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Strong convergence theorems for equilibrium
problems and quasi-φ-asymptotically

nonexpansive mappings in Banach spaces

Jing Zhao, Songnian He

Abstract

In this paper, we introduce two modified Mann-type iterative algo-
rithms for finding a common element of the set of common fixed points
of a family of quasi-φ-asymptotically nonexpansive mappings and the
set of solutions of an equilibrium problem in Banach spaces. Then we
study the strong convergence of the algorithms. Our results improve
and extend the corresponding results announced by many others.

1. Introduction

Let E be a Banach space and let E∗ be the dual space of E. Let C be a
nonempty closed convex subset of E and f : C × C → R a bifunction, where
R is the set of real numbers. The equilibrium problem is to find x̂ ∈ C such
that

f(x̂, y) ≥ 0 (1.1)

for all y ∈ C. The set of solutions of (1.1) is denoted by EP (f). Given
a mapping T : C → E∗, let f(x, y) = 〈Tx, y − x〉 for all x, y ∈ C. Then
x̂ ∈ EP (f) if and only if 〈T x̂, y − x̂〉 ≥ 0 for all y ∈ C, i.e., x̂ is a solution
of the variational inequality. Numerous problems in physics, optimization,
engineering and economics reduce to find a solution of (1.1). Some methods
have been proposed to solve the equilibrium problem; see, for example, Blum-
Oettli [2] and Moudafi [7].

Key Words: Equilibrium problem, Quasi-φ-asymptotically nonexpansive mapping, Fixed
point, Strong convergence, Banach space.

Mathematics Subject Classification: 47H09, 47H10, 47J05, 54H25.
Received: January, 2010
Accepted: December, 2010

347



348 Jing Zhao, Songnian He

For solving the equilibrium problem, let us assume that a bifunction f :
C × C → R satisfies the following conditions:
(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y, z ∈ C,

lim
t↓0

f(tz + (1− t)x, y) ≤ f(x, y);

(A4) for each x ∈ C, the function y 7→ f(x, y) is convex and lower semicontin-
uous.

Let T : C → C be a nonlinear mapping. A point x ∈ C is said to be a
fixed point of T provided Tx = x. A point x ∈ C is said to be an asymptotic
fixed point of T provided C contains a sequence {xn} which converges weakly
to x such that limn→∞ ‖xn−Txn‖ = 0. We denote the set of fixed points of T
and the set of asymptotic fixed points of T by F (T ) and F a(T ), respectively.
Recall that a mapping T : C → C is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

A mapping T : C → C is called asymptotically nonexpansive if there exists a
sequence {kn} of real numbers with kn → 1 as n →∞ such that

‖Tnx− Tny‖ ≤ kn‖x− y‖, ∀x, y ∈ C.

Recently, many authors studied the problem of finding a common element
of the set of fixed points of nonexpansive mappings and the set of solutions of
an equilibrium problem in the framework of Hilbert spaces and Banach spaces,
respectively; see, for instance, [4, 5, 9, 11] and the references therein.

Very recently, Takahashi and Zembayashi [10] introduced the following
iterative process:




x0 = x ∈ C,

yn = J−1(αnJxn + (1− αn)JSxn),
un ∈ C such that f(un, y) + 1

rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Hn = {z ∈ C : φ(z, un) ≤ φ(z, xn)},
Wn = {z ∈ C : 〈xn − z, Jx− Jxn〉 ≥ 0},
xn+1 = ΠHn∩Wnx, ∀n ≥ 1,

(1.2)

where f : C×C → R is a bifunction satisfying (A1)-(A4), J is the normalized
duality mapping on E and S : C → C is a relatively nonexpansive mapping.
They proved the sequences {xn} defined by (1.2) converge strongly to a com-
mon point of the set of solutions of the equilibrium problem (1.1) and the
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set of fixed points of S provided the control sequences {αn} and {rn} satisfy
appropriate conditions in Banach spaces.

Qin et al. [8] proved strong convergence theorem for finding a common
point of the set of solutions of the equilibrium problem (1.1) and the set of
fixed points of two quasi-φ-nonexpansive mappings.

In 2009, Cho et al. [3] introduced a modified Halpern-type iteration algo-
rithm and proved strong convergence for quasi-φ-asymptotically nonexpansive
mappings.

Motivated and inspired by the research going on in this direction, we prove
strong convergence theorems for finding a common element of the set of solu-
tions of an equilibrium problem and the set of common fixed points of a family
of quasi-φ-asymptotically nonexpansive mappings in Banach spaces.

2. Preliminaries

Throughout this paper, we denote by N and R the sets of positive integers
and real numbers, respectively. Let E be a Banach space with the dual space
E∗. We will use the following notations:
(i) ⇀ for weak convergence and → for strong convergence;
(ii) 〈x, x∗〉 denotes the value of x∗ at x for all x ∈ E and x∗ ∈ E∗.
(iii) S(E) denotes the unit sphere of E, that is, S(E) = {z ∈ E : ‖z‖ = 1}.

The normalized duality mapping J on E is defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}

for every x ∈ E. A Banach space E is said to be strictly convex if ‖x+y‖
2 < 1

for x, y ∈ S(E) with x 6= y. It is also said to be uniformly convex if for each
ε ∈ (0, 2], there exists δ > 0 such that ‖x+y‖

2 ≤ 1−δ for x, y ∈ S(E) with ‖x−
y‖ ≥ ε. The space E is said to be smooth if the limit limt→0

‖x+ty‖−‖x‖
t exists

for all x, y ∈ S(E). It is also said to be uniformly smooth if the limit exists
uniformly for x, y ∈ S(E). We know that if E is uniformly smooth, strictly
convex and reflexive, then the normalized duality mapping J is single-valued,
one-to-one, onto and uniformly norm-to-norm continuous on each bounded
subset of E.

Let E be a smooth, strictly convex and reflexive Banach space and C a
nonempty closed convex subset of E. Throughout this paper, we denote by φ
the function defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, ∀x, y ∈ E.

Following Alber [1], the generalized projection ΠC : E → C is a mapping
that assigns to an arbitrary point x ∈ E the minimum point of the functional
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φ(y, x), that is, ΠCx = x̄, where x̄ is the solution to the following minimization
problem:

φ(x̄, x) = inf
y∈C

φ(y, x).

It follows from the definition of the function φ that

(‖y‖ − ‖x‖)2 ≤ φ(y, x) ≤ (‖y‖+ ‖x‖)2, ∀x, y ∈ E,

see [3] for more details. If E is a Hilbert space, then φ(y, x) = ‖y − x‖2 and
ΠC = PC is the metric projection of H onto C.

Now, we give some definitions for our main results in this paper.
Let C be a nonempty, closed and convex subset of a smooth Banach E and

T a mapping from C into itself.
(1) The mapping T is said to be relatively nonexpansive if

F a(T ) = F (T ) 6= ∅, φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ F (T ).

(2) The mapping T is said to be relatively asymptotically nonexpansive if

F a(T ) = F (T ) 6= ∅, φ(p, Tnx) ≤ knφ(p, x), ∀x ∈ C, p ∈ F (T ),

where kn ≥ 1 is a sequence such that kn → 1 as n →∞.
(3) The mapping T is said to be φ-nonexpansive if

φ(Tx, Ty) ≤ φ(x, y), ∀x, y ∈ C.

(4) The mapping T is said to be quasi-φ-nonexpansive if

F (T ) 6= ∅, φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ F (T ).

(5) The mapping T is said to be φ-asymptotically nonexpansive if there
exists some real sequence {kn} with kn ≥ 1 and kn → 1 as n →∞ such that

φ(Tnx, Tny) ≤ knφ(x, y), ∀x, y ∈ C.

(6) The mapping T is said to be quasi-φ-asymptotically nonexpansive if
there exists some real sequence {kn} with kn ≥ 1 and kn → 1 as n →∞ such
that

F (T ) 6= ∅, φ(p, Tnx) ≤ knφ(p, x), ∀x ∈ C, p ∈ F (T ).

(7) The mapping T is said to be asymptotically regular on C if, for any
bounded subset K of C,

lim sup
n→∞

{‖Tn+1x− Tnx‖ : x ∈ K} = 0.
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(8) The mapping T is said to be closed on C if, for any sequence {xn} such
that limn→∞ xn = x0 and limn→∞ Txn = y0, then Tx0 = y0.

Remark 2.1 The class of quasi-φ-nonexpansive mappings and quasi-φ- asymp-
totically nonexpansive mappings are more general than the class of relatively
nonexpansive mappings and relatively asymptotically nonexpansive mappings,
respectively. The quasi-φ-nonexpansive mappings and quasi-φ-asymptotically
nonexpansive mappings do not require F (T ) = F a(T ).

Remark 2.2 A φ-asymptotically nonexpansive mapping with F (T ) 6= ∅ is a
quasi-φ-asymptotically nonexpansive mapping, but the converse may be not
true.

In order to the main results of this paper, we need the following lemmas.

Lemma 2.3([1, 6]) Let C be a nonempty closed convex subset of a smooth,
strictly convex and reflexive Banach space E. Then

φ(x, ΠCy) + φ(ΠCy, y) ≤ φ(x, y), ∀x ∈ C, y ∈ E.

Lemma 2.4([1, 6]) Let C be a nonempty closed convex subset of a smooth,
strictly convex, and reflexive Banach space E, let x ∈ E and let z ∈ C. Then

z = ΠCx ⇐⇒ 〈y − z, Jx− Jz〉 ≤ 0, ∀y ∈ C.

Lemma 2.5([6]) Let E be a smooth and uniformly convex Banach space and
let {xn} and {yn} be sequences in E such that either {xn} or {yn} is bounded.
If limn→∞ φ(xn, yn) = 0, then limn→∞ ‖xn − yn‖ = 0.

Lemma 2.6([12, 13]) Let E be a uniformly convex Banach space and let r >
0. Then there exists a strictly increasing, continuous, and convex function
g : [0, 2r] → R such that g(0) = 0 and

‖tx + (1− t)y‖2 ≤ t‖x‖2 + (1− t)‖y‖2 − t(1− t)g(‖x− y‖)

for all x, y ∈ Br and t ∈ [0, 1], where Br = {z ∈ E : ‖z‖ ≤ r}.

Lemma 2.7([2]) Let C be a closed convex subset of a smooth, strictly convex,
and reflexive Banach space E, let f be a bifunction from C×C to R satisfying
(A1)− (A4), and let r > 0 and x ∈ E. Then, there exists z ∈ C such that
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f(z, y) + 1
r 〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C.

Lemma 2.8([10]) Let C be a closed convex subset of a uniformly smooth,
strictly convex, and reflexive Banach space E, and let f be a bifunction from
C × C to R satisfying (A1) − (A4). For r > 0 and x ∈ E, define a mapping
Tr : E → C as follows:

Tr(x) = {z ∈ C : f(z, y) + 1
r 〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C}

for all x ∈ E. Then, the following hold:
(1) Tr is single-valued;
(2) Tr is firmly nonexpansive, i.e., for any x, y ∈ E, 〈Trx − Try, JTrx −
JTry〉 ≤ 〈Trx− Try, Jx− Jy〉;
(3) F (Tr) = EP (f);
(4) EP (f) is closed and convex.

Lemma 2.9([10]) Let C be a closed convex subset of a smooth, strictly convex,
and reflexive Banach space E, let f be a bifunction from C×C to R satisfying
(A1)− (A4), and let r > 0. Then, for x ∈ E and q ∈ F (Tr)

φ(q, Trx) + φ(Trx, x) ≤ φ(q, x).

Lemma 2.10([3]) Let E be a uniformly convex and uniformly smooth Banach
space, C a nonempty, closed and convex subset of E and T a closed quasi-
φ-asymptotically nonexpansive mapping from C into itself. Then F (T ) is a
closed convex subset of C.

3. Strong convergence theorems

First, we propose a modified Mann-type iterative algorithm for finding a
common element of the set of common fixed points of a countable infinite fam-
ily of quasi-φ-asymptotically nonexpansive mappings and the set of solutions
of an equilibrium problem in Banach spaces.

Theorem 3.1 Let C be a nonempty, closed and convex subset of a uni-
formly convex and uniformly smooth Banach space E and {Ti}i∈I : C → C a
family of closed quasi-φ-asymptotically nonexpansive mappings with sequences
{kn,i} ⊂ [1,∞) such that limn→∞ kn,i = 1. Let f be a bifunction from C × C
to R satisfying (A1)-(A4) such that F = (

⋂
i∈I F (Ti))

⋂
EP (f) 6= ∅. Assume

that Ti is asymptotically regular on C for each i ∈ I and F is bounded. For each
i ∈ I, let {αn,i} be a sequence in (0, 1) such that lim infn→∞ αn,i(1−αn,i) > 0
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and {rn,i} a sequence in [a,∞) for some a > 0. Define a sequence {xn} in C
in the following manner:





x0 ∈ C chosen arbitrarily,
C1,i = C, C1 =

⋂
i∈I C1,i, x1 = ΠC1x0,

yn,i = J−1(αn,iJxn + (1− αn,i)JTn
i xn),

un,i ∈ C such that f(un,i, y) + 1
rn,i

〈y − un,i, Jun,i − Jyn,i〉 ≥ 0, ∀y ∈ C,

Cn+1,i = {z ∈ C : φ(z, un,i) ≤ φ(z, xn) + (1− αn,i)(kn,i − 1)Ln},
Cn+1 =

⋂
i∈I Cn+1,i,

Q1 = C,

Qn+1 = {z ∈ Qn : 〈xn − z, Jx1 − Jxn〉 ≥ 0},
xn+1 = ΠCn+1∩Qn+1x1

(3.1)
for every n ≥ 0, where J is the normalized duality mapping on E and Ln =
sup{φ(p, xn) : p ∈ F} < ∞. Then {xn} converges strongly to ΠF x1.

Proof. We break the proof into eight steps.

Step 1. ΠF x1 is well defined for x1 ∈ C.

By lemma 2.10 we know that F (Ti) is a closed convex subset of C for every
i ∈ I. Hence F = (

⋂
i∈I F (Ti))

⋂
EP (f) is a nonempty closed convex subset

of C. Consequently, ΠF x1 is well defined for x1 ∈ C.

Step 2. Cn and Qn are closed and convex for all n ∈ N .

It is obvious that C1 = C1,i = C is closed and convex for every i ∈ I. Since
the defining inequality in Cn+1,i is equivalent to the inequality:

2〈z, Jxn − Jun,i〉 ≤ ‖xn‖2 − ‖un,i‖2 + (1− αn,i)(kn,i − 1)Qn

for every i ∈ I. This shows that Cn+1,i is closed and convex for every i ∈ I.
So, we have Cn+1 =

⋂
i∈I Cn+1,i is a closed and convex subset of C for all

n ≥ 1. From the definition of Qn, it is obvious that Qn is closed and convex
for each n ≥ 1. Consequently, ΠCn+1∩Qn+1x1 is well defined.

Step 3. F ⊂ Cn

⋂
Qn for all n ≥ 1.

For n = 1, we have F ⊂ C = C1. Let p ∈ F ⊂ C and i ∈ I. Putting
un,i = Trn,iyn,i for all n ∈ N, we have that Trn,i is relatively nonexpansive



354 Jing Zhao, Songnian He

from Lemma 2.9. Since Ti is quasi-φ–asymptotically nonexpansive, we have

φ(p, un,i) = φ(p, Trn,iyn,i) ≤ φ(p, yn,i)

=φ(p, J−1(αn,iJxn + (1− αn,i)JTn
i xn))

=‖p‖2 − 2〈p, αn,iJxn + (1− αn,i)JTn
i xn〉+ ‖αn,iJxn + (1− αn,i)JTn

i xn‖2
≤‖p‖2 − 2αn,i〈p, Jxn〉 − 2(1− αn,i)〈p, JTn

i xn〉+ αn,i‖xn‖2 + (1− αn,i)‖Tn
i xn‖2

=αn,iφ(p, xn) + (1− αn,i)φ(p, Tn
i xn)

≤αn,iφ(p, xn) + (1− αn,i)kn,iφ(p, xn)
=φ(p, xn) + (1− αn,i)(kn,i − 1)φ(p, xn)
≤φ(p, xn) + (1− αn,i)(kn,i − 1)Ln,

(3.2)
which shows that p ∈ Cn+1,i for all n ≥ 1. It follows that p ∈ Cn+1 =⋂

i∈I Cn+1,i for all n ≥ 1. This proves that F ⊂ Cn for all n ≥ 1.
Next, we show by induction that F ⊂ Qn for all n ≥ 1. For n = 1, we have

F ⊂ C = Q1. Assume that F ⊂ Qn for some n > 1. We show F ⊂ Qn+1.
Since xn = ΠCn∩Qnx1, by Lemma 2.4, we have

〈xn − z, Jx1 − Jxn〉 ≥ 0, ∀z ∈ Cn

⋂
Qn.

Since F ⊂ Cn

⋂
Qn by the induction assumptions, we have

〈xn − z, Jx1 − Jxn〉 ≥ 0, ∀z ∈ F.

This implies that F ⊂ Qn+1. So, we get F ⊂ Qn for all n ≥ 1. Therefore
we have F ⊂ Cn

⋂
Qn for all n ≥ 1. This means that the iteration algorithm

(3.1) is well defined.
Step 4. limn→∞ φ(xn, x1) exists and {xn} is bounded.
Noticing that xn = ΠQn+1x1 and xn+1 = ΠCn+1∩Qn+1x1 ∈ Qn+1, we have

φ(xn, x1) ≤ φ(xn+1, x1)

for all n ≥ 1. We, therefore, obtain that {φ(xn, x1)} is nondecreasing. From
Lemma 2.3, it follows that

φ(xn, x1) = φ(ΠQn+1x1, x1) ≤ φ(p, x1)− φ(p, xn) ≤ φ(p, x1)

for all p ∈ F and n ≥ 1. This shows that the sequence {φ(xn, x1)} is bounded.
Therefore, the limit of {φ(xn, x1)} exists and {xn} is bounded. Moreover, for
each i ∈ I, {yn,i} and {un,i} are bounded.

Step 5. xn → w ∈ C.
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By the construction of Qn, we know that Qm+1 ⊂ Qn and xm = ΠQm+1x1 ∈
Qn for any positive integer m ≥ n. Notice that

φ(xm, xn) = φ(xm, ΠQn+1x1) ≤ φ(xm, x1)− φ(ΠQn+1x1, x1)
= φ(xm, x1)− φ(xn, x1).

(3.3)

In view of step 4 we deduce that φ(xm, xn) → 0 as m, n → ∞. It follows
from Lemma 2.5 that ‖xm − xn‖ → 0 as m, n →∞. Hence {xn} is a Cauchy
sequence of C. Since E is a Banach space and C is closed subset of E, we
have

xn → w ∈ C (n →∞).

Step 6. w ∈ ⋂
i∈I F (Ti).

By taking m = n + 1 in (3.3), we have

lim
n→∞

φ(xn+1, xn) = 0. (3.4)

From Lemma 2.5, it follows that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.5)

Noticing that xn+1 ∈ Cn+1, for any i ∈ I, we obtain

φ(xn+1, un,i) ≤ φ(xn+1, xn) + (1− αn,i)(kn,i − 1)Ln.

From (3.4) and limn→∞ kn,i = 1 for any i ∈ I, we know

lim
n→∞

φ(xn+1, un,i) = 0, ∀i ∈ I. (3.6)

Thus
lim

n→∞
‖xn+1 − un,i‖ = 0, ∀i ∈ I. (3.7)

Notice that
‖xn − un,i‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − un,i‖

for all n ≥ 1 and i ∈ I. It follows from (3.5) and (3.7) that

lim
n→∞

‖xn − un,i‖ = 0, ∀i ∈ I. (3.8)

From xn → w (n →∞), we know

lim
n→∞

‖w − un,i‖ = 0, ∀i ∈ I. (3.9)

Since J is uniformly norm-to-norm continuous on bounded sets, from (3.8),
we have

lim
n→∞

‖Jxn − Jun,i‖ = 0, ∀i ∈ I. (3.10)



356 Jing Zhao, Songnian He

Let ri = sup{‖xn‖, ‖Tn
i xn‖ : n ∈ N} for each i ∈ I. Since E is uniformly

smooth Banach space, we know that E∗ is a uniformly convex Banach space.
Therefore, from Lemma 2.6, for each i ∈ I, there exists a strictly increasing,
continuous, and convex function gi : [0, 2ri] → R such that gi(0) = 0 and

‖tx∗ + (1− t)y∗‖2 ≤ t‖x∗‖2 + (1− t)‖y∗‖2 − t(1− t)gi(‖x∗ − y∗‖)
for all x∗, y∗ ∈ B∗

ri
and t ∈ [0, 1]. Let i ∈ I and p ∈ F , we have

φ(p, un,i)
=φ(p, Trn,i

yn,i)
≤φ(p, yn,i)

=φ(p, J−1(αn,iJxn + (1− αn,i)JTn
i xn))

=‖p‖2 − 2αn,i〈p, Jxn〉 − 2(1− αn,i)〈p, JTn
i xn〉

+ ‖αn,iJxn + (1− αn,i)JTn
i xn)‖2

≤‖p‖2 − 2αn,i〈p, Jxn〉 − 2(1− αn,i)〈p, JTn
i xn〉

+ αn,i‖xn‖2 + (1− αn,i)‖Tn
i xn‖2 − αn,i(1− αn,i)gi(‖Jxn − JTn

i xn‖)
=αn,iφ(p, xn) + (1− αn,i)φ(p, Tn

i xn)− αn,i(1− αn,i)gi(‖Jxn − JTn
i xn‖)

≤φ(p, xn) + (1− αn,i)(kn,i − 1)Ln − αn,i(1− αn,i)gi(‖Jxn − JTn
i xn‖).

(3.11)
Therefore, for each i ∈ I, we have

αn,i(1− αn,i)gi(‖Jxn − JTn
i xn‖)

≤φ(p, xn)− φ(p, un,i) + (1− αn,i)(kn,i − 1)Ln.
(3.12)

On the other hand, for each i ∈ I, we have

|φ(p, xn)− φ(p, un,i)|
=|‖xn‖2 − ‖un,i‖2 − 2〈p, Jxn − Jun,i〉|
≤|‖xn‖ − ‖un,i‖|(‖xn‖+ ‖uni‖) + 2‖Jxn − Jun,i‖‖p‖
≤‖xn − un,i‖(‖xn‖+ ‖uni‖) + 2‖Jxn − Jun,i‖‖p‖.

It follows from (3.8) and (3.10) that

lim
n→∞

(φ(p, xn)− φ(p, un,i)) = 0, ∀i ∈ I. (3.13)

Since limn→∞ kn,i = 1 and lim infn→∞ αn,i(1− αn,i) > 0 for each i ∈ I, from
(3.12) and (3.13) we have

lim
n→∞

gi(‖Jxn − JTn
i xn‖) = 0, ∀i ∈ I.
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Therefore, from the property of gi, we obtain

lim
n→∞

‖Jxn − JTn
i xn‖ = 0, ∀i ∈ I. (3.14)

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖xn − Tn
i xn‖ = 0, ∀i ∈ I.

Noting that xn → w as n →∞, we have

lim
n→∞

‖Tn
i xn − w‖ = 0, ∀i ∈ I. (3.15)

Since
‖Tn+1

i xn − w‖ ≤ ‖Tn+1
i xn − Tn

i xn‖+ ‖Tn
i xn − w‖,

it follows from the asymptotic regularity of Ti and (3.15) that

lim
n→∞

‖Tn+1
i xn − w‖ = 0, ∀i ∈ I.

That is, Ti(Tn
i xn) → w as n → ∞ for each i ∈ I. From the closedness of Ti,

we get Tiw = w for each i ∈ I. So, w ∈ ⋂
i∈I F (Ti).

Step 7. w ∈ F .
For each i ∈ I, from yn,i = J−1(αn,iJxn + (1− αn,i)JTn

i xn), we have

‖Jyn,i − Jxn‖ =‖αn,iJxn + (1− αn,i)JTn
i xn − Jxn‖

=(1− αn,i)‖JTn
i xn − Jxn‖.

It follows from (3.14) that

lim
n→∞

‖Jyn,i − Jxn‖ = 0, ∀i ∈ I. (3.16)

Noting that

‖Jun,i − Jyn,i‖ ≤ ‖Jun,i − Jxn‖+ ‖Jxn − Jyn,i‖,

from (3.10) and (3.16) we obtain

lim
n→∞

‖Jun,i − Jyn,i‖ = 0, ∀i ∈ I. (3.17)

From the assumption rn,i ≥ a, we get

lim
n→∞

‖Jun,i − Jyn,i‖
rn,i

= 0, ∀i ∈ I. (3.18)



358 Jing Zhao, Songnian He

For each i ∈ I, noting that un,i = Trn,iyn,i, we obtain

f(un,i, y) +
1

rn,i
〈y − un,i, Jun,i − Jyn,i〉 ≥ 0, ∀y ∈ C.

From (A2), we have

‖y − un,i‖‖Jun,i − Jyn,i‖
rn,i

≥ 1
rn,i

〈y − un,i, Jun,i − Jyn,i〉

≥ − f(un,i, y)
≥f(y, un,i), ∀y ∈ C.

Letting n →∞, from (3.9), (3.18) and (A4), we have

0 ≥ f(y, w), ∀y ∈ C.

For t with 0 < t ≤ 1 and y ∈ C, let yt = ty+(1− t)w. Since y ∈ C and w ∈ C,
we have yt ∈ C and hence f(yt, w) ≤ 0. So from (A1) and (A4) we have

0 ≤ f(yt, yt) ≤ tf(yt, y) + (1− t)f(yt, w) ≤ tf(yt, y)

and hence 0 ≤ f(yt, y). Letting t ↓ 0, from (A3), we have 0 ≤ f(w, y) for all
y ∈ C. This implies that w ∈ EP (f). Therefore, in view of step 6 we have
w ∈ F .

Step 8. w = ΠF x1.
From xn = ΠQn+1x1, we get

〈xn − z, Jx1 − Jxn〉 ≥ 0, ∀z ∈ Qn+1.

Since F ⊂ Qn for all n ≥ 1, we arrive at

〈xn − p, Jx1 − Jxn〉 ≥ 0, ∀p ∈ F.

Letting n →∞, we have

〈w − p, Jx1 − Jw〉 ≥ 0, ∀p ∈ F,

and hence w = ΠF x1 by Lemma 2.4. This completes the proof. ¤

Next, we consider a simpler algorithm for finding a common element of
the set of solutions of an equilibrium problem and the set of common fixed
points of a family of quasi-φ-asymptotically nonexpansive mappings in Banach
spaces.
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Theorem 3.2 Let C be a nonempty, closed and convex subset of a uniformly
convex and uniformly smooth Banach space E and {Ti}i∈I : C → C a family of
closed quasi-φ-asymptotically nonexpansive mappings with sequences {kn,i} ⊂
[1,∞) such that limn→∞ kn,i = 1. Let f be a bifunction from C × C to R
satisfying (A1)-(A4) such that F = (

⋂
i∈I F (Ti))

⋂
EP (f) 6= ∅. Assume that

Ti is asymptotically regular on C for each i ∈ I and F is bounded. For each
i ∈ I, let {αn,i} be a sequence in (0, 1) such that lim infn→∞ αn,i(1−αn,i) > 0
and {rn,i} a sequence in [a,∞) for some a > 0. Define a sequence {xn} in C
in the following manner:




x0 ∈ C chosen arbitrarily,
C1,i = C, C1 =

⋂
i∈I C1,i, x1 = ΠC1x0,

yn,i = J−1(αn,iJxn + (1− αn,i)JTn
i xn),

un,i ∈ C such that f(un,i, y) + 1
rn,i

〈y − un,i, Jun,i − Jyn,i〉 ≥ 0, ∀y ∈ C,

Cn+1,i = {z ∈ Cn,i : φ(z, un,i) ≤ φ(z, xn) + (1− αn,i)(kn,i − 1)Ln},
Cn+1 =

⋂
i∈I Cn+1,i

xn+1 = ΠCn+1x1

for every n ∈ N, where J is the normalized duality mapping on E and Ln =
sup{φ(p, xn) : p ∈ F} < ∞. Then {xn} converges strongly to ΠF x1.

Proof. Following the lines of the proof of Theorem 3.1, we can show that:
(1) F is a nonempty closed convex subset of C and hence ΠF x1 is well

defined for x1 ∈ C.
(2) Cn is closed and convex for all n ∈ N .
It is obvious that C1 = C1,i = C is closed and convex for every i ∈ I. Since

the defining inequality in Cn+1,i is equivalent to the inequality:

2〈z, Jxn − Jun,i〉 ≤ ‖xn‖2 − ‖un,i‖2 + (1− αn,i)(kn,i − 1)Qn

for every i ∈ I. This shows that Cn+1,i is closed and convex for every i ∈ I.
So, we have Cn+1 =

⋂
i∈I Cn+1,i is a closed and convex subset of C for all

n ≥ 1. Consequently, ΠCn+1x1 is well defined.
(3) F ⊂ Cn for all n ≥ 1.
It suffices to show that ∀i ∈ I, F ⊂ Cn,i for all n ≥ 1. This can be proved

by induction on n. For n = 1, we have F ⊂ C = C1,i. Assume that F ⊂ Cn,i

for some n > 1. From the induction assumption, (3.2) and the definition of
Cn+1,i, we conclude that F ⊂ Cn+1,i and hence F ⊂ Cn,i for all n ≥ 1.

(4) limn→∞ φ(xn, x1) exists and {xn} is bounded.
Since xn = ΠCnx1 and xn+1 = ΠCn+1x1 ∈ Cn+1 ⊂ Cn, we have

φ(xn, x1) ≤ φ(xn+1, x1)
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for all n ≥ 1. We, therefore, obtain that {φ(xn, x1)} is nondecreasing. From
Lemma 2.3, it follows that

φ(xn, x1) = φ(ΠCn
x1, x1) ≤ φ(p, x1)− φ(p, xn) ≤ φ(p, x1)

for all p ∈ F and n ≥ 1. This shows that the sequence {φ(xn, x1)} is bounded.
Therefore, the limit of {φ(xn, x1)} exists and {xn} is bounded. Moreover, for
each i ∈ I, {yn,i} and {un,i} are bounded.

(5) xn → w ∈ C.
By the construction of Cn, we know that Cm ⊂ Cn and xm = ΠCmx1 ∈ Cn

for any positive integer m ≥ n. Notice that

φ(xm, xn) = φ(xm, ΠCn
x1) ≤ φ(xm, x1)− φ(ΠCn

x1, x1)
= φ(xm, x1)− φ(xn, x1).

In view of (4) we deduce that φ(xm, xn) → 0 as m, n → ∞. It follows from
Lemma 2.5 that ‖xm − xn‖ → 0 as m, n → ∞. Hence {xn} is a Cauchy
sequence of C. We have

xn → w ∈ C (n →∞).

(6) By the same method given in Step 6 and Step 7 of the proof of Theorem
3.1 we have w ∈ F .

(7) w = ΠF x1.
From xn = ΠCnx1, we get

〈xn − z, Jx1 − Jxn〉 ≥ 0, ∀z ∈ Cn.

Since F ⊂ Cn for all n ≥ 1, we arrive at

〈xn − p, Jx1 − Jxn〉 ≥ 0, ∀p ∈ F.

Hence
〈w − p, Jx1 − Jw〉 ≥ 0, ∀p ∈ F.

It follows that w = ΠF x1 by Lemma 2.4. This completes the proof. ¤

As some corollaries of Theorem 3.1 and Theorem 3.2, we have the following
results immediately.

Corollary 3.3 Let C be a nonempty, closed and convex subset of a uniformly
convex and uniformly smooth Banach space E and T : C → C a closed quasi-φ-
asymptotically nonexpansive mapping with sequence {kn} ⊂ [1,∞) such that
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limn→∞ kn = 1. Let f be a bifunction from C × C to R satisfying (A1)-
(A4) such that F = F (T )

⋂
EP (f) 6= ∅. Assume that T is asymptotically

regular on C and F is bounded. Let {αn} be a sequence in (0, 1) such that
lim infn→∞ αn(1 − αn) > 0 and {rn} a sequence in [a,∞) for some a > 0.
Define a sequence {xn} in C in the following manner:





x0 ∈ C chosen arbitrarily,
C1 = C, x1 = ΠC1x0,

yn = J−1(αnJxn + (1− αn)JTnxn),
un ∈ C such that f(un, y) + 1

rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ C : φ(z, un) ≤ φ(z, xn) + (1− αn)(kn − 1)Ln},
Q1 = C,

Qn+1 = {z ∈ Qn : 〈xn − z, Jx1 − Jxn〉 ≥ 0},
xn+1 = ΠCn+1∩Qn+1x1

for every n ≥ 0, where J is the normalized duality mapping on E and Ln =
sup{φ(p, xn) : p ∈ F} < ∞. Then {xn} converges strongly to ΠF x1.

Corollary 3.4 Let C be a nonempty, closed and convex subset of a uniformly
convex and uniformly smooth Banach space E and T : C → C a closed quasi-φ-
asymptotically nonexpansive mapping with sequence {kn} ⊂ [1,∞) such that
limn→∞ kn = 1. Let f be a bifunction from C × C to R satisfying (A1)-
(A4) such that F = F (T )

⋂
EP (f) 6= ∅. Assume that T is asymptotically

regular on C and F is bounded. Let {αn} be a sequence in (0, 1) such that
lim infn→∞ αn(1 − αn) > 0 and {rn} a sequence in [a,∞) for some a > 0.
Define a sequence {xn} in C in the following manner:





x0 ∈ C chosen arbitrarily,
C1 = C, x1 = ΠC1x0,

yn = J−1(αnJxn + (1− αn)JTnxn),
un ∈ C such that f(un, y) + 1

rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn) + (1− αn)(kn − 1)Ln},
xn+1 = ΠCn+1x1

for every n ∈ N, where J is the normalized duality mapping on E and Ln =
sup{φ(p, xn) : p ∈ F} < ∞. Then {xn} converges strongly to ΠF x1.

Corollary 3.5 Let C be a nonempty, closed and convex subset of a Hilbert
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space H and {Ti}i∈I : C → C a family of closed quasi-φ-asymptotically non-
expansive mappings with sequences {kn,i} ⊂ [1,∞) such that limn→∞ kn,i = 1.
Let f be a bifunction from C × C to R satisfying (A1)-(A4) such that F =
(
⋂

i∈I F (Ti))
⋂

EP (f) 6= ∅. Assume that Ti is asymptotically regular on C for
each i ∈ I and F is bounded. For each i ∈ I, let {αn,i} be a sequence in (0, 1)
such that lim infn→∞ αn,i(1 − αn,i) > 0 and {rn,i} a sequence in [a,∞) for
some a > 0. Define a sequence {xn} in C in the following manner:




x0 ∈ C chosen arbitrarily,
C1,i = C, C1 =

⋂
i∈I C1,i, x1 = PC1x0,

yn,i = αn,ixn + (1− αn,i)Tn
i xn,

un,i ∈ C such that f(un,i, y) + 1
rn,i

〈y − un,i, Jun,i − Jyn,i〉 ≥ 0, ∀y ∈ C,

Cn+1,i = {z ∈ C : ‖z − un,i‖ ≤ ‖z − xn‖+ (1− αn,i)(kn,i − 1)Ln},
Cn+1 =

⋂
i∈I Cn+1,i,

Q1 = C,

Qn+1 = {z ∈ Qn : 〈xn − z, Jx1 − Jxn〉 ≥ 0},
xn+1 = PCn+1∩Qn+1x1

for every n ≥ 0, where J is the normalized duality mapping on E and Ln =
sup{‖p− xn‖ : p ∈ F} < ∞. Then {xn} converges strongly to PF x1.

Corollary 3.6 Let C be a nonempty, closed and convex subset of a Hilbert
space H and {Ti}i∈I : C → C a family of closed quasi-φ-asymptotically non-
expansive mappings with sequences {kn,i} ⊂ [1,∞) such that limn→∞ kn,i = 1.
Let f be a bifunction from C × C to R satisfying (A1)-(A4) such that F =
(
⋂

i∈I F (Ti))
⋂

EP (f) 6= ∅. Assume that Ti is asymptotically regular on C for
each i ∈ I and F is bounded. For each i ∈ I, let {αn,i} be a sequence in (0, 1)
such that lim infn→∞ αn,i(1 − αn,i) > 0 and {rn,i} a sequence in [a,∞) for
some a > 0. Define a sequence {xn} in C in the following manner:




x0 ∈ C chosen arbitrarily,
C1,i = C, C1 =

⋂
i∈I C1,i, x1 = PC1x0,

yn,i = αn,ixn + (1− αn,i)Tn
i xn,

un,i ∈ C such that f(un,i, y) + 1
rn,i

〈y − un,i, un,i − yn,i〉 ≥ 0, ∀y ∈ C,

Cn+1,i = {z ∈ Cn,i : ‖z − un,i‖2 ≤ ‖z − xn‖2 + (1− αn,i)(kn,i − 1)Ln},
Cn+1 =

⋂
i∈I Cn+1,i,

xn+1 = PCn+1x1

for every n ≥ 0, where J is the normalized duality mapping on E and Ln =
sup{‖p− xn‖2 : p ∈ F} < ∞. Then {xn} converges strongly to PF x1.
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Remark 3.7 Theorem 3.1 and Theorem 3.2 extend the main results of
[8, 10] from either equilibrium problems and relatively nonexpansive map-
pings or equilibrium problems and quasi-φ-nonexpansive mappings to equi-
librium problems and a countable infinite family of quasi-φ-asymptotically
nonexpansive mappings.
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