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ON A GENERAL CLASS OF LINEAR AND
POSITIVE OPERATORS

Ovidiu T. Pop, Mircea D. Fărcaş and Dan Bărbosu

Abstract

Suppose that (Lm)m≥1 is a given sequence of linear and positive
operators. Starting with the mentioned sequence, the new sequence
(Km)m≥1 of linear and positive operators is constructed. For the oper-
ators (Km)m≥1 a convergence theorem and a Voronovskaja-type theo-
rem are established. As particular cases of the general construction, we
refined the Bernstein’s operators, the Stancu’s operators, the Mirakyan-
Favard-Szasz operators, the Baskakov operators, the Bleimann-Butzer-
Hahn operators, the Meyer-König-Zeller operators, the Ismail-May op-
erators.

1 Introduction

In this section, we recall some notions and operators which will be used in the
paper.

Let N be the set of positive integers and N0 = N ∪ {0}. For m ∈ N, let
Bm : C([0, 1])→ C([0, 1]) be the Bernstein operators, defined for any function
f ∈ C([0, 1]) by

(Bmf)(x) =

m∑
k=0

pm,k(x)f

(
k

m

)
, (1.1)
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where pm,k(x) are the fundamental Bernstein polynomials defined by

pm,k(x) =

(
m

k

)
xk(1− x)m−k, (1.2)

for any x ∈ [0, 1] and any k ∈ {0, 1, . . . ,m} (see [5] or [25]).
For the following construction see [15]. Define the natural number m0 by

m0 =

{
max{1,−[β]}, if β ∈ R\Z
max{1, 1− β}, if β ∈ Z.

(1.3)

For the real number β, we have that

m+ β ≥ γβ (1.4)

for any natural number m, m ≥ m0, where

γβ = m0 + β =

{
max

{
1 + β, {β}

}
, if β ∈ R\Z

max{1 + β, 1}, if β ∈ Z.
(1.5)

For the real numbers α, β, α ≥ 0, we set

µ(α,β) =


1, if α ≤ β

1 +
α− β
γβ

, if α > β.
(1.6)

For the real numbers α and β, α ≥ 0, we have that 1 ≤ µ(α,β) and

0 ≤ k + α

m+ β
≤ µ(α,β) (1.7)

for any natural number m ≥ m0 and for any k ∈ {0, 1, . . . ,m}.
For the real numbers α and β, α ≥ 0, m0 and µ(α,β) defined by (1.3)-(1.6),

let the operators P
(α,β)
m : C

(
[0, µ(α,β)]

)
→ C

(
[0, 1]

)
be defined for any function

f ∈ C
(
[0, µ(α,β)]

)
by

(
P (α,β)
m f

)
(x) =

m∑
k=0

pm,k(x)f

(
k + α

m+ β

)
, (1.8)

for any natural number m ≥ m0 and for any x ∈ [0, 1]. These operators are
called Stancu operators, introduced and studied in 1969 by D. D. Stancu in the
paper [24]. Note that in [24], the domain of definition for the Stancu operators
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is C([0, 1]) and the numbers α and β verify the condition 0 ≤ α ≤ β.
In 1980 [4], G. Bleimann, P. L. Butzer and L. Hahn introduced the sequence
of linear positive operators (Lm)m≥1, Lm : CB([0,∞))→ CB([0,∞)), defined
for any function f ∈ CB([0,∞)) by

(Lmf)(x) =
1

(1 + x)m

m∑
k=0

(
m

k

)
xkf

(
k

m+ 1− k

)
, (1.9)

for any x ∈ [0,∞) and any m ∈ N, where CB([0,∞)) = {f | f : [0,∞)→ R, f
bounded and continuous on [0,∞)}.

For m ∈ N were considered the operators Sm : C2 ([0,∞)) → C ([0,∞))
defined for any function f ∈ C2 ([0,∞)) by

(Smf) (x) = e−mx
∞∑
k=0

(mx)k

k!
f

(
k

m

)
, (1.10)

for any x ∈ [0,∞), where C2 ([0,∞)) =
{
f ∈ C ([0,∞)) : lim

x→∞

f(x)

1 + x2
exists

and is finite
}

. The operators (Sm)m≥1 are called Mirakjan-Favard-Szász

operators and were introduced in 1941 by G. M. Mirakjan in [12].
They were intensively studied by J. Favard in 1944 in [8] and O. Szász in

1950 in [26].
Let for m ∈ N, the operators Vm : C2 ([0,∞))→ C ([0,∞)) defined for any

function f ∈ C2 ([0,∞)) by

(Vmf) (x) = (1 + x)−m
∞∑
k=0

(
m+ k − 1

k

)(
x

1 + x

)k
f

(
k

m

)
, (1.11)

for any x ∈ [0,∞). They are called the Baskakov operators and were intro-
duced in 1957 by V. A. Baskakov in [2].

W. Meyer-König and K. Zeller introduced in [11] a sequence of linear and
positive operators. After a slight adjustment given by E. W. Cheney and A.
Sharma in [6], these operators Zm : B ([0, 1)) → C ([0, 1)), defined for any
function f ∈ B ([0, 1)) by

(Zmf) (x) =

∞∑
k=0

(
m+ k

k

)
(1− x)

m+1
xkf

(
k

m+ k

)
, (1.12)

for any m ∈ N and for any x ∈ [0, 1). These operators are called the Meyer-
König and Zeller operators. Observe that Zm : C ([0, 1])→ C ([0, 1]), m ∈ N.
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In the paper [10], M. Ismail and C. P. May consider the operators
(Rm)m≥1. For m ∈ N, Rm : C([0,∞))→ C([0,∞)) is defined for any function
f ∈ C([0,∞)) by

(Rmf)(x) = e−
mx
1+x

∞∑
k=0

m(m+ k)k−1

k!

(
x

1 + x

)k
e−

kx
1+x f

(
k

m

)
(1.13)

for any x ∈ [0,∞).
In what follows, we consider I ⊂ R, I an interval and we shall use the

following sets of functions: E(I), F (I) which are subsets of the set of real
functions defined on I, B(I) =

{
f | f : I → R, f bounded on I

}
, C(I) ={

f | f : I → R, f continuous on I
}

and CB(I) = B(I) ∩ C(I).
If f ∈ B(I), then the first order modulus of smoothness of f is the function

ω(f ; ·) : [0,∞)→ R defined for any δ ≥ 0 by

ω(f ; δ) = sup {|f(x′)− f(x′′)| : x′, x′′ ∈ I, |x′ − x′′| ≤ δ} . (1.14)

2 Preliminaries

In the following, we consider the general construction and the results from
[22], which we will use afterwards in the paper.

Let I, J be intervals with I ⊂ [0,∞) and I ∩ J 6= ∅. For any m ∈ N
and k ∈ N0 consider the the functions ϕm,k : J → R with the property that
ϕm,k(x) ≥ 0 for any x ∈ J and the linear and positive functionals Am,k :
E(I)→ R. Let E(I) and F (J) be subsets of the set of real functions defined
on I, respectively J such that the series

∞∑
k=0

ϕm,k(x)f(xm,k)

is convergent for any f ∈ E(I) and x ∈ J . For any x ∈ I consider the functions
ψx : I → R, ψx(t) = t − x for any t ∈ I and we suppose that ψix ∈ E(I), for
any x ∈ I ∩ J and any i ∈ {0, 1, 2, . . . , s+ 2}. In what follows s ∈ N0 is even.

For m ∈ N define the operators Lm : E(I)→ E(J) by

(Lmf)(x) =

∞∑
k=0

ϕm,k(x)Am,k(f) (2.1)

for any f ∈ E(I) and x ∈ J . It is immediately the following

Proposition 2.1. The operators (Lm)m≥1 are linear and positive on
E(I ∩ J).
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For m ∈ N and i ∈ N0 define Ti by

(TiLm)(x) = mi
(
Lmψ

i
x

)
(x) = mi

∞∑
k=0

ϕm,k(x)Am,k
(
ψix
)

(2.2)

for any x ∈ I ∩ J .

Theorem 2.1. [22] If f ∈ E(I) is a s times differentiable function in
x ∈ I ∩ J , with f (s) continuous in x, and if there exist αs, αs+2 ∈ [0,∞)
and m(s) ∈ N such that

αs+2 < αs + 2 (2.3)

and
(TsLm)(x)

mαs
,

(Ts+2Lm)(x)

mαs+2
are bounded for any m ∈ N, m ≥ m(s), then

lim
m→∞

ms−αs

[
(Lmf)(x)−

s∑
i=0

1

i!mi
(TiLm)(x)f (i)(x)

]
= 0. (2.4)

Assume that f is a s times differentiable function on I with f (s) continuous
on I and an interval K ⊂ I ∩ J exists such that there exist m(s) ∈ N and the
constants kj(K) ∈ R depending on K, so that for any m ∈ N, m ≥ m(s) and
x ∈ K we have

(TjLm)(x)

mαj
≤ kj(K) (2.5)

where j ∈ {s, s + 2}. Then the convergence given in (2.4) is uniform on K
and

ms−αs

∣∣∣∣∣(Lmf)(x)−
s∑
i=0

1

i!mi
(TiLm)(x)f (i)(x)

∣∣∣∣∣ ≤ (2.6)

≤ 1

s!
(ks(K) + ks+2(K))ω

(
f (s);

1√
m2+αs−αs+2

)
for any x ∈ K and m ≥ m(s).

Remark 2.1. In Theorem 2.1 we choose the smallest αs and αs+2 if they
exist.

Now, if m ∈ N and ϕm,k(x) = 0, Am,k(f) = 0 for any f ∈ E(I), any x ∈ J
and any k ∈ {m + 1,m + 2, . . .}, then we obtain a class of operators defined
by finite sums, so that the relation (2.1) becomes

(Lmf)(x) =

m∑
k=0

ϕm,k(x)Am,k(f). (2.7)

Remark 2.2. From above, it follows that the theorems from [22] hold for the
operators defined by finite sums and for the operators defined by infinite sums.
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3 Main results

Taking the above results into account, we can make the following construction
(see [22] and [23]).

Let I, J be real intervals with I ∩ J 6= ∅ and pm = m for any m ∈ N (the
finite case) or pm =∞ for any m ∈ N (the infinite case). For any m ∈ N and
k ∈ {0, 1, . . . , pm} ∩ N0, consider the nodes xm,k ∈ I (in this construction we
have Am,k(f) = f(xm,k)) and the functions ϕm,k : J → R, with the property
that ϕm,k(x) ≥ 0, for any x ∈ J . We suppose that for any compact K ⊂ I ∩J
there exists the sequence (um(K))m≥1, depending on K, such that

lim
m→∞

um(K) = 0 (3.1)

and ∣∣∣∣∣
pm∑
k=0

ϕm,k(x)− 1

∣∣∣∣∣ ≤ um(K) (3.2)

for any x ∈ K, any m ∈ N and we note u(K) = sup{um(K) : m ∈ N}.

Remark 3.1. From (3.1) and (3.2) it follows that lim
m→∞

pm∑
k=0

ϕm,k(x) = 1 for

any x ∈ K and the convergence is uniform on K.

Let w : I → (0,∞) be a fixed function, called the weight function, such
there exists a positive constant M such that M ≤ w(x), for any x ∈ I and the
set functions

Ew(I) = {f |f : I → R such that wf is bounded on I}. (3.3)

For f ∈ Ew(I) there exists a positive constant M(f), depending on f , such
that w(x)|f(x)| ≤M(f), for any x ∈ I.

Let K ⊂ I ∩ J compact set and x ∈ K. If pm = m for any m ∈ N, then

the sum
pm∑
k=0

ϕm,k(x)f(xm,k) exists for any m ∈ N.

If pm = ∞ for any m ∈ N, we consider the sequence (sn(m))n≥1 defined

by sn(m) =
n∑
k=0

ϕm,k(x)|f(xm,k)|, for any n ∈ N. Taking (3.2) into account,

we get

sn(m) =

n∑
k=0

ϕm,k(x)
1

w(xm,k)
w(xm,k)|f(xm,k)| ≤ M(f)

M

n∑
k=0

ϕm,k(x) ≤

≤ M(f)

M
(1 + um(K)) ≤ M(f)

M
(1 + u(K)),
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from where it follows that the sum
∞∑
k=0

ϕm,k(x)|f(xm,k)| exists for any m ∈ N.

It follows that the sum
∞∑
k=0

ϕm,k(x)f(xm,k) exists and then from the above

results, we get that the sum
pm∑
k=0

ϕm,k(x)f(xm,k) exists for any m ∈ N.

For m ∈ N let the given operator Lm : Ew(I)→ F (J) defined by

(Lmf)(x) =

pm∑
k=0

ϕm,k(x)f(xm,k) (3.4)

for any x ∈ J and any f ∈ Ew(I), with the property that for any f ∈
Ew(I) ∩ C(I), we have

lim
m→∞

(Lmf)(x) = f(x) (3.5)

uniformly on any compact K ⊂ I ∩ J .

Remark 3.2. We suppose that the functions ψx, ei ∈ Ew(I), x ∈ I, where
ei : I → R, ei(t) = ti for any t ∈ I, i ∈ {0, 1, 2, 3, 4}.

Remark 3.3. Taking the Bohman-Korovkin Theorem into account, from (3.5)
it follows that for the operators (Lm)m≥1 we have

lim
m→∞

(Lmei)(x) = ei(x) (3.6)

uniformly on any compact K ⊂ I ∩ J , i ∈ {0, 1, 2} and

lim
m→∞

(Lmψ
2
x)(x) = 0 (3.7)

uniformly on any compact K ⊂ I ∩ J , where x ∈ I.

Remark 3.4. From Remark 3.3 it follows that for any compact K ⊂ I ∩ J
there exist the sequences (vm(K))m≥1, (wm(K))m≥1 depending on K, such
that

lim
m→∞

vm(K) = lim
m→∞

wm(K) = 0 (3.8)

and

|(Lme1)(x)− x| ≤ vm(K), (3.9)

(Lmψ
2
x)(x) ≤ wm(K), (3.10)

for any x ∈ K and any m ∈ N. We suppose in the following that there exists
0 < α2 < 2, α2 not depending on K, such that the sequence
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(m2−α2wm(K))m≥1 is bounded and lim
m→∞

m2−α2wm(K) = 0. So, there exists

k2(K) > 0, depending on K such that

m2−α2wm(K) ≤ k2(K) (3.11)

for any m ∈ N.

Lemma 3.1. For any K ⊂ I ∩J there exists the constants k0(K) and k2(K),
depending on K, such that

(T0Lm)(x) ≤ k0(K) (3.12)

and
(T2Lm)(x)

mα2
≤ k2(K) (3.13)

for any x ∈ K and any m ∈ N.

Proof. Let m ∈ N and x ∈ K. Then taking (3.2) into account, we obtain that

(T0Lm)(x) = (Lme0)(x) =

pm∑
k=0

ϕm,k(x) ≤ 1 + um(K) ≤ 1 + u(K) = k0(K)

Further, we have

(T2Lm)(x)

mα2
=
m2(Lmψ

2
x)(x)

mα2
= m2−α2(Lmψ

2
x)(x)

and taking (3.10), (3.11) into account we obtain (3.13).

In the following, for m ∈ N and k ∈ {0, 1, . . . , pm} ∩ N0 we consider the
nodes ym,k ∈ I such that

βm = sup
k∈{0,1,··· ,pm}∩N0

|xm,k − ym,k| <∞ (3.14)

for any m ∈ N and
lim
m→∞

m2−α2βm = 0, (3.15)

so there exists l > 0 such that

m2−α2βm ≤ l (3.16)

for any m ∈ N. For m ∈ N and k ∈ {0, 1, . . . , pm} ∩ N0, we note βm,k =
xm,k − ym,k, and then |βm,k| ≤ βm for any k ∈ {0, 1, . . . , pm} ∩ N0 and any
m ∈ N.
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For m ∈ N define the operator Km : Ew(I)→ F (J) by

(Kmf)(x) =

pm∑
k=0

ϕm,k(x)f(ym,k), (3.17)

for any x ∈ I and any f ∈ Ew(I).

Lemma 3.2. For any K = [0, b] ⊂ I ∩ J there exist the constants k′0(K) and
k′2(K), depending on K, such that

(T0Km)(x) ≤ k′0(K) (3.18)

and
(T2Km)(x)

mα2
≤ k′2(K) (3.19)

for any x ∈ K and any m ∈ N.

Proof. We have (T0Km)(x) = (Kme0)(x) =

pm∑
k=0

ϕm,k(x) = (Lme0)(x) =

(T0Lm)(x) ≤ 1 + um(K) ≤ 1 + u(K) and we can take k′0(K) = k0(K). Fur-
ther,we have

(T2Km)(x)

mα2
=
m2(Kmψ

2
x)(x)

mα2
= m2−α2(Kmψ

2
x)(x)

and

(Kmψ
2
x)(x) = (Kme2)(x)− 2x(Kme1)(x) + x2(Kme0)(x) =

=

pm∑
k=0

ϕm,k(x)y2m,k − 2x

pm∑
k=0

ϕm,k(x)ym,k + x2
pm∑
k=0

ϕm,k(x) =

=

pm∑
k=0

ϕm,k(x)(xm,k − βm,k)2 − 2x

pm∑
k=0

ϕm,k(x)(xm,k − βm,k)+

+ x2
pm∑
k=0

ϕm,k(x) =

pm∑
k=0

ϕm,k(x)x2m,k − 2

pm∑
k=0

ϕm,k(x)xm,kβm,k+

+

pm∑
k=0

ϕm,k(x)β2
m,k − 2x

pm∑
k=0

ϕm,k(x)xm,k + 2x

pm∑
k=0

ϕm,k(x)βm,k+

+ x2
pm∑
k=0

ϕm,k(x) ≤ (Lmψ
2
x)(x) + 2βm(Lme1)(x) + (β2

m + 2xβm)(Lme0)(x)
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so that

m2−α2(Kmψ
2
x)(x) ≤ m2−α2(Lmψ

2
x)(x) + 2m2−α2βm(Lme1)(x)+

+m2−α2βm(βm + 2x)(Lme0)(x) ≤ k2(K) + 2l(b+ v(K))+

+ l(β + 2b)(1 + u(K)) = k′2(K)

where v(K) = sup{vm(K) : m ∈ N} and β = sup{βm : m ∈ N}.

Lemma 3.3. If α4 > 3α2 − 2 then

i) If x ∈ I ∩ J and (T4Lm)(x)
mα4

is bounded for any m ∈ N, then (T4Km)(x)
mα4

is
bounded for any m ∈ N.

ii) If K = [0, b] ⊂ I ∩ J and (T4Lm)(x)
mα4

is bounded on K for any m ∈ N, then
(T4Km)(x)

mα4
is bounded on K for any m ∈ N.

Proof. We have

(Kmψ
4
x)(x) =

pm∑
k=0

ϕm,k(x)(xm,k − x)4 − 4

pm∑
k=0

ϕm,k(x)βm,k(xm,k − x)3+

+ 6

pm∑
k=0

ϕm,k(x)β2
m,k(xm,k − x)2 − 4

pm∑
k=0

ϕm,k(x)β3
m,k(xm,k − x)+

+

pm∑
k=0

ϕm,k(x)β4
m,k ≤ (Lmψ

4
x)(x) + 4βm|(Lmψ3

x)(x)|+ 6β2
m(Lmψ

2
x)(x)+

+ 4β3
m|(Lmψx)(x)|+ β4

m(Lme0)(x)

so that we can write

(T4Km)(x)

mα4
= m4−α4(Kmψ

4
x)(x) ≤ m4−α4(Lmψ

4
x)(x)+

+ 4m4−α4βm|(Lmψ3
x)(x)|+ 6m4−α4β2

m(Lmψ
2
x)(x)+

+ 4m4−α4β3
m|(Lmψx)(x)|+m4−α4β4

m(Lme0)(x) = m4−α4(Lmψ
4
x)(x)+

+ 4βmm
4−α4 |(Lmψ3

x)(x)|+ 6(m2−α2βm)2m2−α2(Lmψ
2
x)(x)m−2+3α2−α4+

+ 4(m2−α2βm)3|(Lmψx)(x)|m−2+3α2−α4+

+ (m2−α2βm)4(Lme0)(x)m−4+4α2−α4 .

Further, applying the Cauchy’s inequality for linear and positive operators
(see [17]), we get

(Lmψ
3
x)2(x) ≤ (Lmψ

2
x)(x)(Lmψ

4
x)(x)
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and [
m

6−α2−α4
2 |(Lmψ3

x)(x)|
]2
≤ (T2Lm)(x)

mα2

(T4Lm)(x)

mα4

so that we have

m4−α4βm(Lmψ
3
x)(x) = m2−α2βmm

6−α2−α4
2 (Lmψ

3
x)(x)m

−2+3α2−α4
2 .

Taking into account the conditions 0 < α2 < 2, 0 < α4 < 4, α4 < α2 +
2 and α4 > 3α2 − 2, we obtain −2 + 3α2 − α4 < 0 so it follows that
βmm

4−α4 |(Lmψ3
x)(x)| is bounded. On the other hand, we have that |(Lmψx)(x)| ≤√

(Lme0)(x)(Lmψ2
x)(x) and −4+4α2−α4 = (−2+3α2−α4)+(−2+α2) < 0.

From (3.9), (3.16), the above remarks and the inequality verified by (T4Km)(x)
mα4

,
it follows the conclusion of the lemma.

Theorem 3.1. If f ∈ Ew(I) is continuous at x ∈ I ∩ J , then

lim
m→∞

(Kmf)(x) = f(x). (3.20)

If f is continuous on I, K ⊂ I ∩ J is a compact, then the convergence given
in (3.20) is uniform on K and∣∣∣∣∣(Kmf)(x)−

(
pm∑
k=0

ϕm,k(x)

)
f(x)

∣∣∣∣∣ ≤ (k′0(K) + k′2(K))ω

(
f ;

1√
m2−α2

)
(3.21)

for any x ∈ K and any m ∈ N.

Proof. One applies Theorem 2.1 for s = 0 and Lemma 3.2.

Corollary 3.1. If f ∈ Ew(I) is continuous on I,

pm∑
k=0

ϕm,k(x) = 1

for any x ∈ J and m ∈ N, K ⊂ I ∩ J is a compact, then

|(Kmf)(x)− f(x)| ≤ (k′0(K) + k′2(K))ω

(
f ;

1√
m2−α2

)
(3.22)

for any x ∈ K and any m ∈ N.

Proof. Directly from Theorem 3.1.
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Lemma 3.4. We have

lim
m→∞

m2−α2

pm∑
k=0

ϕm,k(x)βm,k = 0

lim
m→∞

m2−α2

pm∑
k=0

ϕm,k(x)xm,kβm,k = 0

lim
m→∞

m2−α2

pm∑
k=0

ϕm,k(x)β2
m,k = 0

Proof. For the first relation, we have −βm ≤ βm,k ≤ βm for any m ∈ N,
k ∈ {0, 1, . . . , pm} ∩ N0 so that

−m2−α2βm

pm∑
k=0

ϕm,k(x) ≤ m2−α2

pm∑
k=0

ϕm,k(x)βm,k ≤

≤ m2−α2βm

pm∑
k=0

ϕm,k(x)βm,k

and we take into account that lim
m→∞

m2−α2βm = 0. The other relations can

be proved analogously.

Theorem 3.2. If f ∈ Ew(I) is a two times differentiable function at x ∈ I∩J ,

with f (2) continuous at x and (T4Lm)(x)
mα4

is bounded for any m ∈ N, m ≥ m(2),
then

lim
m→∞

m2−α2

[
(Kmf)(x)− (T0Lm)(x)f(x)− 1

m
(T1Lm)(x)f (1)(x)− (3.23)

− 1

2m2
(T2Lm)(x)f (2)(x)

]
= 0.

Proof. From Theorem 2.1, we have

lim
m→∞

m2−α2

[
(Kmf)(x)− (T0Km)(x)f(x)− 1

m
(T1Km)(x)f (1)(x)−

− 1

2m2
(T2Km)(x)f (2)(x)

]
= 0.
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But

(T0Km)(x) = (T0Lm)(x),

(T1Km)(x) = (T1Lm)(x)−m
pm∑
k=0

ϕm,k(x)βm,k,

(T2Km)(x) = (T2Lm)(x)− 2m2

pm∑
k=0

ϕm,k(x)xm,kβm,k+

+m2

pm∑
k=0

ϕm,k(x)β2
m,k + 2m2x

pm∑
k=0

ϕm,k(x)βm,k

and taking Lemma 3.4 into account, the relation (3.23) results.

Remark 3.5. The relation (3.23) is a Voronovskaja-type theorem.

In the following, in every application, we have
pm∑
k=0

ϕm,k(x) = 1, so

(T0Lm)(x) = 1 for any x ∈ J and m ∈ N and um(K) = 0 for any K ⊂ I ∩ J
and m ∈ N.

We consider the applications from [23]. In the following, by particular-
ization of the sequence ym,k, m ∈ N, k ∈ {0, 1, . . . , pm} ∩ N0 and applying
Corollary 3.1, Theorem 3.1 and Theorem 3.2 from this paper we can obtain
convergence theorem, approximation theorems and Voronovskaja-type theo-
rems for the new operators. Because every application is a simple substitute
in the theorems of this section, we won’t replace anything. In the Applications
3.1, 3.2, 3.5, 3.6 and 3.7, we take w(x) = 1, x ∈ I. In the Applications 3.3
and 3.4, we take w(x) = 1

1+x2 , x ∈ I.

Application 3.1. If I = J = [0, 1], E(I) = F (J) = C([0, 1]), xm,k = k
m , m ∈

N, k ∈ {0, 1, . . . ,m}, we get the Bernstein operators. We have um([0, 1]) = 0,
vm([0, 1]) = 0 and wm([0, 1]) = 1

4m , m ∈ N. We consider the nodes ym,k =√
k(k+1)

m , m ∈ N, k ∈ {0, 1, . . . ,m}. Then on verify immediately that βm =
1

m+
√
m(m+1)

, m ∈ N and lim
m→∞

βm = 0. In this case, the operators (Km)m≥1

have the form

(Kmf)(x) =

m∑
k=0

pm,k(x)f

(√
k(k + 1)

m

)
,

f ∈ C([0, 1]), x ∈ [0, 1], m ∈ N and we get (T1Bm)(x) = 0, (T2Bm)(x) =
mx(1−x), (T4Bm)(x) = (3m2−6m)x2(1−x)2+mx(1−x), k0(K) = k′0(K) = 1,

k2(K) = 5
4 , k4(K) = 19

16 , k′2(K) = 11+2
√
2

4 .
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Application 3.2. We study a particular case of the Stancu operators. Let
α = 10 and β = − 1

2 . We obtain I = [0, 22], K = [0, 1] and for any f ∈
C([0, 22]), x ∈ [0, 1] and m ∈ N

(P (10,−1/2)
m f)(x) =

m∑
k=0

pm,k(x)f

(
2k + 20

2m− 1

)
.

We consider the nodes ym,k = (4k+40)m
(2m−1)2 . In this case, the operators (Km)m≥1

have the form

(Kmf)(x) =

m∑
k=0

pm,k(x)f

(
m(4k + 40)

(2m− 1)2

)
,

where f ∈ C([0, 22]), x ∈ [0, 1], m ∈ N. We get (T1P
(10,−1/2)
m )(x) = m(20+x)

2m−1 ,

(T2P
(10,−1/2)
m )(x) = m2 · 4mx(1−x)+(20+x)2

(2m−1)2 ,

(T4P
(10,−1/2)
m )(x) = m4

(2m−1)4 [48m2x2(1−x)2 +16mx(1−x)−96mx2(1−x)2 +

32(20+x)mx(1−x)+24(20+x)2mx(1−x)+(20+x)4], k0(K) = 1, k′0(K) = 1,

α2 = 1, α4 = 2; because lim
m→∞

(T2P
(10,−1/2)
m )(x)

m
= x(1− x) and x(1− x) ≤ 1

4

for any x ∈ [0, 1], it follows that k2(K) = 5
4 and similarly k4(K) = 19

16 .
Further, we have k′2(K) = 100, taking into account that um(K) = 0 and
vm(K) = 42

2m−1 .

Application 3.3. If I = J = [0,∞), E(I) = C2([0,∞)), F (J) = C([0,∞)),

K = [0, b], b > 0, pm = ∞, xm,k = k
m , ϕm,k(x) = e−mx (mx)k

k! , m ∈ N, k ∈
N0, we obtain the Mirakjan-Favard-Szász operators and we have um(K) = 0,

vm(K) = 0 and wm(K) = b
m , m ∈ N. We consider the nodes ym,k = 2k(k+1)

m(2k+1) ,

m ∈ N, k ∈ N0 and we have βm = 1
2m , m ∈ N. In this case, the operators

(Km)m≥1 are

(Kmf)(x) = e−mx
∞∑
k=o

(mx)k

k!
f

(
2k(k + 1)

m(2k + 1)

)
,

where f ∈ C2([0,∞)), x ∈ [0,∞), m ∈ N. We get (T1Sm)(x) = 0, (T2Sm)(x) =
mx, (T4Sm)(x) = 3m2x2 + mx, k0(K) = 1 = k′0(K), k2(K) = b, k4(K) =
3b2 + b, k′2(K) = 2b+ 1

4 (see [18]).

Application 3.4. Let I = J = [0,∞), E(I) = C2([0,∞)), F (J) = C([0,∞)),

K = [0, b], b > 0, pm =∞, xm,k = k
m , ϕm,k(x) = (1 + x)−m

(
m+k−1

k

) (
x

1+x

)k
,

m ∈ N, k ∈ N0. In this case we get the Baskakov operators and we have
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um(K) = 0, vm(K) = 0 and wm(K) = b(1+b)
2m , m ∈ N. We consider the nodes

ym,k =
√
4k2+4k+2

2m , m ∈ N, k ∈ N0 and we have βm = 1
m
√
2
. The operators

(Km)m≥1 have the form

(Kmf)(x) = (1 + x)−m
∞∑
k=0

(
m+ k − 1

k

)(
x

1 + x

)k
f

(√
4k2 + 4k + 2

2m

)
,

where f ∈ C2([0,∞)), x ∈ [0,∞), m ∈ N. We get (see [18]) (T1Vm)(x) = 0,
(T2Vm)(x) = mx(1 +x), (T4Vm)(x) = 3m(m+ 2)x4 + 6m(m+ 2)x3 +m(3m+
7)x2 + mx, k2(K) = b(1 + b), k4(K) = 9b4 + 18b3 + 10b2 + b and k′2(K) =
b2 + 2(1 + 2

√
2) + 1

2 .

Application 3.5. If I = J = [0,∞), E(I) = F (J) = C([0,∞)), K = [0, b],

b > 0, pm = ∞, xm,k = k
m , ϕm,k(x) = m(m+k)k−1

k!

(
x

1+x

)k
e−

(k+m)x
1+x , m ∈ N,

k ∈ N0, we get the Ismail-May operators and we have um(K) = 0, vm(K) = 0

and wm(K) = b(1+b)2

m , m ∈ N. We consider the nodes ym,k =
3
√
k2(k+1)

m ,
m ∈ N, k ∈ N0 and we have βm = 1

3m . In this case, the operators (Km)m≥1
are

(Kmf)(x) = e
−mx
1+x

∞∑
k=0

m(m+ k)k−1

k!

(
x

1 + x

)k
e−

kx
1+x f

(
3
√
k2(k + 1)

m

)
,

where f ∈ C([0,∞)), m ∈ N. We obtain (T1Rm)(x) = 0, (T2Rm)(x) = mx(1+
x)2, (T4Rm)(x) = 3m2x2(1+x)4 +m(6x+4)x2(1+x)4 +mx(1+x)4(1+3x)2,
k2(K) = 1 + b(1 + b)2, k4(K) = 1 + b2(1 + b)4 and k′2(K) = b3 + 2b2 + 7

3b+ 10
9

(see [20]).

For the Bleimann-Butzer-Hahn operators and for the Meyer-König and
Zeller operators we only give the convergence and approximation theorems.

Application 3.6. We consider I = J = [0,∞), E(I) = F (J) = CB([0,∞)),
K = [0, b], b > 0, pm = m, xm,k = k

m+1−k , ϕm,k(x) = 1
(1+x)m

(
m
k

)
xk, m ∈ N,

k ∈ {0, 1, . . . ,m}. In this case we get the Bleimann-Butzer-Hahn operators and

we have um(K) = 0, vm(K) = b

(
b

1+b

)m
and wm(K) = 4b(1+b)2

m+2 , m ∈ N (see

[19]). We consider the nodes ym,k = γmk
m+1−k , m ∈ N, k ∈ {0, 1, . . . ,m}, where

(γm)m≥1 is a sequence of real numbers with the property that lim
m→∞

m(1 −
γm) = 0 and we have βm = m|1− γm|, m ∈ N. The operators (Km)m≥1 have
the form

(Kmf)(x) = (1 + x)−m
∞∑
k=0

(
m

k

)
xkf

(
γmk

m+ 1− k

)
,
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where x ∈ [0,∞), m ∈ N, f ∈ CB([0,∞)). We obtain (T0Lm)(x) = 1,

(T1Lm)(x) = −mx
(

x
1+x

)m
, k2(K) = 4b(1 + b)2, for m ≥ 24(1 + b) and for

βm = 1− 1
m2 , m ∈ N, we obtain k′2(K) = 4b(1 + b)2 + (1+2b)(1+3b)

1+b .

Application 3.7. If I = J = [0, 1], E(I) = B([0, 1]), E(J) = C([0, 1]), K =
[0, 1], pm =∞, xm,k = k

m+k , (ϕm,k)(x) =
(
m+k
k

)
(1−x)m+1xk, m ∈ N, k ∈ N0,

we get the Meyer-König and Zeller operators and we have um([0, 1]) = 0,
vm([0, 1]) = 0 and wm([0, 1]) = 1

4(m+1) , m ∈ N. We consider the nodes

ym,k = k+γm
m+k+γm

, m ∈ N, k ∈ N0, where (γm)m≥1 is a sequence of real numbers
such that

lim
m→∞

γm
m+ γm

= 0.

Then on verify immediately that βm = γm
m+γm

, m ∈ N and the operator

(Km)m≥1 have the form

(Kmf)(x) =

∞∑
k=0

(
m+ k

k

)
(1− x)m+1xkf

(
k + γm

m+ k + γm

)
,

where f ∈ B([0, 1]), x ∈ [0, 1], m ∈ N. For γm = 1
m , we obtain (T0Zm)(x) = 1,

k0(K) = 1, k2(K) = 2, (T1Zm)(x) = 0 (see [18]) and k′2(K) = 13
2 .
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