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Some unified algorithms for finding minimum
norm fixed point of nonexpansive semigroups

in Hilbert spaces

Yonghong Yao, Yeong-Cheng Liou

Abstract

In this paper, we introduce two general algorithms (one implicit and
one explicit) for finding a common fixed point of a nonexpansive semi-
group {T (s)}s≥0 in Hilbert spaces. We prove that both approaches
converge strongly to a common fixed point of {T (s)}s≥0. Such com-
mon fixed point x∗ is the unique solution of some variational inequality,
which is the optimality condition for some minimization problem. As
special cases of the above two algorithms, we obtain two schemes which
both converge strongly to the minimum norm common fixed point of
{T (s)}s≥0.

1 Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respec-
tively. Let C be a nonempty closed convex subset of H. Recall a mapping
f : C → H is called to a contraction if, for all x, y ∈ C, there exists ρ ∈ [0, 1)
such that ‖f(x) − f(y)‖ ≤ ρ‖x − y‖. A mapping T : C → C is said to be
nonexpansive if ‖Tx−Ty‖ ≤ ‖x−y‖, ∀x, y ∈ C. Denote the set of fixed points
of T by Fix(T ). Let A be a strongly positive bounded linear operator on H,
i.e., there exists a constant γ̄ > 0 such that 〈Ax, x〉 ≥ γ̄‖x‖2 for all x ∈ H.
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Iterative methods for nonexpansive mappings are widely used to solve con-
vex minimization problems, see, for instance, [1],[2], [4]-[6], [9],[11]-[14],[16]-
[30], [32], [33]. A typical problem is to minimize a function over the set of
fixed points of a nonexpansive mapping T ,

min
x∈Fix(T )

1
2
〈Ax, x〉 − 〈x, b〉. (1.1)

In [27], Xu proved that the sequence {xn} defined by xn+1 = αnb + (1 −
αnA)Txn, n ≥ 0 strongly converges to the unique solution of (1.1) under
certain conditions. Recently, Marino and Xu [17] introduced the viscosity ap-
proximation method xn+1 = αnγf(xn)+(1−αnA)Txn, n ≥ 0 and proved that
the sequence {xn} converges strongly to the unique solution of the variational
inequality

〈(A− γf)z, x− z〉 ≥ 0,∀x ∈ Fix(T )

which is the optimality condition for the minimization problem

min
x∈Fix(T )

1
2
〈Ax, x〉 − h(x)

where h is a potential function for γf (i.e., h
′
= γf on H).

In this paper, we focus on nonexpansive semigroup {T (s)}s≥0. Recall that
a family S := {T (s)}s≥0 of mappings of C into itself is called a nonexpansive
semigroup if it satisfies the following conditions:

(S1) T (0)x = x for all x ∈ C;

(S2) T (s + t) = T (s)T (t) for all s, t ≥ 0;

(S3) ‖T (s)x− T (s)y‖ ≤ ‖x− y‖ for all x, y ∈ C and s ≥ 0;

(S4) for all x ∈ H, s → T (s)x is continuous.

We denote by Fix(T (s)) the set of fixed points of T (s) and by Fix(S) the set
of all common fixed points of S, i.e. Fix(S) =

⋂
s≥0 Fix(T (s)). It is known

that Fix(S) is closed and convex (Lemma 1 in [1]).
Algorithms for nonexpansive semigroups have been considered by some au-

thors, please consult [3], [7],[8],[10],[15], [31]. The following interesting problem
arises: Can one construct some more general algorithms which unify the above
algorithms?

On the other hand, we also notice that it is quite often to seek a particular
solution of a given nonlinear problem, in particular, the minimum-norm solu-
tion. For instance, given a closed convex subset C of a Hilbert space H1 and a
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bounded linear operator R : H1 → H2, where H2 is another Hilbert space. The
C-constrained pseudoinverse of R, R†C , is then defined as the minimum-norm
solution of the constrained minimization problem

R†C(b) := arg min
x∈C

‖Rx− b‖

which is equivalent to the fixed point problem

x = PC(x− λR∗(Rx− b))

where PC is the metric projection from H1 onto C, R∗ is the adjoint of R,
λ > 0 is a constant, and b ∈ H2 is such that P

R(C)
(b) ∈ R(C).

It is therefore another interesting problem to invent some algorithms that
can generate schemes which converge strongly to the minimum-norm solution
of a given problem.

In this paper, we introduce two general algorithms (one implicit and one ex-
plicit) for finding a common fixed point of a nonexpansive semigroup {T (s)}s≥0

in Hilbert spaces. We prove that both approaches converge strongly to a com-
mon fixed point of {T (s)}s≥0. Such common fixed point x∗ is the unique
solution of some variational inequality, which is the optimality condition for
some minimization problem. As special cases of the above two algorithms,
We obtain two schemes which both converge strongly to the minimum norm
common fixed point of {T (s)}s≥0.

2 Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. The
metric (or nearest point) projection from H onto C is the mapping PC : H →
C which assigns to each point x ∈ C the unique point PCx ∈ C satisfying the
property

‖x− PCx‖ = inf
y∈C

‖x− y‖ =: d(x,C).

It is well known that PC is a nonexpansive mapping and satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2, ∀x, y ∈ H.

Moreover, PC is characterized by the following properties:

〈x− PCx, y − PCx〉 ≤ 0, (2.1)
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and

‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2,

for all x ∈ H and y ∈ C.
We need the following lemmas for proving our main results.

Lemma 2.1. ([23]) Let C be a nonempty bounded closed convex subset of a
Hilbert space H and let {T (s)}s≥0 be a nonexpansive semigroup on C. Then,
for every h ≥ 0,

lim
t→∞

supx∈C

∥∥∥1
t

∫ t

0

T (s)xds− T (h)
1
t

∫ t

0

T (s)xds
∥∥∥ = 0.

Lemma 2.2. ([12]) Let C be a closed convex subset of a real Hilbert space H
and let S : C → C be a nonexpansive mapping. Then, the mapping I − S is
demiclosed. That is, if {xn} is a sequence in C such that xn → x∗ weakly and
(I − S)xn → y strongly, then (I − S)x∗ = y.

Lemma 2.3. ([18]) Let {xn} and {yn} be bounded sequences in a Banach
space X and let {γn} be a sequence in [0, 1] with 0 < lim infn→∞ βn ≤
lim supn→∞ βn < 1. Suppose that xn+1 = (1− γn)xn + γnyn for all n ≥ 0 and
lim supn→∞(‖yn − yn−1‖ − ‖xn − xn−1‖) ≤ 0. Then, limn→∞ ‖yn − xn‖ = 0.

Lemma 2.4. ([26]) Assume {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− γn)an + δnγn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that

(1)
∑∞

n=1 γn = ∞;

(2) lim supn→∞ δn ≤ 0 or
∑∞

n=1 |δnγn| < ∞.

Then limn→∞ an = 0.

3 Main results

In this section we will show our main results.
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Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let S = {T (s)}s≥0 : C → C be a nonexpansive semigroup with
Fix(S) 6= ∅. Let f : C → H be a ρ-contraction (possibly non-self). Let A be
a strongly positive linear bounded self-adjoint operator on H with coefficient
γ̄ > 0. Let {λt}0<t<1 be a continuous net of positive real numbers such that
limt→0 λt = +∞. Let γ and β be two real numbers such that 0 < γ < γ̄/ρ and
β ∈ [0, 1). Let the net {xt} be defined by the following implicit scheme:

xt = PC [tγf(xt) + βxt + ((1− β)I − tA)
1
λt

∫ λt

0

T (s)xtds], t ∈ (0, 1). (3.1)

Then, as t → 0+, the net {xt} strongly converges to x∗ ∈ Fix(S) which is the
unique solution of the following variational inequality:

x∗ ∈ Fix(S), 〈(γf −A)x∗, x− x∗〉 ≤ 0, ∀x ∈ Fix(S). (3.2)

In particular, if we take f = 0 and A = I, then the net {xt} defined by (3.1)
reduces to

xt = PC [βxt + (1− β − t)
1
λt

∫ λt

0

T (s)xtds], t ∈ (0, 1). (3.3)

In this case, the net {xt} defined by (3.3) converges in norm to the minimum
norm fixed point x∗ of Fix(S), namely, the point x∗ is the unique solution to
the minimization problem:

x∗ = arg min
x∈Fix(S)

‖x‖. (3.4)

Proof. First, we note that the net {xt} defined by (3.1) is well-defined. We
define a mapping

Gx := PC [tγf(x) + βx + ((1− β)I − tA)
1
λt

∫ λt

0

T (s)xds], t ∈ (0, 1).

It follows that

‖Gx−Gy‖ ≤ ‖tγ(f(x)− f(y)) + β(x− y) + ((1− β)I − tA)
1
λt

∫ λt

0

(T (s)x− T (s)y)ds‖

≤ tγ‖f(x)− f(y)‖+ β‖x− y‖+ ‖((1− β)I − tA)
1
λt

∫ λt

0

(T (s)x− T (s)y)ds‖
≤ tγρ‖x− y‖+ β‖x− y‖+ (1− β − tγ̄)‖x− y‖
= (1− (γ̄ − γρ)t)‖x− y‖.
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This implies that the mapping G is a contraction and so it has a unique fixed
point. Therefore, the net {xt} defined by (3.1) is well-defined.

Take p ∈ Fix(S). By (3.1), we have

‖xt − p‖ = ‖PC [tγf(xt) + βxt + ((1− β)I − tA)
1
λt

∫ λt

0

T (s)xtds]− p‖

≤ ‖t(γf(xt)−Ap) + β(xt − p) + ((1− β)I − tA)(
1
λt

∫ λt

0

T (s)xtds− p)‖

≤ t‖γf(xt)−Ap‖+ β‖xt − p‖+ (1− β − γ̄t)
1
λt

∫ λt

0

‖T (s)xt − T (s)p‖ds

≤ tγ‖f(xt)− f(p)‖+ t‖γf(p)−Ap‖+ β‖xt − p‖+ (1− β − γ̄t)‖xt − p‖
≤ tγρ‖xt − p‖+ t‖γf(p)−Ap‖+ β‖xt − p‖+ (1− β − γ̄t)‖xt − p‖.

It follows that

‖xt − p‖ ≤ 1
γ̄ − γρ

‖γf(p)−Ap‖

which implies that the net {xt} is bounded.

Set R := 1
γ̄−γρ‖γf(p)−Ap‖. It is clear that {xt} ⊂ B(p,R). Notice that

‖ 1
λt

∫ λt

0

T (s)xtds− p‖ ≤ ‖xt − p‖ ≤ R.

Moreover, we observe that if x ∈ B(p,R) then

‖T (s)x− p‖ ≤ ‖T (s)x− T (s)p‖ ≤ ‖x− p‖ ≤ R,

i.e., B(p, R) is T (s)-invariant for all s.

Set yt = tγf(xt) + βxt + ((1 − β)I − tA) 1
λt

∫ λt

0
T (s)xtds. From (3.1), we
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deduce

‖T (τ)xt − xt‖ = PC [T (τ)xt]− PC [yt]‖
≤ ‖T (τ)xt − yt‖

≤ ‖T (τ)xt − T (τ)
1
λt

∫ λt

0

T (s)xtds‖

+‖T (τ)
1
λt

∫ λt

0

T (s)xtds− 1
λt

∫ λt

0

T (s)xtds‖

+‖ 1
λt

∫ λt

0

T (s)xtds− yt‖

≤ ‖xt − 1
λt

∫ λt

0

T (s)xtds‖+ ‖T (τ)
1
λt

∫ λt

0

T (s)xtds−

− 1
λt

∫ λt

0

T (s)xtds‖+ ‖ 1
λt

∫ λt

0

T (s)xtds− yt‖

≤ 2t

1− β
‖γf(xt)− A

λt

∫ λt

0

T (s)xtds‖

+‖T (τ)
1
λt

∫ λt

0

T (s)xtds− 1
λt

∫ λt

0

T (s)xtds‖.

By Lemma 2.1, we deduce for all 0 ≤ τ < ∞
lim
t→0

‖T (τ)xt − xt‖ = 0. (3.5)

Note that xt = PC [yt]. By using the property of the metric projection (2.1),
we have

‖xt − p‖2 = 〈xt − yt, xt − p〉+ 〈yt − p, xt − p〉
≤ 〈yt − p, xt − p〉
= t〈γf(xt)−Ap, xt − p〉+ β‖xt − p‖2

+〈((1− β)I − tA)(
1
λt

∫ λt

0

T (s)xtds− p), xt − p〉

≤ β‖xt − p‖2 + (1− β − γ̄t)‖xt − p‖2
+tγ〈f(xt)− f(p), xt − p〉+ t〈γf(p)−Ap, xt − p〉

≤ [1− (γ̄ − γρ)t]‖xt − p‖2 + t〈γf(p)−Ap, xt − p〉.
Therefore,

‖xt − p‖2 ≤ 1
γ̄ − γρ

〈γf(p)−Ap, xt − p〉, ∀p ∈ Fix(S).
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From this inequality, we have immediately that ωw(xt) = ωs(xt), where ωw(xt)
and ωs(xt) denote the set of weak and strong cluster points of {xt}, respec-
tively.

Let {tn} ⊂ (0, 1) be a sequence such that tn → 0 as n →∞. Put xn := xtn ,
yn := ytn

and λn := λtn
. Since {xn} is bounded, without loss of generality,

we may assume that {xn} converges weakly to a point x∗ ∈ C. Also yn → x∗

weakly. Noticing (3.5) we can use Lemma 2.2 to get x∗ ∈ Fix(S).
We can rewrite (3.1) as

(A− γf)xt = −1
t
((1− β)I − tA)[xt − 1

λt

∫ λt

0

T (s)xtds] +
1
t
(xt − yt).

Therefore,

〈(A− γf)xt, xt − p〉 = −1− β

t
[
1
λt

∫ λt

0

〈(I − T (s))xt − (I − T (s))p, xt − p〉ds]

+
1
λt
〈A

∫ λt

0

[xt − T (s)xt]ds, xt − p〉+
1
t
〈xt − yt, xt − p〉.

Noting that I − T (s) is monotone and 〈xt − yt, xt − p〉 ≤ 0, so

〈(A− γf)xt, xt − p〉 ≤ 1
λt
〈A

∫ λt

0

[xt − T (s)xt]ds, xt − p〉

= 〈Axt − A

λt

∫ λt

0

T (s)xtds, xt − p〉

≤ ‖A‖‖xt − 1
λt

∫ λt

0

T (s)xtds‖‖xt − p‖

≤ t

1− β
‖A‖‖γf(xt)−A

1
λt

∫ λt

0

T (s)xtds‖‖xt − p‖.

Taking the limit through t := tni → 0, we have

〈(A− γf)x∗, x∗ − p〉 = lim
i→∞

〈(A− γf)xni , xni − p〉 ≤ 0.

Since the solution of the variational inequality (3.2) is unique. Hence ωw(xt) =
ωs(xt) is singleton. Therefore, xt → x∗.

In particular, if we take f = 0 and A = I, then it follows that xt → x∗ =
PFix(S)(0), which implies that x∗ is the minimum norm fixed point of S. As
a matter of fact, by (3.2), we deduce

〈x∗, x∗ − x〉 ≤ 0, ∀x ∈ Fix(S),
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that is,

‖x∗‖2 ≤ 〈x∗, x〉 ≤ ‖x∗‖‖x‖, ∀x ∈ Fix(S).

Therefore, the point x∗ is the unique solution to the minimization problem

x∗ = arg min
x∈Fix(S)

‖x‖.

This completes the proof.

Next we introduce an explicit algorithm for finding a solution of minimiza-
tion problem (3.4). This scheme is obtained by discretizing the implicit scheme
(3.1). We will show the strong convergence of this algorithm.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let S = {T (s)}s≥0 : C → C be a nonexpansive semigroup with
Fix(S) 6= ∅. Let f : C → H be a ρ-contraction (possibly non-self) with
ρ ∈ [0, 1). Let A be a strongly positive linear bounded self-adjoint operator
on H with coefficient γ̄ > 0. Let γ and β be two real numbers such that
0 < γ < γ̄/ρ and β ∈ [0, 1). Let the sequence {xn} be generated iteratively by
the following explicit algorithm:

xn+1 = (1−γn)xn+γnPC [αnγf(xn)+βxn+((1−β)I−αnA)
1
λn

∫ λn

0

T (s)xnds], n ≥ 0,

(3.6)
where {αn} and {γn} are real number sequence in [0, 1] and {λn} is a positive
real number. Suppose that the following conditions are satisfied:

(i) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;

(ii) limn→∞ λn = ∞ and limn→∞
λn−λn−1

λn
= 0;

(iii) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1.

Then the sequence {xn} strongly converges to x∗ ∈ Fix(S) which is the unique
solution of the variational inequality (3.2).

In particular, if we take f = 0 and A = I, then the sequence {xn} generated
by (3.6) reduces to

xn+1 = (1−γn)xn +γnPC [βxn +(1−αn−β)
1
λn

∫ λn

0

T (s)xnds], n ≥ 0. (3.7)

In this case, the sequence {xn} converges in norm to the minimum norm fixed
point x∗ of Fix(S).
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Proof. Take p ∈ Fix(S). From (3.6), we have

‖xn+1 − p‖ ≤ (1− γn)‖xn − p‖+ γn

(
αn‖γf(xn)−Ap‖+ β‖xn − p‖

+(1− β − γ̄αn)
1
λn

∫ λn

0

‖T (s)xn − T (s)p‖ds
)

≤ (1− γn)‖xn − p‖+ γn

(
αnγρ‖xn − p‖+ αn‖γf(p)−Ap‖+ β‖xn − p‖

+(1− β − αnγ̄)‖xn − p‖
)

= [1− (γ̄ − ργ)αnγn]‖xn − p‖+ αnγn‖γf(p)−Ap‖.

It follows that by induction

‖xn − p‖ ≤ max{‖x0 − p‖, ‖γf(p)−Ap‖
γ̄ − γρ

}.

Set yn = PC [αnγf(xn) + βxn + ((1 − β)I − αnA)zn] for all n ≥ 0, where
zn = 1

λn

∫ λn

0
T (s)xnds. Hence, we have

‖yn − yn−1‖ ≤ ‖αnγf(xn) + βxn + ((1− β)I − αnA)zn

−αn−1γf(xn−1)− βxn−1 − ((1− β)I − αn−1A)zn−1‖
= ‖γαn(f(xn)− f(xn−1)) + γ(αn − αn−1)f(xn−1) + β(xn − xn−1)

+((1− β)I − αnA)(zn − zn−1) + (αn−1 − αn)Azn−1‖
≤ γαn‖f(xn)− f(xn−1)‖+ |αn − αn−1|(‖γf(xn−1)‖+ ‖Azn−1‖)

+β‖xn − xn−1‖+ (1− β − αnγ̄)‖zn − zn−1‖

and

‖zn − zn−1‖ = ‖ 1
λn

∫ λn

0

[T (s)xn − T (s)xn−1]ds + (
1
λn

− 1
λn−1

)
∫ λn−1

0

T (s)xn−1ds

+
1
λn

∫ λn

λn−1

T (s)xn−1ds‖

≤ 1
λn

∫ λn

0

‖T (s)xn − T (s)xn−1‖ds +
1
λn
‖

∫ λn

λn−1

[T (s)xn−1 − T (s)p]ds‖

+| 1
λn

− 1
λn−1

|
∫ λn−1

0

‖T (s)xn−1 − T (s)p‖ds

≤ ‖xn − xn−1‖+
2|λn − λn−1|

λn
‖xn−1 − p‖.
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Therefore,

‖yn − yn−1‖ ≤ γαnρ‖xn − xn−1‖+ |αn − αn−1|(‖γf(xn−1)‖+ ‖Azn−1‖)
+β‖xn − xn−1‖+ (1− β − αnγ̄)‖xn − xn−1‖
+

2|λn − λn−1|
λn

‖xn−1 − p‖

≤ [1− (γ̄ − γρ)αn]‖xn − xn−1‖+ M(|αn − αn−1|+ |λn − λn−1|
λn

),

where M > 0 is a constant such that

sup
n
{‖γf(xn−1)‖+ ‖Azn−1‖, 2‖xn−1 − p‖} ≤ M.

Hence, we get

lim sup
n→∞

(‖yn − yn−1‖ − ‖xn − xn−1‖) ≤ 0.

This together with Lemma 2.3 imply that

lim
n→∞

‖yn − xn‖ = 0.

Therefore,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

γn‖yn − xn‖ = 0.

Note that

‖T (τ)xn − xn‖ ≤ ‖T (τ)xn − T (τ)
1
λn

∫ λn

0

T (s)xnds‖

+‖T (τ)
1
λn

∫ λn

0

T (s)xnds− 1
λn

∫ λn

0

T (s)xnds‖

+‖ 1
λn

∫ λn

0

T (s)xnds− xn‖

≤ ‖T (τ)
1
λn

∫ λn

0

T (s)xnds− 1
λn

∫ λn

0

T (s)xnds‖

+2‖xn − 1
λn

∫ λn

0

T (s)xnds‖. (3.8)
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From (3.6), we have

‖xn − 1
λn

∫ λn

0

T (s)xnds‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − 1
λn

∫ λn

0

T (s)xnds‖

≤ ‖xn − xn+1‖+ (1− γn)‖xn − 1
λn

∫ λn

0

T (s)xnds‖

+γnαnγ‖f(xn)‖+ γnβ‖xn − 1
λn

∫ λn

0

T (s)xnds‖

+γnαn‖A 1
λn

∫ λn

0

T (s)xnds‖.

It follows that

‖xn − 1
λn

∫ λn

0

T (s)xnds‖ ≤ 1
(1− β)γn

{
‖xn − xn+1‖+ γnαnγ‖f(xn)‖

+γnαn‖A 1
λn

∫ λn

0

T (s)xnds‖
}

→ 0. (3.9)

From (3.8), (3.9) and Lemma 2.1, we have

lim
n→∞

‖T (τ)xn − xn‖ = 0 for every τ ≥ 0. (3.10)

Notice that {xn} is a bounded sequence. Let x̃ be a weak limit of {xn}.
Putting x∗ = PFix(S)(I − A + γf). Then there exists R such that B(x∗, R)
contains {xn}. Moreover, B(x∗, R) is T (s)-invariant for every s ≥ 0; therefore,
without loss of generality, we can assume that {T (s)}s≥0 is a nonexpansive
semigroup on B(x∗, R). By the demiclosedness principle (Lemma 2.2) and
(3.10), we have x̃ ∈ Fix(S). Therefore,

lim sup
n→∞

〈γf(x∗)−Ax∗, xn+1 − x∗〉 = lim
n→∞

〈γf(x∗)−Ax∗, x̃− x∗〉 ≤ 0.

Finally, we prove xn → x∗. Set un = tγf(xn)+βxn+((1−β)I−tA) 1
λn

∫ λn

0
T (s)xnds.

It follows that yn = PC [un] for all n ≥ 0. By using the property of the metric
projection (2.1), we have

〈yn − un, yn − x∗〉 ≤ 0.
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So,

‖yn − x∗‖2 = 〈yn − x∗, yn − x∗〉
= 〈yn − un, yn − x∗〉+ 〈un − x∗, yn − x∗〉
≤ 〈un − x∗, yn − x∗〉
= αnγ〈f(xn)− f(x∗), yn − x∗〉+ αn〈γf(x∗)−Ax∗, yn − x∗〉

+β〈xn − x∗, yn − x∗〉+ 〈((1− β)I − αnA)(zn − x∗), yn − x∗〉
≤ αnγ‖f(xn)− f(x∗)‖‖yn − x∗‖+ αn〈γf(x∗)−Ax∗, yn − x∗〉

+β‖xn − x∗‖‖yn − x∗‖+ (1− β − γ̄αn)‖zn − x∗‖‖yn − x∗‖
≤ [1− (γ̄ − γρ)αn]‖xn − x∗‖‖yn − x∗‖+ αn〈γf(x∗)−Ax∗, yn − x∗〉
≤ 1− (γ̄ − γρ)αn

2
‖xn − x∗‖2 +

1
2
‖yn − x∗‖+ αn〈γf(x∗)−Ax∗, yn − x∗〉,

that is,

‖yn − x∗‖2 ≤ [1− (γ̄ − γρ)αn]‖xn − x∗‖2 + 2αn〈γf(x∗)−Ax∗, yn − x∗〉.

By the convexity of the norm, we have

‖xn+1 − x∗‖2 ≤ (1− γn)‖xn − x∗‖2 + γn‖yn − x∗‖2
≤ [1− (γ̄ − γρ)αnγn]‖xn − x∗‖2 + 2αnγn〈γf(x∗)−Ax∗, yn − x∗〉.

Hence, all conditions of Lemma 2.4 are satisfied. Therefore, we immediately
deduce that xn → x∗.
In particular, if we take f = 0 and A = I, then it is clear that x∗ = PFix(S)(0)
is the unique solution to the minimization problem x∗ = arg minx∈Fix(S) ‖x‖.
This completes the proof.
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