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Iterative methods for k-strict
pseudo-contractive mappings in Hilbert spaces

Yonghong Yao, Yeong-Cheng Liou, Shin Min Kang

Abstract

In this paper, we investigate two iterative methods for k-strict pseudo-
contractive mappings in a real Hilbert space. We prove that the pro-
posed iterative algorithms converge strongly to some fixed point of a
strict pseudo-contractive mapping.

1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T : C → C be a mapping. We use Fix(T ) to denote the set of fixed points
of T . Recall that T is said to be a strict pseudo-contractive mapping if there
exists a constant 0 ≤ k < 1 such that

(1.1) ‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2 for all x, y ∈ C.

For such case, we also say that T is a k-strict pseudo-contractive mapping.
When k = 0, T is said to be nonexpansive, and it is said to be pseudo-
contractive if k = 1. T is said to be strongly pseudo-contractive if there exists
a constant α ∈ (0, 1) such that 〈Tx− Ty, x− y〉 ≤ α‖x− y‖2 for all x, y ∈ C.
Clearly, the class of k-strict pseudo-contractive mappings falls into the one
between classes of nonexpansive mappings and pseudo-contractive mappings.
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We remark also that the class of strongly pseudo-contractive mappings is inde-
pendent of the class of k-strict pseudo-contractive mappings (see, e.g., [3-5]).
It is clear that, in a real Hilbert space H, (1.1) is equivalent to
(1.2)

〈Tx− Ty, x− y〉 ≤ ‖x− y‖2 − 1− k

2
‖(I − T )x− (I − T )y‖2 for all x, y ∈ C.

Recall also that a mapping f : C → C is called contractive if there exists a
constant α ∈ [0, 1) such that

‖f(x)− f(y)‖ ≤ α‖x− y‖ for all x, y ∈ C.

Iterative methods for nonexpansive mappings have been extensively investi-
gated; see [1, 2, 6-15, 17-18, 20-22, 24-36] and the references therein. However
iterative methods for strict pseudo-contractive mappings are far less devel-
oped than those for nonexpansive mappings though Browder and Petryshyn
[5] initiated their work in 1967; the reason is probably that the second term
appearing in the right-hand side of (1.1) impedes the convergence analysis for
iterative methods used to find a fixed point of the strict pseudo-contractive
mapping T . However, on the other hand, strict pseudo-contractive mappings
have more powerful applications than nonexpansive mappings do in solving
inverse problems; see Scherzer [23]. Therefore it is interesting to develop the
iterative methods for strict pseudo-contractive mappings. As a matter of fact,
Browder and Petryshyn [5] show that if a k-strict pseudo-contractive mappings
T has a fixed point in C, then starting with an initial x0 ∈ C, the sequence
{xn} generated by the recursive formula:

xn+1 = λxn + (1− λ)Txn, n ≥ 0,

where λ is a constant such that k < λ < 1, converges weakly to a fixed point
of T .

Recently, Marino and Xu [16] have extended Browder and Petryshyn’s
result by proving that the sequence {xn} generated by the following Mann’s
method:

xn+1 = λnxn + (1− λn)Txn, n ≥ 0

converges weakly to a fixed point of T , provided the control sequence {λn}
satisfies the conditions that k < λn < 1 for all n and

∑∞
n=0(λn− k)(1−λn) =

∞. However, this convergence is in general not strong. So in order to get
strong convergence for strict pseudo-contractive mappings, Marino and Xu
[16] further suggested the following modified Mann’s method based on the CQ
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method:

(1.3)





x0 ∈ C chosen arbitrarily,

yn = αnxn + (1− αn)Txn,

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2
+ (1− αn)(k − αn)‖xn − Txn‖2},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn

x0.

They proved that the sequence {xn} generated by (1.3) is strongly conver-
gent to a fixed point of T for any choice of the control sequence {αn} such
that αn < 1 for all n.

We observe that the CQ method (1.3) generates a sequence {xn} by pro-
jecting the initial guess x0 onto the intersection of two appropriately con-
structed closed convex subsets Cn and Qn. Hence, how to construct closed
convex subsets Cn and Qn is very crucial for the CQ method.

It is the purpose of this paper to suggest and analyze some iterative meth-
ods for strict pseudo-contractive mappings in the sense of Browder-Petryshyn
in a real Hilbert space. First, we consider a modified Mann’s method which
is different from (1.3). Secondly, we study another modified method for strict
pseudo-contractive mappings. We prove that the proposed iterative methods
converge strongly to some fixed point of a strict pseudo-contractive mapping.

2. Preliminaries

In this section, we collect some facts in a real Hilbert space H which are
listed as below.

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖ and
let C be a closed convex subset of H. For every point x ∈ H there exists a
unique nearest point in C, denoted by PCx, such that

‖x− PCx‖ ≤ ‖x− y‖ for all y ∈ C,

where PC is called the metric projection of H onto C. We know that PC is
a nonexpansive mapping. For given sequence {xn} ⊂ C, let ωw(xn) = {x :
∃xnj → x weakly} denote the weak ω-limit set of {xn}.

We note the following Lemmas 2.1 and 2.2 are well-known.

Lemma 2.1. Let H be a real Hilbert space. Then there hold the following
well-known identities:

(a) ‖x− y‖2 = ‖x‖2 − 2〈x, y〉+ ‖y‖2 for all x, y ∈ H;
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(b) ‖tx+(1− t)y‖2 = t‖x‖2 +(1− t)‖y‖2− t(1− t)‖x−y‖2 for all t ∈ [0, 1],
x, y ∈ H.

Lemma 2.2. Let C be a closed convex subset of a real Hilbert space H.
Given x ∈ H and z ∈ C. Then z = PCx if and only if there holds the relation

〈x− z, y − z〉 ≤ 0 for all y ∈ C.

Lemma 2.3. ([16]) Assume C is a closed convex subset of a real Hilbert
space H, let T : C → C be a k-strict pseudo-contractive mapping. Then, the
mapping I −T is demiclosed at zero. That is, if {xn} is a sequence in C such
that xn → x∗ weakly and (I − T )xn → 0 strongly, then (I − T )x∗ = 0.

Lemma 2.4. ([17]) Let C be a closed convex subset of a real Hilbert space
H. Let {xn} be a sequence in H and u ∈ H. Let q = PCu. If {xn} is such
that ωw(xn) ⊂ C and satisfies the condition

‖xn − u‖ ≤ ‖u− q‖ for all n.

Then xn → q.

Lemma 2.5. ([25]) Let {xn} and {yn} be bounded sequences in a Ba-
nach space E such that xn+1 = σnxn + (1 − σn)yn, n ≥ 0 where {σn} is a
sequence in [0, 1] such that 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1. Assume
lim supn→∞(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0. Then limn→∞ ‖yn − xn‖ = 0.

Lemma 2.6. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let T : C → C be a k-strict pseudo-contractive mapping with
Fix(T ) 6= ∅. Then, Fix(T ) is convex and closed.

Proof. First, we prove that Fix(T ) is convex. For all p, q ∈ Fix(T ) and
ξ ∈ [0, 1], we set R = ξp + (1− ξ)q. From Lemma 2.1(b) and (1.1), we have

‖R− TR‖2
= ‖ξ(p− TR) + (1− ξ)(q − TR)‖2
= ξ‖p− TR‖2 + (1− ξ)‖q − TR‖2 − ξ(1− ξ)‖p− q‖2
= ξ‖Tp− TR‖2 + (1− ξ)‖Tq − TR‖2 − ξ(1− ξ)‖p− q‖2
≤ ξ[‖p−R‖2 + k‖R− TR‖2] + (1− ξ)[‖q −R‖2 + k‖R− TR‖2]
− ξ(1− ξ)‖p− q‖2

= ξ‖p−R‖2 + (1− ξ)‖q −R‖2 − ξ(1− ξ)‖p− q‖2 + k‖R− TR‖2
= ‖ξ(p−R) + (1− ξ)(q −R)‖2 + k‖R− TR‖2
= k‖R− TR‖2,



Iterative methods for k-strict pseudo-contractive mappings ... 317

which implies that
(1− k)‖R− TR‖2 ≤ 0,

that is
R = TR.

Therefore, R ∈ Fix(T ) and Fix(T ) is convex.
Next, we prove that Fix(T ) is closed. First, we note that T is Lipschitz

with Lipschitzian constant L = 1+k
1−k . If we take pn ∈ Fix(T ) satisfying pn → p

as n →∞, then
p = lim

n→∞
pn = lim

n→∞
Tpn = Tp.

Therefore, p ∈ Fix(T ). Hence, Fix(T ) is closed. This completes the proof.

Lemma 2.7. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let T : C → C be a k-strict pseudo-contractive mapping with
Fix(T ) 6= ∅. Let f : C → C be a continuous strongly pseudo-contractive
mapping. For any t ∈ (0, 1), let xt be the unique fixed point of tf + (1− t)T .
Then as t → 0+, the path {xt} converges strongly to p = PFix(T )f(p) which is
the unique solution of the variational inequality: 〈f(p) − p, z − p〉 ≤ 0 for all
z ∈ Fix(T ).

Proof. From Lemma 2.6, we know that Fix(T ) is closed and convex.
Hence, PFix(T ) is well defined. For fixed u ∈ C arbitrarily, let the path
{yt : t ∈ (0, 1)} be defined by yt = tu+(1− t)Txt for all t ∈ (0, 1). Then, from
[19], it is clear that the path {yt} converges strongly to p = PFix(T )u. Taking
u = f(p). Then, the path {yt} defined by yt = tf(p) + (1 − t)Tyt converges
strongly to p = PFix(T )f(p). Note that

‖xt − yt‖2 = t〈f(xt)− f(p), xt − yt〉+ (1− t)〈Txt − Tyt, xt − yt〉
= t〈f(xt)− f(yt), xt − yt〉+ t〈f(yt)− f(p), xt − yt〉

+ (1− t)〈Txt − Tyt, xt − yt〉
≤ tα‖xt − yt‖2 + t‖f(yt)− f(p)‖‖xt − yt‖+ (1− t)‖xt − yt‖2,

that is,

‖xt − yt‖ ≤ 1
1− α

‖f(yt)− f(p)‖.
Since yt → p = PFix(T )f(p) and f is continuous, then xt → p = PFix(T )f(p).
From Lemma 2.2, it is clear that p is the unique solution of the variational
inequality: 〈f(p) − p, z − p〉 ≤ 0 for all z ∈ Fix(T ). This completes the
proof.

Lemma 2.8. ([21]) Assume {an} is a sequence of nonnegative real numbers
such that an+1 ≤ (1 − bn)an + cn, n ≥ 0, where {bn} is a sequence in (0, 1)
and {cn} is a sequence in R such that
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(a)
∑∞

n=0 bn = ∞;
(b) lim supn→∞ cn/bn ≤ 0 or

∑∞
n=0 |cn| < ∞.

Then limn→∞ an = 0.

3. Main Results

3.1. Projection methods for strict pseudo-contractive mappings

First, we introduce the following modified Mann’s method based on the
projection methods which is different from (1.3).

Algorithm 3.1.Let C be a nonempty closed convex subset of a real Hilbert
space H. Let T : C → C be a k-strict pseudo-contractive mapping for some
0 ≤ k < 1. Let {αn} be a real sequence in [0, 1). For C1 = C and x1 = PC1x0,
let the sequence {xn} be generated by the following method:

(3.1)





yn = αnxn + (1− αn)Txn,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0.

Now we prove the following strong convergence theorem concerning the
above projection method (3.1).

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let T : C → C be a k-strict pseudo-contractive mapping for some
0 ≤ k < 1 with Fix(T ) 6= ∅. Let the sequence {xn} be generated by the method
(3.1). Assume that the sequence {αn} is chosen so that αn ∈ [a, b] ⊂ [k, 1) for
all n ≥ 0. Then {xn} converges strongly to PFix(T )x0.

Proof. First, we note that Cn is convex and closed. As a matter of fact, we
observe that ‖yn−z‖ ≤ ‖xn−z‖ is equivalent to ‖yn−xn‖2+2〈yn−xn, xn−z〉 ≥
0. So Cn is closed and convex. Hence, {xn} is well-defined.

Next we show that Fix(T ) ⊂ Cn for all n. From (1.1) and (1.2), we note
that for all p ∈ Fix(T ),

〈Txn − p, xn − p〉 ≤ ‖xn − p‖2 − 1− k

2
‖xn − Txn‖2

and

‖Txn − p‖2 ≤ ‖xn − p‖2 + k‖xn − Txn‖2.
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Then, we have

‖yn − p‖2 = ‖αn(xn − p) + (1− αn)(Txn − p)‖2
= α2

n‖xn − p‖2 + 2αn(1− αn)〈Txn − p, xn − p〉
+ (1− αn)2‖Txn − p‖2

≤ α2
n‖xn − p‖2 + 2αn(1− αn)

[
‖xn − p‖2 − 1− k

2
‖xn − Txn‖2

]

+ (1− αn)2[‖xn − p‖2 + k‖xn − Txn‖2]
= ‖xn − p‖2 + (1− αn)(k − αn)‖xn − Txn‖2
≤ ‖xn − p‖2,

that is, ‖yn − p‖ ≤ ‖xn − p‖. So p ∈ Cn+1 ⊂ Cn for all n. This implies that

Fix(T ) ⊂ Cn, n ≥ 0.

From xn = PCnx0, we have

〈x0 − xn, xn − y〉 ≥ 0 for all y ∈ Cn.

Using Fix(T ) ⊂ Cn, we also have

〈x0 − xn, xn − p〉 ≥ 0 for all p ∈ Fix(T ).

So, for p ∈ Fix(T ), we have

0 ≤ 〈x0 − xn, xn − p〉
= 〈x0 − xn, xn − x0 + x0 − p〉
= −‖x0 − xn‖2 + 〈x0 − xn, x0 − p〉
≤ −‖x0 − xn‖2 + ‖x0 − xn‖‖x0 − p‖.

Hence,
‖x0 − xn‖ ≤ ‖x0 − p‖ for all p ∈ Fix(T ).

In particular, {xn} is bounded and

(3.2) ‖x0 − xn‖ ≤ ‖x0 − q‖, where q = PFix(T )x0.

From xn = PCnx0 and xn+1 = PCn+1x0 ∈ Cn+1 ⊂ Cn, we have

(3.3) 〈x0 − xn, xn − xn+1〉 ≥ 0.
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Hence,
0 ≤ 〈x0 − xn, xn − xn+1〉

= 〈x0 − xn, xn − x0 + x0 − xn+1〉
= −‖x0 − xn‖2 + 〈x0 − xn, x0 − xn+1〉
≤ −‖x0 − xn‖2 + ‖x0 − xn‖‖x0 − xn+1‖,

and therefore
‖x0 − xn‖ ≤ ‖x0 − xn+1‖,

which implies that limn→∞ ‖xn − x0‖ exists.
From Lemma 2.1(a) and (3.3), we obtain

‖xn+1 − xn‖2 = ‖(xn+1 − x0)− (xn − x0)‖2
= ‖xn+1 − x0‖2 − ‖xn − x0‖2 − 2〈xn+1 − xn, xn − x0〉
≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2
→ 0.

By the fact xn+1 ∈ Cn+1 ⊂ Cn, we get

‖yn − xn+1‖ ≤ ‖xn − xn+1‖,

which implies that ‖yn − xn+1‖ → 0. At the same time, we note that

(3.4)

‖yn − xn+1‖2 = ‖αn(xn − xn+1) + (1− αn)(Txn − xn+1)‖2
= αn‖xn − xn+1‖2 + (1− αn)‖Txn − xn+1‖2
− αn(1− αn)‖xn − Txn‖2

and

(3.5)

‖Txn − xn+1‖2 = ‖Txn − xn + xn − xn+1‖2
= ‖Txn − xn‖2 + 2〈Txn − xn, xn − xn+1〉

+ ‖xn − xn+1‖2.

Substitute (3.5) into (3.4) to get

‖yn − xn+1‖2 = αn‖xn − xn+1‖2 + (1− αn)‖Txn − xn‖2
+ 2(1− αn)〈Txn − xn, xn − xn+1〉+ (1− αn)‖xn − xn+1‖2
− αn(1− αn)‖xn − Txn‖2

= ‖xn − xn+1‖2 + 2(1− αn)〈Txn − xn, xn − xn+1〉
+ (1− αn)2‖xn − Txn‖2.
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This together with xn − xn+1 → 0 and yn − xn+1 → 0 imply that

(3.6) ‖xn − Txn‖ → 0.

Now (3.6) and Lemma 2.3 guarantee that every weak limit point of {xn} is a
fixed point of T . That is, ωw(xn) ⊂ F (T ). This fact, the inequality (3.2) and
Lemma 2.4 ensure the strong convergence of {xn} to PF (T )x0. This completes
the proof.

Corollary 3.1. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let T : C → C be a nonexpansive mapping with Fix(T ) 6= ∅. Let
the sequence {xn} be generated by the method (3.1). Assume that the sequence
{αn} is chosen so that αn ∈ [a, b] ⊂ [0, 1) for all n ≥ 0. Then the sequence
{xn} defined by (3.1) converges strongly to PFix(T )x0.

3.2. Modified methods for strict pseudo-contractive mappings

Below is another modified method for strict pseudo-contractive mappings.

Algorithm 3.2. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let T : C → C be a k-strict pseudo-contractive mapping with 0 ≤
k < 1. Let f : C → C be a contractive mapping. Let {αn}, {βn} and {γn} be
real sequences in [0, 1] such that αn + βn + γn = 1, n ≥ 0. Let the sequence
{xn} be generated from an arbitrary x0 ∈ C by the following iterative method:

(3.7) xn+1 = αnf(xn) + βnxn + γnTxn, n ≥ 0.

In particular, if we take f ≡ u, then (3.7) reduces to

(3.8) xn+1 = αnu + βnxn + γnTxn, n ≥ 0.

Now we state and prove the following strong convergence theorem.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert
space H, and T : C → C be a k-strict pseudo-contractive mapping with
Fix(T ) 6= ∅. Let f : C → C be a contractive mapping with contractive coef-
ficient α. Let {αn}, {βn} and {γn} be three real sequences in [0, 1] satisfying
the following conditions:

(C1) limn→∞ αn = 0;
(C2)

∑∞
n=0 αn = ∞;

(C3) βn ∈ [a, b] ⊂ (k, 1).
For initial guess x0 ∈ C, then the sequence {xn} defined by (3.7) converges
strongly to p ∈ Fix(T ) which solves the variational inequality:

〈f(p)− p, z − p〉 ≤ 0 for all z ∈ Fix(T ).
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Proof. We first show that {xn} is bounded. Indeed, take a point p ∈
Fix(T ) to get

(3.9)
‖xn+1 − p‖ = ‖αn(f(xn)− p) + βn(xn − p) + γn(Txn − p)]‖

≤ αn‖f(xn)− f(p)‖+ αn‖f(p)− p‖
+ ‖βn(xn − p) + γn(Txn − p)‖.

From (1.1) and (1.2), we obtain

‖βn(xn − p) + γn(Txn − p)‖2
= β2

n‖xn − p‖2 + γ2
n‖Txn − p‖2 + 2βnγn〈Txn − p, xn − p〉

≤ β2
n‖xn − p‖2 + γ2

n[‖xn − p‖2 + k‖xn − Txn‖2]

+ 2βnγn[‖xn − p‖2 − 1− k

2
‖xn − Txn‖2]

= (βn + γn)2‖xn − p‖2 + [γ2
nk − (1− k)βnγn]‖xn − Txn‖2

= (βn + γn)2‖xn − p‖2 + γn[(βn + γn)k − βn]‖xn − Txn‖2
≤ (βn + γn)2‖xn − p‖2,

which implies that

(3.10) ‖βn(xn − p) + γn(Txn − p)‖ ≤ (βn + γn)‖xn − p‖.

It follows from (3.9) and (3.10) that

‖xn+1 − p‖ ≤ αnα‖xn − p‖+ αn‖f(p)− p‖+ (βn + γn)‖xn − p‖

= [1− (1− α)αn]‖xn − p‖+ (1− α)αn
‖f(p)− p‖

1− α
.

By induction, we obtain, for all n ≥ 0,

‖xn − p‖ ≤ max
{
‖x0 − p‖, ‖f(p)− p‖

1− α

}
.

Hence, {xn} is bounded.
We note that (3.7) can be rewritten as

xn+1 = αnf(xn) +
(

βn − kγn

1− k

)
xn +

γn

1− k
[kxn + (1− k)Txn].

It is clear that αn+(βn− kγn

1−k )+ γn

1−k = 1 and (βn− kγn

1−k ) ∈ (a−k
1−k , 1

1−k ) ⊂ (0, 1).
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Now we define xn+1 = (βn− kγn

1−k )xn +(1−βn + kγn

1−k )yn, n ≥ 0. It follows that

(3.11)

yn+1 − yn

=
xn+2 − (βn+1 − kγn+1

1−k )xn+1

1− βn+1 + kγn+1
1−k

− xn+1 − (βn − kγn

1−k )xn

1− βn + kγn

1−k

=
αn+1f(xn+1) + γn+1

1−k [kxn+1 + (1− k)Txn+1]

1− βn+1 + kγn+1
1−k

− αnf(xn) + γn

1−k [kxn + (1− k)Txn]

1− βn + kγn

1−k

=
αn+1f(xn+1)

1− βn+1 + kγn+1
1−k

− αnf(xn)
1− βn + kγn

1−k

+
γn+1
1−k

1− βn+1 + kγn+1
1−k

[
k(xn+1 − xn) + (1− k)(Txn+1 − Txn)

]

+

(
γn+1
1−k

1− βn+1 + kγn+1
1−k

−
γn

1−k

1− βn + kγn

1−k

)
(kxn + (1− k)Txn).

It follows from (3.11) that

(3.12)

‖yn+1 − yn‖
≤ αn+1

1− βn+1 + kγn+1
1−k

‖f(xn+1)‖+
αn

1− βn + kγn

1−k

‖f(xn)‖

+
γn+1
1−k

1− βn+1 + kγn+1
1−k

∥∥k(xn+1 − xn) + (1− k)(Txn+1 − Txn)
∥∥

+

∣∣∣∣∣
γn+1
1−k

1− βn+1 + kγn+1
1−k

−
γn

1−k

1− βn + kγn

1−k

∣∣∣∣∣‖kxn + (1− k)Txn‖.

Again from Lemma 2.1(b) and (1.1), we have

‖k(xn+1 − xn) + (1− k)(Txn+1 − Txn)‖2
= k‖xn+1 − xn‖2 + (1− k)‖Txn+1 − Txn‖2
− k(1− k)‖(I − T )xn+1 − (I − T )xn‖2

≤ k‖xn+1 − xn‖2 + (1− k)[‖xn+1 − xn‖2 + k‖(I − T )xn+1 − (I − T )xn‖2]
− k(1− k)‖(I − T )xn+1 − (I − T )xn‖2

= ‖xn+1 − xn‖2,
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that is,

(3.13) ‖k(xn+1 − xn) + (1− k)(Txn+1 − Txn)‖ ≤ ‖xn+1 − xn‖.
At the same time, we observe that

γn+1
1−k

1− βn+1 + kγn+1
1−k

=
γn+1

1− k + (1− αn+1)k − βn+1

=
1− αn+1k − βn+1 + (k − 1)αn+1

1− αn+1k − βn+1

= 1− (1− k)αn+1

1− αn+1k − βn+1
.

Hence,
γn+1
1−k

1−βn+1+
kγn+1
1−k

∈ [0, 1] and
γn+1
1−k

1−βn+1+
kγn+1
1−k

→ 1 as n →∞. Therefore,

γn+1
1−k

1− βn+1 + kγn+1
1−k

−
γn

1−k

1− βn + kγn

1−k

→ 0.

Combining (3.12) and (3.13) yields

‖yn+1 − yn‖ ≤ αn+1

1− βn+1 + kγn+1
1−k

‖f(xn+1)‖+
αn

1− βn + kγn

1−k

‖f(xn)‖

+ ‖xn+1 − xn‖+

∣∣∣∣∣
γn+1
1−k

1− βn+1 + kγn+1
1−k

−
γn

1−k

1− βn + kγn

1−k

∣∣∣∣∣M,

where M is a constant such that supn{‖kxn + (1 − k)Txn‖} ≤ M . Since
αn → 0, the last inequality implies

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Apply Lemma 2.5 to get

lim
n→∞

‖yn − xn‖ = 0.

Consequently,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(
1− βn +

kγn

1− k

)
‖yn − xn‖ = 0.

Note that

‖xn − Txn‖ ≤ ‖xn+1 − xn‖+ ‖xn+1 − Txn‖
≤ ‖xn+1 − xn‖+ αn‖f(xn)− Txn‖+ βn‖xn − Txn‖,
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that is,

‖xn − Txn‖ ≤ 1
1− βn

(‖xn+1 − xn‖+ αn‖f(xn)− Txn‖) → 0.

Next we prove that

lim sup
n→∞

〈f(p)− p, xn − p〉 ≤ 0 for all p ∈ Fix(T ).

Let zt be the unique solution to the equation

zt = tf(zt) + (1− t)Tzt.

Since f is contractive, it must be strict pseudo-contractive. From Lemma 2.7,
we know that zt → p ∈ Fix(T ) which solves the variational inequality

〈f(p)− p, z − p〉 ≤ 0 for all z ∈ Fix(T ).

We can write

zt − xn = (1− t)(Tzt − xn) + t(f(zt)− xn).

It follows that

‖zt − xn‖2 = (1− t)〈Tzt − xn, zt − xn〉+ t〈f(zt)− xn, zt − xn〉
= (1− t)(〈Tzt − Txn, zt − xn〉+ 〈Txn − xn, zt − xn〉)

+ t〈f(zt)− zt, zt − xn〉+ t〈zt − xn, zt − xn〉
≤ (1− t)‖zt − xn‖2 + (1− t)‖Txn − xn‖‖zt − xn‖

+ t〈f(zt)− zt, zt − xn〉+ t‖zt − xn‖2
= ‖zt − xn‖2 + (1− t)‖Txn − xn‖‖zt − xn‖

+ t〈f(zt)− zt, zt − xn〉,

and hence

〈f(zt)− zt, xn − zt〉 ≤ 1− t

t
‖Txn − xn‖‖zt − xn‖.

Note that ‖xn − Txn‖ → 0, zt → p and {zt} and {xn} are all bounded. By
using the standard proof, it is easy to obtain

(3.14) lim sup
n→∞

〈f(p)− p, xn − p〉 ≤ 0 for all p ∈ Fix(T ).
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Finally we claim that xn → p in norm. Indeed, we have

‖xn+1 − p‖2
= αn〈f(xn)− p, xn+1 − p〉+ 〈βn(xn − p) + γn(Txn − p), xn+1 − p〉
≤ αn〈f(xn)− p, xn+1 − p〉+ ‖βn(xn − p) + γn(Txn − p)‖‖xn+1 − p‖
≤ αn〈f(xn)− f(p), xn+1 − p〉+ αn〈f(p)− p, xn+1 − p〉

+ (βn + γn)‖xn − p‖‖xn+1 − p‖
≤ αnα‖xn − p‖‖xn+1 − p‖+ αn〈f(p)− p, xn+1 − p〉

+ (1− αn)‖xn − p‖‖xn+1 − p‖
≤ [1− (1− α)αn]

1
2
(‖xn − p‖2 + ‖xn+1 − p‖2) + αn〈f(p)− p, xn+1 − p〉,

that is,
‖xn+1 − p‖2 ≤ [1− (1− α)αn]‖xn − p‖2

+ 2αn〈f(p)− p, xn+1 − p〉,
which implies that

(3.15)
‖xn+1 − p‖2 ≤ [1− (1− α)αn]‖xn − p‖2

+ (1− α)αn

{
2

1− α
〈f(p)− p, xn+1 − p〉

}
.

So combining Lemma 2.8 with (3.14) and (3.15) we conclude that ‖xn−p‖ → 0.
This completes the proof.

As a direct corollary of Theorem 3.2, we obtain the following.

Corollary 3.2. Let C be a nonempty closed convex subset of a real
Hilbert space H, and T : C → C be a k-strict pseudo-contractive mapping
with Fix(T ) 6= ∅. Let {αn}, {βn} and {γn} be three real sequences in [0, 1]
satisfying the following conditions:

(C1) limn→∞ αn = 0;
(C2)

∑∞
n=0 αn = ∞;

(C3) βn ∈ [a, b] ⊂ (k, 1).
For initial guess x0 ∈ C and fixed u ∈ C, then the sequence {xn} defined by
(3.8) converges strongly to p = PFix(T )u.
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