

An. Şt. Univ. Ovidius Constanța

Vol. 19(1), 2011, 237-254

ON A GENERAL CLASS OF LINEAR AND POSITIVE OPERATORS

Ovidiu T. Pop, Mircea D. Fărcaş and Dan Bărbosu

Abstract

Suppose that $(L_m)_{m\geq 1}$ is a given sequence of linear and positive operators. Starting with the mentioned sequence, the new sequence $(K_m)_{m\geq 1}$ of linear and positive operators is constructed. For the operators $(K_m)_{m\geq 1}$ a convergence theorem and a Voronovskaja-type theorem are established. As particular cases of the general construction, we refined the Bernstein's operators, the Stancu's operators, the Mirakyan-Favard-Szasz operators, the Baskakov operators, the Bleimann-Butzer-Hahn operators, the Meyer-König-Zeller operators, the Ismail-May operators.

1 Introduction

In this section, we recall some notions and operators which will be used in the paper.

Let \mathbb{N} be the set of positive integers and $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. For $m \in \mathbb{N}$, let $B_m : C([0,1]) \to C([0,1])$ be the Bernstein operators, defined for any function $f \in C([0,1])$ by

$$(B_m f)(x) = \sum_{k=0}^m p_{m,k}(x) f\left(\frac{k}{m}\right), \qquad (1.1)$$

Mathematics Subject Classification: 41A10, 41A25, 41A35, 41A36

Key Words: Linear and positive operators, convergence theorem, the first order modulus of smoothness, Voronovskaja-type theorem, Baskakov operators, Bernstein operators, Ismail-May operators, Mirakyan-Favard-Szasz operators, Stancu operators, Bleimann-Butzer-Hahn operators.

Received: January, 2010 Accepted: December, 2010

where $p_{m,k}(x)$ are the fundamental Bernstein polynomials defined by

$$p_{m,k}(x) = \binom{m}{k} x^k (1-x)^{m-k}, \qquad (1.2)$$

for any $x \in [0, 1]$ and any $k \in \{0, 1, \dots, m\}$ (see [5] or [25]).

For the following construction see [15]. Define the natural number m_0 by

$$m_0 = \begin{cases} \max\{1, -[\beta]\}, & \text{if } \beta \in \mathbb{R} \setminus \mathbb{Z} \\ \max\{1, 1 - \beta\}, & \text{if } \beta \in \mathbb{Z}. \end{cases}$$
(1.3)

For the real number β , we have that

$$m + \beta \ge \gamma_{\beta} \tag{1.4}$$

for any natural number $m, m \ge m_0$, where

$$\gamma_{\beta} = m_0 + \beta = \begin{cases} \max\{1 + \beta, \{\beta\}\}, & \text{if } \beta \in \mathbb{R} \setminus \mathbb{Z} \\ \max\{1 + \beta, 1\}, & \text{if } \beta \in \mathbb{Z}. \end{cases}$$
(1.5)

For the real numbers $\alpha, \beta, \alpha \geq 0$, we set

$$\mu^{(\alpha,\beta)} = \begin{cases} 1, & \text{if } \alpha \leq \beta \\ 1 + \frac{\alpha - \beta}{\gamma_{\beta}}, & \text{if } \alpha > \beta. \end{cases}$$
(1.6)

For the real numbers α and β , $\alpha \ge 0$, we have that $1 \le \mu^{(\alpha,\beta)}$ and

$$0 \le \frac{k+\alpha}{m+\beta} \le \mu^{(\alpha,\beta)} \tag{1.7}$$

for any natural number $m \ge m_0$ and for any $k \in \{0, 1, \ldots, m\}$. For the real numbers α and β , $\alpha \ge 0$, m_0 and $\mu^{(\alpha,\beta)}$ defined by (1.3)-(1.6), let the operators $P_m^{(\alpha,\beta)}: C([0,\mu^{(\alpha,\beta)}]) \to C([0,1])$ be defined for any function $f \in C([0, \mu^{(\alpha, \beta)}])$ by

$$\left(P_m^{(\alpha,\beta)}f\right)(x) = \sum_{k=0}^m p_{m,k}(x)f\left(\frac{k+\alpha}{m+\beta}\right),\tag{1.8}$$

for any natural number $m \ge m_0$ and for any $x \in [0, 1]$. These operators are called Stancu operators, introduced and studied in 1969 by D. D. Stancu in the paper [24]. Note that in [24], the domain of definition for the Stancu operators is C([0, 1]) and the numbers α and β verify the condition $0 \leq \alpha \leq \beta$. In 1980 [4], G. Bleimann, P. L. Butzer and L. Hahn introduced the sequence of linear positive operators $(L_m)_{m\geq 1}$, $L_m : C_B([0, \infty)) \to C_B([0, \infty))$, defined for any function $f \in C_B([0, \infty))$ by

$$(L_m f)(x) = \frac{1}{(1+x)^m} \sum_{k=0}^m \binom{m}{k} x^k f\left(\frac{k}{m+1-k}\right),$$
 (1.9)

for any $x \in [0, \infty)$ and any $m \in \mathbb{N}$, where $C_B([0, \infty)) = \{f \mid f : [0, \infty) \to \mathbb{R}, f \text{ bounded and continuous on } [0, \infty)\}.$

For $m \in \mathbb{N}$ were considered the operators $S_m : C_2([0,\infty)) \to C([0,\infty))$ defined for any function $f \in C_2([0,\infty))$ by

$$(S_m f)(x) = e^{-mx} \sum_{k=0}^{\infty} \frac{(mx)^k}{k!} f\left(\frac{k}{m}\right), \qquad (1.10)$$

for any $x \in [0,\infty)$, where $C_2([0,\infty)) = \left\{ f \in C([0,\infty)) : \lim_{x \to \infty} \frac{f(x)}{1+x^2} \text{ exists} \right\}$ and is finite $\left. \right\}$. The operators $(S_m)_{m \ge 1}$ are called Mirakjan-Favard-Szász

operators and were introduced in 1941 by G. M. Mirakjan in [12].

They were intensively studied by J. Favard in 1944 in [8] and O. Szász in 1950 in [26].

Let for $m \in \mathbb{N}$, the operators $V_m : C_2([0,\infty)) \to C([0,\infty))$ defined for any function $f \in C_2([0,\infty))$ by

$$(V_m f)(x) = (1+x)^{-m} \sum_{k=0}^{\infty} {\binom{m+k-1}{k}} \left(\frac{x}{1+x}\right)^k f\left(\frac{k}{m}\right), \qquad (1.11)$$

for any $x \in [0, \infty)$. They are called the Baskakov operators and were introduced in 1957 by V. A. Baskakov in [2].

W. Meyer-König and K. Zeller introduced in [11] a sequence of linear and positive operators. After a slight adjustment given by E. W. Cheney and A. Sharma in [6], these operators $Z_m : B([0,1)) \to C([0,1))$, defined for any function $f \in B([0,1))$ by

$$(Z_m f)(x) = \sum_{k=0}^{\infty} {\binom{m+k}{k}} (1-x)^{m+1} x^k f\left(\frac{k}{m+k}\right), \qquad (1.12)$$

for any $m \in \mathbb{N}$ and for any $x \in [0, 1)$. These operators are called the Meyer-König and Zeller operators. Observe that $Z_m : C([0, 1]) \to C([0, 1]), m \in \mathbb{N}$. In the paper [10], M. Ismail and C. P. May consider the operators $(R_m)_{m\geq 1}$. For $m\in\mathbb{N}, R_m: C([0,\infty))\to C([0,\infty))$ is defined for any function $f\in C([0,\infty))$ by

$$(R_m f)(x) = e^{-\frac{mx}{1+x}} \sum_{k=0}^{\infty} \frac{m(m+k)^{k-1}}{k!} \left(\frac{x}{1+x}\right)^k e^{-\frac{kx}{1+x}} f\left(\frac{k}{m}\right)$$
(1.13)

for any $x \in [0, \infty)$.

In what follows, we consider $I \subset \mathbb{R}$, I an interval and we shall use the following sets of functions: E(I), F(I) which are subsets of the set of real functions defined on I, $B(I) = \{f | f : I \to \mathbb{R}, f \text{ bounded on } I\}$, $C(I) = \{f | f : I \to \mathbb{R}, f \text{ continuous on } I\}$ and $C_B(I) = B(I) \cap C(I)$.

If $f \in B(I)$, then the first order modulus of smoothness of f is the function $\omega(f; \cdot) : [0, \infty) \to \mathbb{R}$ defined for any $\delta \ge 0$ by

$$\omega(f;\delta) = \sup\left\{ |f(x') - f(x'')| : x', x'' \in I, |x' - x''| \le \delta \right\}.$$
(1.14)

2 Preliminaries

In the following, we consider the general construction and the results from [22], which we will use afterwards in the paper.

Let I, J be intervals with $I \subset [0, \infty)$ and $I \cap J \neq \emptyset$. For any $m \in \mathbb{N}$ and $k \in \mathbb{N}_0$ consider the functions $\varphi_{m,k} : J \to \mathbb{R}$ with the property that $\varphi_{m,k}(x) \geq 0$ for any $x \in J$ and the linear and positive functionals $A_{m,k} : E(I) \to \mathbb{R}$. Let E(I) and F(J) be subsets of the set of real functions defined on I, respectively J such that the series

$$\sum_{k=0}^{\infty} \varphi_{m,k}(x) f(x_{m,k})$$

is convergent for any $f \in E(I)$ and $x \in J$. For any $x \in I$ consider the functions $\psi_x : I \to \mathbb{R}, \ \psi_x(t) = t - x$ for any $t \in I$ and we suppose that $\psi_x^i \in E(I)$, for any $x \in I \cap J$ and any $i \in \{0, 1, 2, \dots, s + 2\}$. In what follows $s \in \mathbb{N}_0$ is even. For $m \in \mathbb{N}$ define the operators $L_m : E(I) \to E(J)$ by

$$(L_m f)(x) = \sum_{k=0}^{\infty} \varphi_{m,k}(x) A_{m,k}(f)$$
(2.1)

for any $f \in E(I)$ and $x \in J$. It is immediately the following

Proposition 2.1. The operators $(L_m)_{m\geq 1}$ are linear and positive on $E(I \cap J)$.

For $m \in \mathbb{N}$ and $i \in \mathbb{N}_0$ define T_i by

$$(T_i L_m)(x) = m^i \left(L_m \psi_x^i \right)(x) = m^i \sum_{k=0}^{\infty} \varphi_{m,k}(x) A_{m,k} \left(\psi_x^i \right)$$
(2.2)

for any $x \in I \cap J$.

Theorem 2.1. [22] If $f \in E(I)$ is a s times differentiable function in $x \in I \cap J$, with $f^{(s)}$ continuous in x, and if there exist α_s , $\alpha_{s+2} \in [0, \infty)$ and $m(s) \in \mathbb{N}$ such that

$$\alpha_{s+2} < \alpha_s + 2 \tag{2.3}$$

and $\frac{(T_sL_m)(x)}{m^{\alpha_s}}$, $\frac{(T_{s+2}L_m)(x)}{m^{\alpha_{s+2}}}$ are bounded for any $m \in \mathbb{N}$, $m \ge m(s)$, then

$$\lim_{m \to \infty} m^{s - \alpha_s} \left[(L_m f)(x) - \sum_{i=0}^s \frac{1}{i!m^i} (T_i L_m)(x) f^{(i)}(x) \right] = 0.$$
 (2.4)

Assume that f is a s times differentiable function on I with $f^{(s)}$ continuous on I and an interval $K \subset I \cap J$ exists such that there exist $m(s) \in \mathbb{N}$ and the constants $k_j(K) \in \mathbb{R}$ depending on K, so that for any $m \in \mathbb{N}$, $m \ge m(s)$ and $x \in K$ we have

$$\frac{(T_j L_m)(x)}{m^{\alpha_j}} \le k_j(K) \tag{2.5}$$

where $j \in \{s, s + 2\}$. Then the convergence given in (2.4) is uniform on K and

$$m^{s-\alpha_{s}} \left| (L_{m}f)(x) - \sum_{i=0}^{s} \frac{1}{i!m^{i}} (T_{i}L_{m})(x)f^{(i)}(x) \right| \leq (2.6)$$

$$\leq \frac{1}{s!} (k_{s}(K) + k_{s+2}(K))\omega \left(f^{(s)}; \frac{1}{\sqrt{m^{2+\alpha_{s}-\alpha_{s+2}}}} \right)$$

for any $x \in K$ and $m \ge m(s)$.

Remark 2.1. In Theorem 2.1 we choose the smallest α_s and α_{s+2} if they exist.

Now, if $m \in \mathbb{N}$ and $\varphi_{m,k}(x) = 0$, $A_{m,k}(f) = 0$ for any $f \in E(I)$, any $x \in J$ and any $k \in \{m + 1, m + 2, \ldots\}$, then we obtain a class of operators defined by finite sums, so that the relation (2.1) becomes

$$(L_m f)(x) = \sum_{k=0}^{m} \varphi_{m,k}(x) A_{m,k}(f).$$
 (2.7)

Remark 2.2. From above, it follows that the theorems from [22] hold for the operators defined by finite sums and for the operators defined by infinite sums.

3 Main results

Taking the above results into account, we can make the following construction (see [22] and [23]).

Let I, J be real intervals with $I \cap J \neq \emptyset$ and $p_m = m$ for any $m \in \mathbb{N}$ (the finite case) or $p_m = \infty$ for any $m \in \mathbb{N}$ (the infinite case). For any $m \in \mathbb{N}$ and $k \in \{0, 1, \ldots, p_m\} \cap \mathbb{N}_0$, consider the nodes $x_{m,k} \in I$ (in this construction we have $A_{m,k}(f) = f(x_{m,k})$) and the functions $\varphi_{m,k} : J \to \mathbb{R}$, with the property that $\varphi_{m,k}(x) \geq 0$, for any $x \in J$. We suppose that for any compact $K \subset I \cap J$ there exists the sequence $(u_m(K))_{m>1}$, depending on K, such that

$$\lim_{m \to \infty} u_m(K) = 0 \tag{3.1}$$

and

$$\left|\sum_{k=0}^{p_m} \varphi_{m,k}(x) - 1\right| \le u_m(K) \tag{3.2}$$

for any $x \in K$, any $m \in \mathbb{N}$ and we note $u(K) = \sup\{u_m(K) : m \in \mathbb{N}\}.$

Remark 3.1. From (3.1) and (3.2) it follows that $\lim_{m \to \infty} \sum_{k=0}^{p_m} \varphi_{m,k}(x) = 1$ for any $x \in K$ and the convergence is uniform on K.

Let $w: I \to (0, \infty)$ be a fixed function, called the weight function, such there exists a positive constant M such that $M \leq w(x)$, for any $x \in I$ and the set functions

$$E_w(I) = \{ f | f : I \to \mathbb{R} \text{ such that } wf \text{ is bounded on } I \}.$$
(3.3)

For $f \in E_w(I)$ there exists a positive constant M(f), depending on f, such that $w(x)|f(x)| \leq M(f)$, for any $x \in I$.

Let $K \subset I \cap J$ compact set and $x \in K$. If $p_m = m$ for any $m \in \mathbb{N}$, then the sum $\sum_{k=0}^{p_m} \varphi_{m,k}(x) f(x_{m,k})$ exists for any $m \in \mathbb{N}$.

If $p_m = \infty$ for any $m \in \mathbb{N}$, we consider the sequence $(s_n(m))_{n\geq 1}$ defined by $s_n(m) = \sum_{k=0}^n \varphi_{m,k}(x) |f(x_{m,k})|$, for any $n \in \mathbb{N}$. Taking (3.2) into account, we get

$$s_n(m) = \sum_{k=0}^n \varphi_{m,k}(x) \frac{1}{w(x_{m,k})} w(x_{m,k}) |f(x_{m,k})| \le \frac{M(f)}{M} \sum_{k=0}^n \varphi_{m,k}(x) \le \frac{M(f)}{M} (1 + u_m(K)) \le \frac{M(f)}{M} (1 + u(K)),$$

from where it follows that the sum $\sum_{k=0}^{\infty} \varphi_{m,k}(x) |f(x_{m,k})|$ exists for any $m \in \mathbb{N}$. It follows that the sum $\sum_{k=0}^{\infty} \varphi_{m,k}(x) f(x_{m,k})$ exists and then from the above results, we get that the sum $\sum_{k=0}^{p_m} \varphi_{m,k}(x) f(x_{m,k})$ exists for any $m \in \mathbb{N}$. For $m \in \mathbb{N}$ let the given operator $L_m : E_w(I) \to F(J)$ defined by

$$(L_m f)(x) = \sum_{k=0}^{p_m} \varphi_{m,k}(x) f(x_{m,k})$$
(3.4)

for any $x \in J$ and any $f \in E_w(I)$, with the property that for any $f \in E_w(I) \cap C(I)$, we have

$$\lim_{m \to \infty} (L_m f)(x) = f(x) \tag{3.5}$$

uniformly on any compact $K \subset I \cap J$.

Remark 3.2. We suppose that the functions $\psi_x, e_i \in E_w(I), x \in I$, where $e_i : I \to \mathbb{R}, e_i(t) = t^i$ for any $t \in I, i \in \{0, 1, 2, 3, 4\}$.

Remark 3.3. Taking the Bohman-Korovkin Theorem into account, from (3.5) it follows that for the operators $(L_m)_{m\geq 1}$ we have

$$\lim_{m \to \infty} (L_m e_i)(x) = e_i(x) \tag{3.6}$$

uniformly on any compact $K \subset I \cap J$, $i \in \{0, 1, 2\}$ and

$$\lim_{m \to \infty} (L_m \psi_x^2)(x) = 0 \tag{3.7}$$

uniformly on any compact $K \subset I \cap J$, where $x \in I$.

Remark 3.4. From Remark 3.3 it follows that for any compact $K \subset I \cap J$ there exist the sequences $(v_m(K))_{m\geq 1}$, $(w_m(K))_{m\geq 1}$ depending on K, such that

$$\lim_{m \to \infty} v_m(K) = \lim_{m \to \infty} w_m(K) = 0$$
(3.8)

and

$$|(L_m e_1)(x) - x| \le v_m(K),$$
 (3.9)

$$(L_m \psi_r^2)(x) \le w_m(K), \tag{3.10}$$

for any $x \in K$ and any $m \in \mathbb{N}$. We suppose in the following that there exists $0 < \alpha_2 < 2$, α_2 not depending on K, such that the sequence

 $(m^{2-\alpha_2}w_m(K))_{m\geq 1}$ is bounded and $\lim_{m\to\infty} m^{2-\alpha_2}w_m(K) = 0$. So, there exists $k_2(K) > 0$, depending on K such that

$$m^{2-\alpha_2}w_m(K) \le k_2(K) \tag{3.11}$$

for any $m \in \mathbb{N}$.

Lemma 3.1. For any $K \subset I \cap J$ there exists the constants $k_0(K)$ and $k_2(K)$, depending on K, such that

$$(T_0 L_m)(x) \le k_0(K)$$
 (3.12)

and

$$\frac{(T_2 L_m)(x)}{m^{\alpha_2}} \le k_2(K) \tag{3.13}$$

for any $x \in K$ and any $m \in \mathbb{N}$.

Proof. Let $m \in \mathbb{N}$ and $x \in K$. Then taking (3.2) into account, we obtain that

$$(T_0L_m)(x) = (L_m e_0)(x) = \sum_{k=0}^{p_m} \varphi_{m,k}(x) \le 1 + u_m(K) \le 1 + u(K) = k_0(K)$$

Further, we have

$$\frac{(T_2L_m)(x)}{m^{\alpha_2}} = \frac{m^2(L_m\psi_x^2)(x)}{m^{\alpha_2}} = m^{2-\alpha_2}(L_m\psi_x^2)(x)$$

and taking (3.10), (3.11) into account we obtain (3.13).

In the following, for $m \in \mathbb{N}$ and $k \in \{0, 1, \dots, p_m\} \cap \mathbb{N}_0$ we consider the nodes $y_{m,k} \in I$ such that

$$\beta_m = \sup_{k \in \{0, 1, \cdots, p_m\} \cap \mathbb{N}_0} |x_{m,k} - y_{m,k}| < \infty$$
(3.14)

for any $m \in \mathbb{N}$ and

$$\lim_{m \to \infty} m^{2-\alpha_2} \beta_m = 0, \tag{3.15}$$

so there exists l > 0 such that

$$m^{2-\alpha_2}\beta_m \le l \tag{3.16}$$

for any $m \in \mathbb{N}$. For $m \in \mathbb{N}$ and $k \in \{0, 1, \dots, p_m\} \cap \mathbb{N}_0$, we note $\beta_{m,k} = x_{m,k} - y_{m,k}$, and then $|\beta_{m,k}| \leq \beta_m$ for any $k \in \{0, 1, \dots, p_m\} \cap \mathbb{N}_0$ and any $m \in \mathbb{N}$.

For $m \in \mathbb{N}$ define the operator $K_m : E_w(I) \to F(J)$ by

$$(K_m f)(x) = \sum_{k=0}^{p_m} \varphi_{m,k}(x) f(y_{m,k}), \qquad (3.17)$$

for any $x \in I$ and any $f \in E_w(I)$.

Lemma 3.2. For any $K = [0,b] \subset I \cap J$ there exist the constants $k'_0(K)$ and $k'_2(K)$, depending on K, such that

$$(T_0 K_m)(x) \le k'_0(K) \tag{3.18}$$

and

$$\frac{(T_2K_m)(x)}{m^{\alpha_2}} \le k_2'(K) \tag{3.19}$$

for any $x \in K$ and any $m \in \mathbb{N}$.

Proof. We have $(T_0K_m)(x) = (K_me_0)(x) = \sum_{k=0}^{p_m} \varphi_{m,k}(x) = (L_me_0)(x) = (T_0L_m)(x) \le 1 + u_m(K) \le 1 + u(K)$ and we can take $k'_0(K) = k_0(K)$. Further, we have

$$\frac{(T_2K_m)(x)}{m^{\alpha_2}} = \frac{m^2(K_m\psi_x^2)(x)}{m^{\alpha_2}} = m^{2-\alpha_2}(K_m\psi_x^2)(x)$$

and

$$\begin{split} &(K_m \psi_x^2)(x) = (K_m e_2)(x) - 2x(K_m e_1)(x) + x^2(K_m e_0)(x) = \\ &= \sum_{k=0}^{p_m} \varphi_{m,k}(x) y_{m,k}^2 - 2x \sum_{k=0}^{p_m} \varphi_{m,k}(x) y_{m,k} + x^2 \sum_{k=0}^{p_m} \varphi_{m,k}(x) = \\ &= \sum_{k=0}^{p_m} \varphi_{m,k}(x) (x_{m,k} - \beta_{m,k})^2 - 2x \sum_{k=0}^{p_m} \varphi_{m,k}(x) (x_{m,k} - \beta_{m,k}) + \\ &+ x^2 \sum_{k=0}^{p_m} \varphi_{m,k}(x) = \sum_{k=0}^{p_m} \varphi_{m,k}(x) x_{m,k}^2 - 2 \sum_{k=0}^{p_m} \varphi_{m,k}(x) x_{m,k} \beta_{m,k} + \\ &+ \sum_{k=0}^{p_m} \varphi_{m,k}(x) \beta_{m,k}^2 - 2x \sum_{k=0}^{p_m} \varphi_{m,k}(x) x_{m,k} + 2x \sum_{k=0}^{p_m} \varphi_{m,k}(x) \beta_{m,k} + \\ &+ x^2 \sum_{k=0}^{p_m} \varphi_{m,k}(x) \leq (L_m \psi_x^2)(x) + 2\beta_m (L_m e_1)(x) + (\beta_m^2 + 2x\beta_m) (L_m e_0)(x) \end{split}$$

so that

$$m^{2-\alpha_2}(K_m\psi_x^2)(x) \le m^{2-\alpha_2}(L_m\psi_x^2)(x) + 2m^{2-\alpha_2}\beta_m(L_me_1)(x) + m^{2-\alpha_2}\beta_m(\beta_m + 2x)(L_me_0)(x) \le k_2(K) + 2l(b+v(K)) + l(\beta+2b)(1+u(K)) = k'_2(K)$$

where $v(K) = \sup\{v_m(K) : m \in \mathbb{N}\}\ \text{and}\ \beta = \sup\{\beta_m : m \in \mathbb{N}\}.$

Lemma 3.3. If $\alpha_4 > 3\alpha_2 - 2$ then i) If $x \in I \cap J$ and $\frac{(T_4L_m)(x)}{m^{\alpha_4}}$ is bounded for any $m \in \mathbb{N}$, then $\frac{(T_4K_m)(x)}{m^{\alpha_4}}$ is bounded for any $m \in \mathbb{N}$. ii) If $K = [0, b] \subset I \cap J$ and $\frac{(T_4L_m)(x)}{m^{\alpha_4}}$ is bounded on K for any $m \in \mathbb{N}$, then $\frac{(T_4K_m)(x)}{m^{\alpha_4}}$ is bounded on K for any $m \in \mathbb{N}$.

Proof. We have

$$(K_m \psi_x^4)(x) = \sum_{k=0}^{p_m} \varphi_{m,k}(x)(x_{m,k} - x)^4 - 4 \sum_{k=0}^{p_m} \varphi_{m,k}(x)\beta_{m,k}(x_{m,k} - x)^3 + 6 \sum_{k=0}^{p_m} \varphi_{m,k}(x)\beta_{m,k}^2(x_{m,k} - x)^2 - 4 \sum_{k=0}^{p_m} \varphi_{m,k}(x)\beta_{m,k}^3(x_{m,k} - x) + \sum_{k=0}^{p_m} \varphi_{m,k}(x)\beta_{m,k}^4 \le (L_m \psi_x^4)(x) + 4\beta_m |(L_m \psi_x^3)(x)| + 6\beta_m^2 (L_m \psi_x^2)(x) + 4\beta_m^3 |(L_m \psi_x)(x)| + \beta_m^4 (L_m e_0)(x)$$

so that we can write

$$\begin{aligned} \frac{(T_4K_m)(x)}{m^{\alpha_4}} &= m^{4-\alpha_4}(K_m\psi_x^4)(x) \le m^{4-\alpha_4}(L_m\psi_x^4)(x) + \\ &+ 4m^{4-\alpha_4}\beta_m|(L_m\psi_x^3)(x)| + 6m^{4-\alpha_4}\beta_m^2(L_m\psi_x^2)(x) + \\ &+ 4m^{4-\alpha_4}\beta_m^3|(L_m\psi_x)(x)| + m^{4-\alpha_4}\beta_m^4(L_me_0)(x) = m^{4-\alpha_4}(L_m\psi_x^4)(x) + \\ &+ 4\beta_m m^{4-\alpha_4}|(L_m\psi_x^3)(x)| + 6(m^{2-\alpha_2}\beta_m)^2 m^{2-\alpha_2}(L_m\psi_x^2)(x)m^{-2+3\alpha_2-\alpha_4} + \\ &+ 4(m^{2-\alpha_2}\beta_m)^3|(L_m\psi_x)(x)|m^{-2+3\alpha_2-\alpha_4} + \\ &+ (m^{2-\alpha_2}\beta_m)^4(L_me_0)(x)m^{-4+4\alpha_2-\alpha_4}. \end{aligned}$$

Further, applying the Cauchy's inequality for linear and positive operators (see [17]), we get

$$(L_m \psi_x^3)^2(x) \le (L_m \psi_x^2)(x)(L_m \psi_x^4)(x)$$

and

$$\left[m^{\frac{6-\alpha_2-\alpha_4}{2}}|(L_m\psi_x^3)(x)|\right]^2 \le \frac{(T_2L_m)(x)}{m^{\alpha_2}}\frac{(T_4L_m)(x)}{m^{\alpha_4}}$$

so that we have

$$m^{4-\alpha_4}\beta_m(L_m\psi_x^3)(x) = m^{2-\alpha_2}\beta_m m^{\frac{6-\alpha_2-\alpha_4}{2}}(L_m\psi_x^3)(x)m^{\frac{-2+3\alpha_2-\alpha_4}{2}}.$$

Taking into account the conditions $0 < \alpha_2 < 2$, $0 < \alpha_4 < 4$, $\alpha_4 < \alpha_2 + 2$ and $\alpha_4 > 3\alpha_2 - 2$, we obtain $-2 + 3\alpha_2 - \alpha_4 < 0$ so it follows that $\beta_m m^{4-\alpha_4} |(L_m \psi_x^3)(x)|$ is bounded. On the other hand, we have that $|(L_m \psi_x)(x)| \leq \sqrt{(L_m e_0)(x)(L_m \psi_x^2)(x)}$ and $-4 + 4\alpha_2 - \alpha_4 = (-2 + 3\alpha_2 - \alpha_4) + (-2 + \alpha_2) < 0$. From (3.9), (3.16), the above remarks and the inequality verified by $\frac{(T_4 K_m)(x)}{m^{\alpha_4}}$, it follows the conclusion of the lemma.

Theorem 3.1. If $f \in E_w(I)$ is continuous at $x \in I \cap J$, then

$$\lim_{n \to \infty} (K_m f)(x) = f(x). \tag{3.20}$$

If f is continuous on I, $K \subset I \cap J$ is a compact, then the convergence given in (3.20) is uniform on K and

$$\left| (K_m f)(x) - \left(\sum_{k=0}^{p_m} \varphi_{m,k}(x) \right) f(x) \right| \le (k'_0(K) + k'_2(K)) \omega \left(f; \frac{1}{\sqrt{m^{2-\alpha_2}}} \right)$$
(3.21)

for any $x \in K$ and any $m \in \mathbb{N}$.

Proof. One applies Theorem 2.1 for
$$s = 0$$
 and Lemma 3.2.

Corollary 3.1. If $f \in E_w(I)$ is continuous on I,

$$\sum_{k=0}^{p_m} \varphi_{m,k}(x) = 1$$

for any $x \in J$ and $m \in \mathbb{N}$, $K \subset I \cap J$ is a compact, then

$$|(K_m f)(x) - f(x)| \le (k'_0(K) + k'_2(K))\omega\left(f; \frac{1}{\sqrt{m^{2-\alpha_2}}}\right)$$
(3.22)

for any $x \in K$ and any $m \in \mathbb{N}$.

Proof. Directly from Theorem 3.1.

Lemma 3.4. We have

$$\lim_{m \to \infty} m^{2-\alpha_2} \sum_{k=0}^{p_m} \varphi_{m,k}(x) \beta_{m,k} = 0$$
$$\lim_{m \to \infty} m^{2-\alpha_2} \sum_{k=0}^{p_m} \varphi_{m,k}(x) x_{m,k} \beta_{m,k} = 0$$
$$\lim_{m \to \infty} m^{2-\alpha_2} \sum_{k=0}^{p_m} \varphi_{m,k}(x) \beta_{m,k}^2 = 0$$

Proof. For the first relation, we have $-\beta_m \leq \beta_{m,k} \leq \beta_m$ for any $m \in \mathbb{N}$, $k \in \{0, 1, \dots, p_m\} \cap \mathbb{N}_0$ so that

$$-m^{2-\alpha_2}\beta_m \sum_{k=0}^{p_m} \varphi_{m,k}(x) \le m^{2-\alpha_2} \sum_{k=0}^{p_m} \varphi_{m,k}(x)\beta_{m,k} \le$$
$$\le m^{2-\alpha_2}\beta_m \sum_{k=0}^{p_m} \varphi_{m,k}(x)\beta_{m,k}$$

and we take into account that $\lim_{m\to\infty} m^{2-\alpha_2}\beta_m = 0$. The other relations can be proved analogously.

Theorem 3.2. If $f \in E_w(I)$ is a two times differentiable function at $x \in I \cap J$, with $f^{(2)}$ continuous at x and $\frac{(T_4L_m)(x)}{m^{\alpha_4}}$ is bounded for any $m \in \mathbb{N}$, $m \ge m(2)$, then

$$\lim_{m \to \infty} m^{2-\alpha_2} \left[(K_m f)(x) - (T_0 L_m)(x) f(x) - \frac{1}{m} (T_1 L_m)(x) f^{(1)}(x) - (3.23) - \frac{1}{2m^2} (T_2 L_m)(x) f^{(2)}(x) \right] = 0.$$

Proof. From Theorem 2.1, we have

$$\lim_{m \to \infty} m^{2-\alpha_2} \left[(K_m f)(x) - (T_0 K_m)(x) f(x) - \frac{1}{m} (T_1 K_m)(x) f^{(1)}(x) - \frac{1}{2m^2} (T_2 K_m)(x) f^{(2)}(x) \right] = 0.$$

But

$$(T_0 K_m)(x) = (T_0 L_m)(x),$$

$$(T_1 K_m)(x) = (T_1 L_m)(x) - m \sum_{k=0}^{p_m} \varphi_{m,k}(x) \beta_{m,k},$$

$$(T_2 K_m)(x) = (T_2 L_m)(x) - 2m^2 \sum_{k=0}^{p_m} \varphi_{m,k}(x) x_{m,k} \beta_{m,k} +$$

$$+ m^2 \sum_{k=0}^{p_m} \varphi_{m,k}(x) \beta_{m,k}^2 + 2m^2 x \sum_{k=0}^{p_m} \varphi_{m,k}(x) \beta_{m,k}$$

and taking Lemma 3.4 into account, the relation (3.23) results.

Remark 3.5. The relation (3.23) is a Voronovskaja-type theorem.

In the following, in every application, we have $\sum_{k=0}^{p_m} \varphi_{m,k}(x) = 1$, so $(T_0L_m)(x) = 1$ for any $x \in J$ and $m \in \mathbb{N}$ and $u_m(K) = 0$ for any $K \subset I \cap J$ and $m \in \mathbb{N}$.

We consider the applications from [23]. In the following, by particularization of the sequence $y_{m,k}$, $m \in \mathbb{N}$, $k \in \{0, 1, \ldots, p_m\} \cap \mathbb{N}_0$ and applying Corollary 3.1, Theorem 3.1 and Theorem 3.2 from this paper we can obtain convergence theorem, approximation theorems and Voronovskaja-type theorems for the new operators. Because every application is a simple substitute in the theorems of this section, we won't replace anything. In the Applications 3.1, 3.2, 3.5, 3.6 and 3.7, we take w(x) = 1, $x \in I$. In the Applications 3.3 and 3.4, we take $w(x) = \frac{1}{1+x^2}$, $x \in I$.

Application 3.1. If I = J = [0, 1], E(I) = F(J) = C([0, 1]), $x_{m,k} = \frac{k}{m}$, $m \in \mathbb{N}$, $k \in \{0, 1, \ldots, m\}$, we get the Bernstein operators. We have $u_m([0, 1]) = 0$, $v_m([0, 1]) = 0$ and $w_m([0, 1]) = \frac{1}{4m}$, $m \in \mathbb{N}$. We consider the nodes $y_{m,k} = \frac{\sqrt{k(k+1)}}{m}$, $m \in \mathbb{N}$, $k \in \{0, 1, \ldots, m\}$. Then on verify immediately that $\beta_m = \frac{1}{m+\sqrt{m(m+1)}}$, $m \in \mathbb{N}$ and $\lim_{m \to \infty} \beta_m = 0$. In this case, the operators $(K_m)_{m \ge 1}$ have the form

$$(K_m f)(x) = \sum_{k=0}^m p_{m,k}(x) f\left(\frac{\sqrt{k(k+1)}}{m}\right),$$

 $f \in C([0,1]), \ x \in [0,1], \ m \in \mathbb{N} \text{ and we get } (T_1B_m)(x) = 0, \ (T_2B_m)(x) = mx(1-x), \ (T_4B_m)(x) = (3m^2 - 6m)x^2(1-x)^2 + mx(1-x), \ k_0(K) = k'_0(K) = 1, \ k_2(K) = \frac{5}{4}, \ k_4(K) = \frac{19}{16}, \ k'_2(K) = \frac{11 + 2\sqrt{2}}{4}.$

,

Application 3.2. We study a particular case of the Stancu operators. Let $\alpha = 10$ and $\beta = -\frac{1}{2}$. We obtain I = [0, 22], K = [0, 1] and for any $f \in C([0, 22]), x \in [0, 1]$ and $m \in \mathbb{N}$

$$(P_m^{(10,-1/2)}f)(x) = \sum_{k=0}^m p_{m,k}(x)f\left(\frac{2k+20}{2m-1}\right)$$

We consider the nodes $y_{m,k} = \frac{(4k+40)m}{(2m-1)^2}$. In this case, the operators $(K_m)_{m\geq 1}$ have the form

$$(K_m f)(x) = \sum_{k=0}^m p_{m,k}(x) f\left(\frac{m(4k+40)}{(2m-1)^2}\right)$$

where $f \in C([0, 22]), x \in [0, 1], m \in \mathbb{N}$. We get $(T_1 P_m^{(10, -1/2)})(x) = \frac{m(20+x)}{2m-1}, (T_2 P_m^{(10, -1/2)})(x) = m^2 \cdot \frac{4mx(1-x)+(20+x)^2}{(2m-1)^2}, (T_4 P_m^{(10, -1/2)})(x) = \frac{m^4}{(2m-1)^4} [48m^2x^2(1-x)^2 + 16mx(1-x) - 96mx^2(1-x)^2 + 32(20+x)mx(1-x) + 24(20+x)^2mx(1-x) + (20+x)^4], k_0(K) = 1, k'_0(K) = 1, \alpha_2 = 1, \alpha_4 = 2;$ because $\lim_{m \to \infty} \frac{(T_2 P_m^{(10, -1/2)})(x)}{m} = x(1-x)$ and $x(1-x) \leq \frac{1}{4}$ for any $x \in [0, 1]$, it follows that $k_2(K) = \frac{5}{4}$ and similarly $k_4(K) = \frac{19}{16}$. Further, we have $k'_2(K) = 100$, taking into account that $u_m(K) = 0$ and $v_m(K) = \frac{42}{2m-1}$.

Application 3.3. If $I = J = [0, \infty)$, $E(I) = C_2([0, \infty))$, $F(J) = C([0, \infty))$, K = [0, b], b > 0, $p_m = \infty$, $x_{m,k} = \frac{k}{m}$, $\varphi_{m,k}(x) = e^{-mx} \frac{(mx)^k}{k!}$, $m \in \mathbb{N}$, $k \in \mathbb{N}_0$, we obtain the Mirakjan-Favard-Szász operators and we have $u_m(K) = 0$, $v_m(K) = 0$ and $w_m(K) = \frac{b}{m}$, $m \in \mathbb{N}$. We consider the nodes $y_{m,k} = \frac{2k(k+1)}{m(2k+1)}$, $m \in \mathbb{N}$, $k \in \mathbb{N}_0$ and we have $\beta_m = \frac{1}{2m}$, $m \in \mathbb{N}$. In this case, the operators $(K_m)_{m\geq 1}$ are

$$(K_m f)(x) = e^{-mx} \sum_{k=0}^{\infty} \frac{(mx)^k}{k!} f\left(\frac{2k(k+1)}{m(2k+1)}\right)$$

where $f \in C_2([0,\infty)), x \in [0,\infty), m \in \mathbb{N}$. We get $(T_1S_m)(x) = 0, (T_2S_m)(x) = mx, (T_4S_m)(x) = 3m^2x^2 + mx, k_0(K) = 1 = k'_0(K), k_2(K) = b, k_4(K) = 3b^2 + b, k'_2(K) = 2b + \frac{1}{4}$ (see [18]).

Application 3.4. Let $I = J = [0, \infty)$, $E(I) = C_2([0, \infty))$, $F(J) = C([0, \infty))$, K = [0, b], b > 0, $p_m = \infty$, $x_{m,k} = \frac{k}{m}$, $\varphi_{m,k}(x) = (1+x)^{-m} \binom{m+k-1}{k} \left(\frac{x}{1+x}\right)^k$, $m \in \mathbb{N}$, $k \in \mathbb{N}_0$. In this case we get the Baskakov operators and we have

 $u_m(K) = 0, v_m(K) = 0$ and $w_m(K) = \frac{b(1+b)}{2m}, m \in \mathbb{N}$. We consider the nodes $y_{m,k} = \frac{\sqrt{4k^2+4k+2}}{2m}, m \in \mathbb{N}, k \in \mathbb{N}_0$ and we have $\beta_m = \frac{1}{m\sqrt{2}}$. The operators $(K_m)_{m>1}$ have the form

$$(K_m f)(x) = (1+x)^{-m} \sum_{k=0}^{\infty} \binom{m+k-1}{k} \left(\frac{x}{1+x}\right)^k f\left(\frac{\sqrt{4k^2+4k+2}}{2m}\right),$$

where $f \in C_2([0,\infty)), x \in [0,\infty), m \in \mathbb{N}$. We get (see [18]) $(T_1V_m)(x) = 0, (T_2V_m)(x) = mx(1+x), (T_4V_m)(x) = 3m(m+2)x^4 + 6m(m+2)x^3 + m(3m+7)x^2 + mx, k_2(K) = b(1+b), k_4(K) = 9b^4 + 18b^3 + 10b^2 + b \text{ and } k'_2(K) = b^2 + 2(1+2\sqrt{2}) + \frac{1}{2}.$

Application 3.5. If $I = J = [0, \infty)$, $E(I) = F(J) = C([0, \infty))$, K = [0, b], b > 0, $p_m = \infty$, $x_{m,k} = \frac{k}{m}$, $\varphi_{m,k}(x) = \frac{m(m+k)^{k-1}}{k!} \left(\frac{x}{1+x}\right)^k e^{-\frac{(k+m)x}{1+x}}$, $m \in \mathbb{N}$, $k \in \mathbb{N}_0$, we get the Ismail-May operators and we have $u_m(K) = 0$, $v_m(K) = 0$ and $w_m(K) = \frac{b(1+b)^2}{m}$, $m \in \mathbb{N}$. We consider the nodes $y_{m,k} = \frac{\sqrt[3]{k^2(k+1)}}{m}$, $m \in \mathbb{N}$, $k \in \mathbb{N}_0$ and we have $\beta_m = \frac{1}{3m}$. In this case, the operators $(K_m)_{m\geq 1}$ are

$$(K_m f)(x) = e^{\frac{-mx}{1+x}} \sum_{k=0}^{\infty} \frac{m(m+k)^{k-1}}{k!} \left(\frac{x}{1+x}\right)^k e^{-\frac{kx}{1+x}} f\left(\frac{\sqrt[3]{k^2(k+1)}}{m}\right).$$

where $f \in C([0,\infty))$, $m \in \mathbb{N}$. We obtain $(T_1R_m)(x) = 0$, $(T_2R_m)(x) = mx(1+x)^2$, $(T_4R_m)(x) = 3m^2x^2(1+x)^4 + m(6x+4)x^2(1+x)^4 + mx(1+x)^4(1+3x)^2$, $k_2(K) = 1 + b(1+b)^2$, $k_4(K) = 1 + b^2(1+b)^4$ and $k'_2(K) = b^3 + 2b^2 + \frac{7}{3}b + \frac{10}{9}$ (see [20]).

For the Bleimann-Butzer-Hahn operators and for the Meyer-König and Zeller operators we only give the convergence and approximation theorems.

Application 3.6. We consider $I = J = [0, \infty)$, $E(I) = F(J) = C_B([0, \infty))$, $K = [0, b], b > 0, p_m = m, x_{m,k} = \frac{k}{m+1-k}, \varphi_{m,k}(x) = \frac{1}{(1+x)^m} {m \choose k} x^k, m \in \mathbb{N}, k \in \{0, 1, \dots, m\}$. In this case we get the Bleimann-Butzer-Hahn operators and we have $u_m(K) = 0, v_m(K) = b\left(\frac{b}{1+b}\right)^m$ and $w_m(K) = \frac{4b(1+b)^2}{m+2}, m \in \mathbb{N}$ (see [19]). We consider the nodes $y_{m,k} = \frac{\gamma_m k}{m+1-k}, m \in \mathbb{N}, k \in \{0, 1, \dots, m\}$, where $(\gamma_m)_{m\geq 1}$ is a sequence of real numbers with the property that $\lim_{m\to\infty} m(1-\gamma_m) = 0$ and we have $\beta_m = m|1-\gamma_m|, m \in \mathbb{N}$. The operators $(K_m)_{m\geq 1}$ have the form

$$(K_m f)(x) = (1+x)^{-m} \sum_{k=0}^{\infty} {m \choose k} x^k f\left(\frac{\gamma_m k}{m+1-k}\right),$$

where $x \in [0,\infty), m \in \mathbb{N}, f \in C_B([0,\infty))$. We obtain $(T_0L_m)(x) = 1$, $(T_1L_m)(x) = -mx\left(\frac{x}{1+x}\right)^m, k_2(K) = 4b(1+b)^2$, for $m \ge 24(1+b)$ and for $\beta_m = 1 - \frac{1}{m^2}, m \in \mathbb{N}$, we obtain $k'_2(K) = 4b(1+b)^2 + \frac{(1+2b)(1+3b)}{1+b}$.

Application 3.7. If I = J = [0, 1], E(I) = B([0, 1]), E(J) = C([0, 1]), K = [0, 1], $p_m = \infty$, $x_{m,k} = \frac{k}{m+k}$, $(\varphi_{m,k})(x) = \binom{m+k}{k}(1-x)^{m+1}x^k$, $m \in \mathbb{N}$, $k \in \mathbb{N}_0$, we get the Meyer-König and Zeller operators and we have $u_m([0, 1]) = 0$, $v_m([0, 1]) = 0$ and $w_m([0, 1]) = \frac{1}{4(m+1)}$, $m \in \mathbb{N}$. We consider the nodes $y_{m,k} = \frac{k+\gamma_m}{m+k+\gamma_m}$, $m \in \mathbb{N}$, $k \in \mathbb{N}_0$, where $(\gamma_m)_{m\geq 1}$ is a sequence of real numbers such that

$$\lim_{m \to \infty} \frac{\gamma_m}{m + \gamma_m} = 0.$$

Then on verify immediately that $\beta_m = \frac{\gamma_m}{m + \gamma_m}$, $m \in \mathbb{N}$ and the operator $(K_m)_{m \geq 1}$ have the form

$$(K_m f)(x) = \sum_{k=0}^{\infty} \binom{m+k}{k} (1-x)^{m+1} x^k f\left(\frac{k+\gamma_m}{m+k+\gamma_m}\right),$$

where $f \in B([0,1]), x \in [0,1], m \in \mathbb{N}$. For $\gamma_m = \frac{1}{m}$, we obtain $(T_0 Z_m)(x) = 1$, $k_0(K) = 1, k_2(K) = 2, (T_1 Z_m)(x) = 0$ (see [18]) and $k'_2(K) = \frac{13}{2}$.

References

- Agratini, O., Approximation by linear operators, Cluj University Press, Cluj-Napoca, 2000 (Romanian).
- [2] Baskakov, V. A., An example of a sequence of linear positive operators in the space of continuous functions, Dokl. Acad. Nauk, SSSR, 113 (1957), 249-251.
- [3] Becker, M., Nessel, R. J., A global approximation theorem for Meyer-König and Zeller operators, Math. Zeitschr., 160 (1978), 195-206.
- [4] Bleimann, G., Butzer, P. L., Hahn, L. A., Bernstein-type operator approximating continuous functions on the semi-axis, Indag. Math., 42 (1980), 255-262.
- [5] Bernstein, S. N., Démonstration du théorème de Weierstrass fondée sur le calcul de probabilités, Commun. Soc. Math. Kharkow 13(2) (1912-1913), 1-2.
- [6] Cheney, E. W., Sharma, A., *Bernstein power series*, Canadian J. Math., 16 (1964), 2, 241-252.

- [7] Ditzian, Z., Totik, V., Moduli of Smoothness, Springer Verlag, Berlin, 1987.
- [8] Favard, J., Sur les multiplicateurs d'interpolation, J. Math. Pures Appl., 23 (9) (1944), 219-247.
- [9] Fărcaş, M. D., An extension for the Bernstein-Stancu operators, An Univ. Oradea, Fasc. Mat., Tom 15 (2008), 23-27.
- [10] Ismail, M., May, C. P., On a family of approximation operators, J. Math. Anal. Appl., 63 (1978), 446-462.
- [11] Meyer-König, W., Zeller, K., Bernsteinsche Potenzreihen, Studia Math., 19 (1960), 89-94.
- [12] Mirakjan, G. M., Approximation of continuous functions with the aid of polynomials, Dokl. Acad. Nauk SSSR, **31** (1941), 201-205 (Russian).
- [13] Mortici, C., Oancea, I., A nonsmooth extension for the Bernstein-Stancu operators and an application, Studia Univ. "Babeş-Bolyai", Mathematica, 51(2) 2006, 69-81.
- [14] Müller, M. W., Die Folge der Gammaoperatoren, Dissertation, Stuttgart, 1967.
- [15] Pop, O. T., New properties of the Bernstein-Stancu operators, Anal. Univ. Oradea, Fasc. Matematica, 11 (2004), 51-60.
- [16] Pop, O. T., The generalization of Voronovskaja's theorem for a class of linear and positive operators, Rev. Anal. Num. Théor. Approx., 34 (2005), No. 1, 79-91.
- [17] Pop, O. T., About the first order modulus of smoothness, Carpathian J. Math., 20 (2004), No. 1, 101-108.
- [18] Pop, O. T., About some linear and positive operators defined by infinite sum, Dem. Math., 39 (2006), No. 2, 377-388.
- [19] Pop, O. T., On operators of the type Bleimann, Butzer and Hahn, Anal. Univ. Timişoara, 43 (2005), Fasc. 1, 115-124.
- [20] Pop, O. T., The generalization of Voronovskaja's theorem for exponential operators, Creative Math & Inf., 16 (2007), 54-62.
- [21] Pop, O. T., About a general property for a class of linear positive operators and applications, Rev. Anal. Num. Théor. Approx., 34 (2005), No. 2, 175-180.

- [22] Pop, O. T., About some linear operators, International Journal of Mathematics and Mathematical Sciences, vol. 2007, Article ID 91781, 13 pages, 2007.
- [23] Pop, O. T., Fărcaş, M., About a class of linear positive operators obtained by choosing the nodes, J. Inequal. Pure Math. 10(1) (2009), Art. 30, 9pp.
- [24] Stancu, D. D., About a generalization of Bernstein's polynomial, Studia Univ. Babeş-Bolyai, Ser. Math.-Phys., 14 (1969), 31-45 (Romanian).
- [25] Stancu, D. D., Coman, Gh., Agratini, O., Trîmbiţaş, R., Numerical analysis and approximation theory, I, Cluj University Press, Cluj-Napoca, 2001 (Romanian).
- [26] Szász, O., Generalization of. S. N. Bernstein's polynomials to the infinite interval, J. Research, National Bureau of Standards, 45 (1950), 239-245.
- [27] Timan, A. F., Theory of Approximation of Functions of Real Variable, New York: Macmillan Co. 1963, MR22#8257.
- [28] Voronovskaja, E., Détermination de la forme asymptotique d'approximation des fonctions par les polynômes de S. N. Bernstein, C. R. Acad. Sci. URSS (1932), 79-85.

National College "Mihai Eminescu" 5 Mihai Eminescu, 440014 Satu Mare, Romania ovidiutiberiu@yahoo.com

National College "Mihai Eminescu" 5 Mihai Eminescu, 440014 Satu Mare, Romania mirceafarcas2005@yahoo.com

North University of Baia Mare Department of Mathematics and Computer Science 76 Victoriei, 430122 Baia Mare, Romania barbosudan@yahoo.com