − 1)a + n,

and
|NG(x1) ∪NG(x2) ∪ · · · ∪NG(xk)| ≥ am + bn

a + b

for any independent subset {x1, x2, · · · , xk} of V (G), where k ≥ 2, then G is
an (a, b, n)-critical graph.

Theorem 3. [6] Let a, b,m and n be integers such that 1 ≤ a < b, and
let G be a graph of order m with m ≥ (a+b)(a+b+k−3+(a−2)(k−2))+1

b + n. If
δ(G) ≥ (k − 1)a + n, and

max{dG(x1), dG(x2), · · · , dG(xk)} ≥ am + bn

a + b

for any independent subset {x1, x2, · · · , xk} of V (G), where k ≥ 2, then G is
an (a, b, n)-critical graph.

Zhou [13] gave a binding number condition for a graph to be a (g, f, n)-
critical graph.

Theorem 4. [13] Let G be a graph of order p, and let a, b and n be nonnegative
integers such that 1 ≤ a < b, and let g and f be two integer-valued functions
defined on V (G) such that a ≤ g(x) < f(x) ≤ b for each x ∈ V (G). If the
binding number bind(G) > (a+b−1)(p−1)

(a+1)p−(a+b)−bn+2 and p ≥ (a+b−1)(a+b−2)
a+1 + bn

a ,
then G is a (g, f, n)-critical graph.

In this paper, we discuss an independence number and minimum degree
condition for graphs to be (g, f, n)-critical graphs. The main result will be
given in the following section.

2 The Main Result and Its Proof

In this section, we firstly give our main result on (g, f, n)-critical graphs.
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Theorem 5. Let G be a graph, and let a, b, n be nonnegative integers with
0 ≤ a < b. Let g, f be two integer-valued functions defined on V (G) such that
a ≤ g(x) < f(x) ≤ b for each x ∈ V (G). If G satisfies

α(G) ≤ 4(a + 1)(δ(G)− b + 2)− 4bn

b2
,

then G is a (g, f, n)-critical graph.

In Theorem 5, if n = 0, then we get the following corollary.

Corollary 1. Let G be a graph, and let a and b be nonnegative integers with
a < b. Let g, f be two integer-valued functions defined on V (G) such that
a ≤ g(x) < f(x) ≤ b for each x ∈ V (G). If G satisfies

α(G) ≤ 4(a + 1)(δ(G)− b + 2)
b2

,

then G has a (g, f)-factor.

In Theorem 5, if g(x) ≡ a and f(x) ≡ b, then we obtain the following
corollary.

Corollary 2. Let G be a graph, and let a, b, n be nonnegative integers with
0 ≤ a < b. If G satisfies

α(G) ≤ 4(a + 1)(δ(G)− b + 2)− 4bn

b2
,

then G is an (a, b, n)-critical graph.

Let g, f be two nonnegative integer-valued functions defined on V (G) with
g(x) < f(x) for each x ∈ V (G). If S, T ⊆ V (G), then we define f(S) =∑

x∈S f(x), g(T ) =
∑

x∈T g(x) and dG−S(T ) =
∑

x∈T dG−S(x). If S and T
are disjoint subsets of V (G) define

δG(S, T ) = f(S) + dG−S(T )− g(T ),

and if |S| ≥ n define

fn(S) = max{f(U) : U ⊆ S and |U | = n}. (1)

Li and Matsuda [7] obtained a necessary and sufficient condition for a graph
to be a (g, f, n)-critical graph, which is very useful in the proof of Theorem 5.
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Theorem 6. [7] Let G be a graph, n ≥ 0 an integer, and let g and f be
two integer-valued functions defined on V (G) such that g(x) < f(x) for each
x ∈ V (G). Then G is a (g, f, n)-critical graph if and only if for any S ⊆ V (G)
with |S| ≥ n

δG(S, T ) ≥ fn(S),

where T = {x : x ∈ V (G) \ S, dG−S(x) ≤ g(x)− 1}.
Proof of Theorem 5. We prove the theorem by contradiction. Suppose

that a graph G satisfies the assumption of Theorem 5, but is not a (g, f, n)-
critical graph. Then by Theorem 6, there exists a subset S of V (G) with
|S| ≥ n such that

δG(S, T ) ≤ fn(S)− 1, (2)

where T = {x : x ∈ V (G) \ S, dG−S(x) ≤ g(x) − 1}. We firstly prove the
following claim.

Claim 1. dG−S(x) ≤ g(x)− 1 ≤ b− 2 for each x ∈ T .
Proof. According to the definition of T and the condition of the theorem,

Claim 1 clearly holds. This completes the proof of Claim 1.
If T = ∅, then by (1) and (2), f(S) − 1 ≥ fn(S) − 1 ≥ δG(S, T ) = f(S),

which is a contradiction. Hence, T 6= ∅. Define

h = min{dG−S(x)|x ∈ T}.

In view of Claim 1, we obtain

0 ≤ h ≤ b− 2. (3)

Let x1 be a vertex in T such that dG−S(x1) = h. Then we obtain δ(G) ≤
dG(x1) ≤ dG−S(x1) + |S| = h + |S|. Thus

|S| ≥ δ(G)− h. (4)

Since a ≤ g(x) < f(x) ≤ b for each x ∈ V (G), it follows from (1) and (2)
that

δG(S, T ) ≤ fn(S)− 1 ≤ bn− 1 (5)

and

δG(S, T ) = f(S) + dG−S(T )− g(T ) ≥ (a + 1)|S|+ dG−S(T )− (b− 1)|T |,

so that
bn− 1 ≥ (a + 1)|S|+ dG−S(T )− (b− 1)|T |. (6)

We now consider the subgraph G[T ] of G induced by T . Set T1 = G[T ].
Let x1 be a vertex with minimum degree in T1 and M1 = NT1 [x1]. Moreover,
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for i ≥ 2, let xi be a vertex with minimum degree in Ti = G[T ]−⋃
1≤j<i Mj

and Mi = NTi
[xi]. We denote by mi the cardinality of Mi. We continue these

procedures until we reach the situation in which Ti = ∅ for some i, say for
i = r + 1. Then from the above definition we know that {x1, x2, · · · , xr} is an
independent set of G. Since T 6= ∅, we have r ≥ 1.

The following properties are easily verified ((7) and (8) are trivial; (9)
follows because our choice of xi implies that all vertices in Mi have degree at
least mi − 1 in Ti).

α(G[T ]) ≥ r, (7)

|T | =
∑

1≤i≤r

mi, (8)

∑

1≤i≤r

(
∑

x∈Mi

dTi(x)) ≥
∑

1≤i≤r

(m2
i −mi). (9)

According to (9), we have

dG−S(T ) ≥
∑

1≤i≤r

(m2
i −mi) +

∑

1≤i<j≤r

eG(Mi,Mj) ≥
∑

1≤i≤r

(m2
i −mi). (10)

By (7), the obvious inequality α(G) ≥ α(G[T ]) and the assumption α(G) ≤
4(a+1)(δ(G)−b+2)−4bn

b2 , we obtain

r ≤ 4(a + 1)(δ(G)− b + 2)− 4bn

b2
. (11)

In view of (6), (8), (10), (11) and the obvious inequality m2
i − bmi ≥ − b2

4 ,
we have

bn− 1 ≥ (a + 1)|S|+ dG−S(T )− (b− 1)|T |
≥ (a + 1)|S|+

∑

1≤i≤r

(m2
i −mi)− (b− 1)

∑

1≤i≤r

mi

= (a + 1)|S|+
∑

1≤i≤r

(m2
i − bmi)

≥ (a + 1)|S| − b2r

4

≥ (a + 1)|S| − b2

4
· 4(a + 1)(δ(G)− b + 2)− 4bn

b2

= (a + 1)|S| − (a + 1)(δ(G)− b + 2) + bn,

that is,
bn− 1 ≥ (a + 1)|S| − (a + 1)(δ(G)− b + 2) + bn. (12)
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From (3), (4) and (12), we have

bn− 1 ≥ (a + 1)|S| − (a + 1)(δ(G)− b + 2) + bn

≥ (a + 1)(δ(G)− h)− (a + 1)(δ(G)− b + 2) + bn

= (a + 1)(b− 2− h) + bn

≥ bn.

This is a contradiction.
From the argument above, we deduce the contradictions. Hence, G is a

(g, f, n)-critical graph.
Completing the proof of Theorem 5.

3 Remark

Let us show that the condition in Theorem 5 cannot be replaced by the con-
dition that α(G) ≤ 4(a+1)(δ(G)−b+2)−4bn

b2 + 1. Let a = 1, b = 2 and n ≥ 0
be integers and G = Ka+n

∨
(b + 1)K1. Obviously, we have α(G) = b + 1 =

4(a+1)(δ(G)−b+2)−4bn
b2 + 1. Let S = V (Ka+n) ⊆ V (G) and T = V ((b + 1)K1) ⊆

V (G), then |S| = a + n > n and |T | = b + 1. Since a = 1, b = 2 and
a ≤ g(x) < f(x) ≤ b, then we have g(x) = a and f(x) = b for each x ∈ V (G).
Thus, we obtain

δG(S, T ) = f(S) + dG−S(T )− g(T )
= b|S|+ dG−S(T )− a|T |
= b(a + n)− a(b + 1)
= bn− a < bn = fn(S).

According to Theorem 6, G is not a (g, f, n)-critical graph. In the above sense,
the condition in Theorem 5 is best possible.
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