ON A GENERAL CLASS OF LINEAR AND POSITIVE OPERATORS

Ovidiu T. Pop, Mircea D. Fărcaş and Dan Bărbosu

Abstract

Suppose that $\left(L_{m}\right)_{m \geq 1}$ is a given sequence of linear and positive operators. Starting with the mentioned sequence, the new sequence $\left(K_{m}\right)_{m \geq 1}$ of linear and positive operators is constructed. For the operators $\left(K_{m}\right)_{m \geq 1}$ a convergence theorem and a Voronovskaja-type theorem are established. As particular cases of the general construction, we refined the Bernstein's operators, the Stancu's operators, the Mirakyan-Favard-Szasz operators, the Baskakov operators, the Bleimann-ButzerHahn operators, the Meyer-König-Zeller operators, the Ismail-May operators.

1 Introduction

In this section, we recall some notions and operators which will be used in the paper.

Let \mathbb{N} be the set of positive integers and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. For $m \in \mathbb{N}$, let $B_{m}: C([0,1]) \rightarrow C([0,1])$ be the Bernstein operators, defined for any function $f \in C([0,1])$ by

$$
\begin{equation*}
\left(B_{m} f\right)(x)=\sum_{k=0}^{m} p_{m, k}(x) f\left(\frac{k}{m}\right) \tag{1.1}
\end{equation*}
$$

[^0]where $p_{m, k}(x)$ are the fundamental Bernstein polynomials defined by
\[

$$
\begin{equation*}
p_{m, k}(x)=\binom{m}{k} x^{k}(1-x)^{m-k} \tag{1.2}
\end{equation*}
$$

\]

for any $x \in[0,1]$ and any $k \in\{0,1, \ldots, m\}$ (see [5] or [25]).
For the following construction see [15]. Define the natural number m_{0} by

$$
m_{0}= \begin{cases}\max \{1,-[\beta]\}, & \text { if } \beta \in \mathbb{R} \backslash \mathbb{Z} \tag{1.3}\\ \max \{1,1-\beta\}, & \text { if } \beta \in \mathbb{Z}\end{cases}
$$

For the real number β, we have that

$$
\begin{equation*}
m+\beta \geq \gamma_{\beta} \tag{1.4}
\end{equation*}
$$

for any natural number $m, m \geq m_{0}$, where

$$
\gamma_{\beta}=m_{0}+\beta= \begin{cases}\max \{1+\beta,\{\beta\}\}, & \text { if } \beta \in \mathbb{R} \backslash \mathbb{Z} \tag{1.5}\\ \max \{1+\beta, 1\}, & \text { if } \beta \in \mathbb{Z}\end{cases}
$$

For the real numbers $\alpha, \beta, \alpha \geq 0$, we set

$$
\mu^{(\alpha, \beta)}= \begin{cases}1, & \text { if } \quad \alpha \leq \beta \tag{1.6}\\ 1+\frac{\alpha-\beta}{\gamma_{\beta}}, & \text { if } \quad \alpha>\beta\end{cases}
$$

For the real numbers α and $\beta, \alpha \geq 0$, we have that $1 \leq \mu^{(\alpha, \beta)}$ and

$$
\begin{equation*}
0 \leq \frac{k+\alpha}{m+\beta} \leq \mu^{(\alpha, \beta)} \tag{1.7}
\end{equation*}
$$

for any natural number $m \geq m_{0}$ and for any $k \in\{0,1, \ldots, m\}$.
For the real numbers α and $\beta, \alpha \geq 0, m_{0}$ and $\mu^{(\alpha, \beta)}$ defined by (1.3)-(1.6), let the operators $P_{m}^{(\alpha, \beta)}: C\left(\left[0, \mu^{(\alpha, \beta)}\right]\right) \rightarrow C([0,1])$ be defined for any function $f \in C\left(\left[0, \mu^{(\alpha, \beta)}\right]\right)$ by

$$
\begin{equation*}
\left(P_{m}^{(\alpha, \beta)} f\right)(x)=\sum_{k=0}^{m} p_{m, k}(x) f\left(\frac{k+\alpha}{m+\beta}\right) \tag{1.8}
\end{equation*}
$$

for any natural number $m \geq m_{0}$ and for any $x \in[0,1]$. These operators are called Stancu operators, introduced and studied in 1969 by D. D. Stancu in the paper [24]. Note that in [24], the domain of definition for the Stancu operators
is $C([0,1])$ and the numbers α and β verify the condition $0 \leq \alpha \leq \beta$.
In 1980 [4], G. Bleimann, P. L. Butzer and L. Hahn introduced the sequence of linear positive operators $\left(L_{m}\right)_{m \geq 1}, L_{m}: C_{B}([0, \infty)) \rightarrow C_{B}([0, \infty))$, defined for any function $f \in C_{B}([0, \infty))$ by

$$
\begin{equation*}
\left(L_{m} f\right)(x)=\frac{1}{(1+x)^{m}} \sum_{k=0}^{m}\binom{m}{k} x^{k} f\left(\frac{k}{m+1-k}\right) \tag{1.9}
\end{equation*}
$$

for any $x \in[0, \infty)$ and any $m \in \mathbb{N}$, where $C_{B}([0, \infty))=\{f \mid f:[0, \infty) \rightarrow \mathbb{R}, f$ bounded and continuous on $[0, \infty)\}$.

For $m \in \mathbb{N}$ were considered the operators $S_{m}: C_{2}([0, \infty)) \rightarrow C([0, \infty))$ defined for any function $f \in C_{2}([0, \infty))$ by

$$
\begin{equation*}
\left(S_{m} f\right)(x)=e^{-m x} \sum_{k=0}^{\infty} \frac{(m x)^{k}}{k!} f\left(\frac{k}{m}\right) \tag{1.10}
\end{equation*}
$$

for any $x \in[0, \infty)$, where $C_{2}([0, \infty))=\left\{f \in C([0, \infty)): \lim _{x \rightarrow \infty} \frac{f(x)}{1+x^{2}}\right.$ exists and is finite $\}$. The operators $\left(S_{m}\right)_{m \geq 1}$ are called Mirakjan-Favard-Szász operators and were introduced in 1941 by G. M. Mirakjan in [12].

They were intensively studied by J. Favard in 1944 in [8] and O. Szász in 1950 in [26].

Let for $m \in \mathbb{N}$, the operators $V_{m}: C_{2}([0, \infty)) \rightarrow C([0, \infty))$ defined for any function $f \in C_{2}([0, \infty))$ by

$$
\begin{equation*}
\left(V_{m} f\right)(x)=(1+x)^{-m} \sum_{k=0}^{\infty}\binom{m+k-1}{k}\left(\frac{x}{1+x}\right)^{k} f\left(\frac{k}{m}\right) \tag{1.11}
\end{equation*}
$$

for any $x \in[0, \infty)$. They are called the Baskakov operators and were introduced in 1957 by V. A. Baskakov in [2].
W. Meyer-König and K. Zeller introduced in [11] a sequence of linear and positive operators. After a slight adjustment given by E. W. Cheney and A. Sharma in [6], these operators $Z_{m}: B([0,1)) \rightarrow C([0,1))$, defined for any function $f \in B([0,1))$ by

$$
\begin{equation*}
\left(Z_{m} f\right)(x)=\sum_{k=0}^{\infty}\binom{m+k}{k}(1-x)^{m+1} x^{k} f\left(\frac{k}{m+k}\right) \tag{1.12}
\end{equation*}
$$

for any $m \in \mathbb{N}$ and for any $x \in[0,1)$. These operators are called the MeyerKönig and Zeller operators. Observe that $Z_{m}: C([0,1]) \rightarrow C([0,1]), m \in \mathbb{N}$.

In the paper [10], M. Ismail and C. P. May consider the operators $\left(R_{m}\right)_{m \geq 1}$. For $m \in \mathbb{N}, R_{m}: C([0, \infty)) \rightarrow C([0, \infty))$ is defined for any function $f \in C([0, \infty))$ by

$$
\begin{equation*}
\left(R_{m} f\right)(x)=e^{-\frac{m x}{1+x}} \sum_{k=0}^{\infty} \frac{m(m+k)^{k-1}}{k!}\left(\frac{x}{1+x}\right)^{k} e^{-\frac{k x}{1+x}} f\left(\frac{k}{m}\right) \tag{1.13}
\end{equation*}
$$

for any $x \in[0, \infty)$.
In what follows, we consider $I \subset \mathbb{R}, I$ an interval and we shall use the following sets of functions: $E(I), F(I)$ which are subsets of the set of real functions defined on $I, B(I)=\{f \mid f: I \rightarrow \mathbb{R}, f$ bounded on $I\}, C(I)=$ $\{f \mid f: I \rightarrow \mathbb{R}, f$ continuous on $I\}$ and $C_{B}(I)=B(I) \cap C(I)$.

If $f \in B(I)$, then the first order modulus of smoothness of f is the function $\omega(f ; \cdot):[0, \infty) \rightarrow \mathbb{R}$ defined for any $\delta \geq 0$ by

$$
\begin{equation*}
\omega(f ; \delta)=\sup \left\{\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|: x^{\prime}, x^{\prime \prime} \in I,\left|x^{\prime}-x^{\prime \prime}\right| \leq \delta\right\} \tag{1.14}
\end{equation*}
$$

2 Preliminaries

In the following, we consider the general construction and the results from [22], which we will use afterwards in the paper.

Let I, J be intervals with $I \subset[0, \infty)$ and $I \cap J \neq \emptyset$. For any $m \in \mathbb{N}$ and $k \in \mathbb{N}_{0}$ consider the the functions $\varphi_{m, k}: J \rightarrow \mathbb{R}$ with the property that $\varphi_{m, k}(x) \geq 0$ for any $x \in J$ and the linear and positive functionals $A_{m, k}$: $E(I) \rightarrow \mathbb{R}$. Let $E(I)$ and $F(J)$ be subsets of the set of real functions defined on I, respectively J such that the series

$$
\sum_{k=0}^{\infty} \varphi_{m, k}(x) f\left(x_{m, k}\right)
$$

is convergent for any $f \in E(I)$ and $x \in J$. For any $x \in I$ consider the functions $\psi_{x}: I \rightarrow \mathbb{R}, \psi_{x}(t)=t-x$ for any $t \in I$ and we suppose that $\psi_{x}^{i} \in E(I)$, for any $x \in I \cap J$ and any $i \in\{0,1,2, \ldots, s+2\}$. In what follows $s \in \mathbb{N}_{0}$ is even.

For $m \in \mathbb{N}$ define the operators $L_{m}: E(I) \rightarrow E(J)$ by

$$
\begin{equation*}
\left(L_{m} f\right)(x)=\sum_{k=0}^{\infty} \varphi_{m, k}(x) A_{m, k}(f) \tag{2.1}
\end{equation*}
$$

for any $f \in E(I)$ and $x \in J$. It is immediately the following
Proposition 2.1. The operators $\left(L_{m}\right)_{m \geq 1}$ are linear and positive on $E(I \cap J)$.

For $m \in \mathbb{N}$ and $i \in \mathbb{N}_{0}$ define T_{i} by

$$
\begin{equation*}
\left(T_{i} L_{m}\right)(x)=m^{i}\left(L_{m} \psi_{x}^{i}\right)(x)=m^{i} \sum_{k=0}^{\infty} \varphi_{m, k}(x) A_{m, k}\left(\psi_{x}^{i}\right) \tag{2.2}
\end{equation*}
$$

for any $x \in I \cap J$.
Theorem 2.1. [22] If $f \in E(I)$ is a s times differentiable function in $x \in I \cap J$, with $f^{(s)}$ continuous in x, and if there exist $\alpha_{s}, \alpha_{s+2} \in[0, \infty)$ and $m(s) \in \mathbb{N}$ such that

$$
\begin{equation*}
\alpha_{s+2}<\alpha_{s}+2 \tag{2.3}
\end{equation*}
$$

and $\frac{\left(T_{s} L_{m}\right)(x)}{m^{\alpha_{s}}}, \frac{\left(T_{s+2} L_{m}\right)(x)}{m^{\alpha_{s+2}}}$ are bounded for any $m \in \mathbb{N}, m \geq m(s)$, then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} m^{s-\alpha_{s}}\left[\left(L_{m} f\right)(x)-\sum_{i=0}^{s} \frac{1}{i!m^{i}}\left(T_{i} L_{m}\right)(x) f^{(i)}(x)\right]=0 \tag{2.4}
\end{equation*}
$$

Assume that f is a stimes differentiable function on I with $f^{(s)}$ continuous on I and an interval $K \subset I \cap J$ exists such that there exist $m(s) \in \mathbb{N}$ and the constants $k_{j}(K) \in \mathbb{R}$ depending on K, so that for any $m \in \mathbb{N}, m \geq m(s)$ and $x \in K$ we have

$$
\begin{equation*}
\frac{\left(T_{j} L_{m}\right)(x)}{m^{\alpha_{j}}} \leq k_{j}(K) \tag{2.5}
\end{equation*}
$$

where $j \in\{s, s+2\}$. Then the convergence given in (2.4) is uniform on K and

$$
\begin{align*}
& m^{s-\alpha_{s}}\left|\left(L_{m} f\right)(x)-\sum_{i=0}^{s} \frac{1}{i!m^{i}}\left(T_{i} L_{m}\right)(x) f^{(i)}(x)\right| \leq \tag{2.6}\\
& \leq \frac{1}{s!}\left(k_{s}(K)+k_{s+2}(K)\right) \omega\left(f^{(s)} ; \frac{1}{\sqrt{m^{2+\alpha_{s}-\alpha_{s+2}}}}\right)
\end{align*}
$$

for any $x \in K$ and $m \geq m(s)$.
Remark 2.1. In Theorem 2.1 we choose the smallest α_{s} and α_{s+2} if they exist.

Now, if $m \in \mathbb{N}$ and $\varphi_{m, k}(x)=0, A_{m, k}(f)=0$ for any $f \in E(I)$, any $x \in J$ and any $k \in\{m+1, m+2, \ldots\}$, then we obtain a class of operators defined by finite sums, so that the relation (2.1) becomes

$$
\begin{equation*}
\left(L_{m} f\right)(x)=\sum_{k=0}^{m} \varphi_{m, k}(x) A_{m, k}(f) \tag{2.7}
\end{equation*}
$$

Remark 2.2. From above, it follows that the theorems from [22] hold for the operators defined by finite sums and for the operators defined by infinite sums.

3 Main results

Taking the above results into account, we can make the following construction (see [22] and [23]).

Let I, J be real intervals with $I \cap J \neq \emptyset$ and $p_{m}=m$ for any $m \in \mathbb{N}$ (the finite case) or $p_{m}=\infty$ for any $m \in \mathbb{N}$ (the infinite case). For any $m \in \mathbb{N}$ and $k \in\left\{0,1, \ldots, p_{m}\right\} \cap \mathbb{N}_{0}$, consider the nodes $x_{m, k} \in I$ (in this construction we have $\left.A_{m, k}(f)=f\left(x_{m, k}\right)\right)$ and the functions $\varphi_{m, k}: J \rightarrow \mathbb{R}$, with the property that $\varphi_{m, k}(x) \geq 0$, for any $x \in J$. We suppose that for any compact $K \subset I \cap J$ there exists the sequence $\left(u_{m}(K)\right)_{m \geq 1}$, depending on K, such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} u_{m}(K)=0 \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\sum_{k=0}^{p_{m}} \varphi_{m, k}(x)-1\right| \leq u_{m}(K) \tag{3.2}
\end{equation*}
$$

for any $x \in K$, any $m \in \mathbb{N}$ and we note $u(K)=\sup \left\{u_{m}(K): m \in \mathbb{N}\right\}$.
Remark 3.1. From (3.1) and (3.2) it follows that $\lim _{m \rightarrow \infty} \sum_{k=0}^{p_{m}} \varphi_{m, k}(x)=1$ for any $x \in K$ and the convergence is uniform on K.

Let $w: I \rightarrow(0, \infty)$ be a fixed function, called the weight function, such there exists a positive constant M such that $M \leq w(x)$, for any $x \in I$ and the set functions

$$
\begin{equation*}
E_{w}(I)=\{f \mid f: I \rightarrow \mathbb{R} \text { such that } w f \text { is bounded on } I\} . \tag{3.3}
\end{equation*}
$$

For $f \in E_{w}(I)$ there exists a positive constant $M(f)$, depending on f, such that $w(x)|f(x)| \leq M(f)$, for any $x \in I$.

Let $K \subset I \cap J$ compact set and $x \in K$. If $p_{m}=m$ for any $m \in \mathbb{N}$, then the sum $\sum_{k=0}^{p_{m}} \varphi_{m, k}(x) f\left(x_{m, k}\right)$ exists for any $m \in \mathbb{N}$.

If $p_{m}=\infty$ for any $m \in \mathbb{N}$, we consider the sequence $\left(s_{n}(m)\right)_{n \geq 1}$ defined by $s_{n}(m)=\sum_{k=0}^{n} \varphi_{m, k}(x)\left|f\left(x_{m, k}\right)\right|$, for any $n \in \mathbb{N}$. Taking (3.2) into account, we get

$$
\begin{aligned}
s_{n}(m) & =\sum_{k=0}^{n} \varphi_{m, k}(x) \frac{1}{w\left(x_{m, k}\right)} w\left(x_{m, k}\right)\left|f\left(x_{m, k}\right)\right| \leq \frac{M(f)}{M} \sum_{k=0}^{n} \varphi_{m, k}(x) \leq \\
& \leq \frac{M(f)}{M}\left(1+u_{m}(K)\right) \leq \frac{M(f)}{M}(1+u(K))
\end{aligned}
$$

from where it follows that the sum $\sum_{k=0}^{\infty} \varphi_{m, k}(x)\left|f\left(x_{m, k}\right)\right|$ exists for any $m \in \mathbb{N}$. It follows that the sum $\sum_{k=0}^{\infty} \varphi_{m, k}(x) f\left(x_{m, k}\right)$ exists and then from the above results, we get that the sum $\sum_{k=0}^{p_{m}} \varphi_{m, k}(x) f\left(x_{m, k}\right)$ exists for any $m \in \mathbb{N}$.

For $m \in \mathbb{N}$ let the given operator $L_{m}: E_{w}(I) \rightarrow F(J)$ defined by

$$
\begin{equation*}
\left(L_{m} f\right)(x)=\sum_{k=0}^{p_{m}} \varphi_{m, k}(x) f\left(x_{m, k}\right) \tag{3.4}
\end{equation*}
$$

for any $x \in J$ and any $f \in E_{w}(I)$, with the property that for any $f \in$ $E_{w}(I) \cap C(I)$, we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(L_{m} f\right)(x)=f(x) \tag{3.5}
\end{equation*}
$$

uniformly on any compact $K \subset I \cap J$.
Remark 3.2. We suppose that the functions $\psi_{x}, e_{i} \in E_{w}(I), x \in I$, where $e_{i}: I \rightarrow \mathbb{R}, e_{i}(t)=t^{i}$ for any $t \in I, i \in\{0,1,2,3,4\}$.

Remark 3.3. Taking the Bohman-Korovkin Theorem into account, from (3.5) it follows that for the operators $\left(L_{m}\right)_{m \geq 1}$ we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(L_{m} e_{i}\right)(x)=e_{i}(x) \tag{3.6}
\end{equation*}
$$

uniformly on any compact $K \subset I \cap J, i \in\{0,1,2\}$ and

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(L_{m} \psi_{x}^{2}\right)(x)=0 \tag{3.7}
\end{equation*}
$$

uniformly on any compact $K \subset I \cap J$, where $x \in I$.
Remark 3.4. From Remark 3.3 it follows that for any compact $K \subset I \cap J$ there exist the sequences $\left(v_{m}(K)\right)_{m \geq 1},\left(w_{m}(K)\right)_{m \geq 1}$ depending on K, such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} v_{m}(K)=\lim _{m \rightarrow \infty} w_{m}(K)=0 \tag{3.8}
\end{equation*}
$$

and

$$
\begin{gather*}
\left|\left(L_{m} e_{1}\right)(x)-x\right| \leq v_{m}(K) \tag{3.9}\\
\left(L_{m} \psi_{x}^{2}\right)(x) \leq w_{m}(K) \tag{3.10}
\end{gather*}
$$

for any $x \in K$ and any $m \in \mathbb{N}$. We suppose in the following that there exists $0<\alpha_{2}<2, \alpha_{2}$ not depending on K, such that the sequence
$\left(m^{2-\alpha_{2}} w_{m}(K)\right)_{m \geq 1}$ is bounded and $\lim _{m \rightarrow \infty} m^{2-\alpha_{2}} w_{m}(K)=0$. So, there exists $k_{2}(K)>0$, depending on K such that

$$
\begin{equation*}
m^{2-\alpha_{2}} w_{m}(K) \leq k_{2}(K) \tag{3.11}
\end{equation*}
$$

for any $m \in \mathbb{N}$.
Lemma 3.1. For any $K \subset I \cap J$ there exists the constants $k_{0}(K)$ and $k_{2}(K)$, depending on K, such that

$$
\begin{equation*}
\left(T_{0} L_{m}\right)(x) \leq k_{0}(K) \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left(T_{2} L_{m}\right)(x)}{m^{\alpha_{2}}} \leq k_{2}(K) \tag{3.13}
\end{equation*}
$$

for any $x \in K$ and any $m \in \mathbb{N}$.
Proof. Let $m \in \mathbb{N}$ and $x \in K$. Then taking (3.2) into account, we obtain that

$$
\left(T_{0} L_{m}\right)(x)=\left(L_{m} e_{0}\right)(x)=\sum_{k=0}^{p_{m}} \varphi_{m, k}(x) \leq 1+u_{m}(K) \leq 1+u(K)=k_{0}(K)
$$

Further, we have

$$
\frac{\left(T_{2} L_{m}\right)(x)}{m^{\alpha_{2}}}=\frac{m^{2}\left(L_{m} \psi_{x}^{2}\right)(x)}{m^{\alpha_{2}}}=m^{2-\alpha_{2}}\left(L_{m} \psi_{x}^{2}\right)(x)
$$

and taking (3.10), (3.11) into account we obtain (3.13).
In the following, for $m \in \mathbb{N}$ and $k \in\left\{0,1, \ldots, p_{m}\right\} \cap \mathbb{N}_{0}$ we consider the nodes $y_{m, k} \in I$ such that

$$
\begin{equation*}
\beta_{m}=\sup _{k \in\left\{0,1, \cdots, p_{m}\right\} \cap \mathbb{N}_{0}}\left|x_{m, k}-y_{m, k}\right|<\infty \tag{3.14}
\end{equation*}
$$

for any $m \in \mathbb{N}$ and

$$
\begin{equation*}
\lim _{m \rightarrow \infty} m^{2-\alpha_{2}} \beta_{m}=0 \tag{3.15}
\end{equation*}
$$

so there exists $l>0$ such that

$$
\begin{equation*}
m^{2-\alpha_{2}} \beta_{m} \leq l \tag{3.16}
\end{equation*}
$$

for any $m \in \mathbb{N}$. For $m \in \mathbb{N}$ and $k \in\left\{0,1, \ldots, p_{m}\right\} \cap \mathbb{N}_{0}$, we note $\beta_{m, k}=$ $x_{m, k}-y_{m, k}$, and then $\left|\beta_{m, k}\right| \leq \beta_{m}$ for any $k \in\left\{0,1, \ldots, p_{m}\right\} \cap \mathbb{N}_{0}$ and any $m \in \mathbb{N}$.

For $m \in \mathbb{N}$ define the operator $K_{m}: E_{w}(I) \rightarrow F(J)$ by

$$
\begin{equation*}
\left(K_{m} f\right)(x)=\sum_{k=0}^{p_{m}} \varphi_{m, k}(x) f\left(y_{m, k}\right) \tag{3.17}
\end{equation*}
$$

for any $x \in I$ and any $f \in E_{w}(I)$.
Lemma 3.2. For any $K=[0, b] \subset I \cap J$ there exist the constants $k_{0}^{\prime}(K)$ and $k_{2}^{\prime}(K)$, depending on K, such that

$$
\begin{equation*}
\left(T_{0} K_{m}\right)(x) \leq k_{0}^{\prime}(K) \tag{3.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left(T_{2} K_{m}\right)(x)}{m^{\alpha_{2}}} \leq k_{2}^{\prime}(K) \tag{3.19}
\end{equation*}
$$

for any $x \in K$ and any $m \in \mathbb{N}$.
Proof. We have $\left(T_{0} K_{m}\right)(x)=\left(K_{m} e_{0}\right)(x)=\sum_{k=0}^{p_{m}} \varphi_{m, k}(x)=\left(L_{m} e_{0}\right)(x)=$ $\left(T_{0} L_{m}\right)(x) \leq 1+u_{m}(K) \leq 1+u(K)$ and we can take $k_{0}^{\prime}(K)=k_{0}(K)$. Further, we have

$$
\frac{\left(T_{2} K_{m}\right)(x)}{m^{\alpha_{2}}}=\frac{m^{2}\left(K_{m} \psi_{x}^{2}\right)(x)}{m^{\alpha_{2}}}=m^{2-\alpha_{2}}\left(K_{m} \psi_{x}^{2}\right)(x)
$$

and

$$
\begin{aligned}
& \left(K_{m} \psi_{x}^{2}\right)(x)=\left(K_{m} e_{2}\right)(x)-2 x\left(K_{m} e_{1}\right)(x)+x^{2}\left(K_{m} e_{0}\right)(x)= \\
& =\sum_{k=0}^{p_{m}} \varphi_{m, k}(x) y_{m, k}^{2}-2 x \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) y_{m, k}+x^{2} \sum_{k=0}^{p_{m}} \varphi_{m, k}(x)= \\
& =\sum_{k=0}^{p_{m}} \varphi_{m, k}(x)\left(x_{m, k}-\beta_{m, k}\right)^{2}-2 x \sum_{k=0}^{p_{m}} \varphi_{m, k}(x)\left(x_{m, k}-\beta_{m, k}\right)+ \\
& +x^{2} \sum_{k=0}^{p_{m}} \varphi_{m, k}(x)=\sum_{k=0}^{p_{m}} \varphi_{m, k}(x) x_{m, k}^{2}-2 \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) x_{m, k} \beta_{m, k}+ \\
& +\sum_{k=0}^{p_{m}} \varphi_{m, k}(x) \beta_{m, k}^{2}-2 x \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) x_{m, k}+2 x \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) \beta_{m, k}+ \\
& +x^{2} \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) \leq\left(L_{m} \psi_{x}^{2}\right)(x)+2 \beta_{m}\left(L_{m} e_{1}\right)(x)+\left(\beta_{m}^{2}+2 x \beta_{m}\right)\left(L_{m} e_{0}\right)(x)
\end{aligned}
$$

so that

$$
\begin{aligned}
& m^{2-\alpha_{2}}\left(K_{m} \psi_{x}^{2}\right)(x) \leq m^{2-\alpha_{2}}\left(L_{m} \psi_{x}^{2}\right)(x)+2 m^{2-\alpha_{2}} \beta_{m}\left(L_{m} e_{1}\right)(x)+ \\
& +m^{2-\alpha_{2}} \beta_{m}\left(\beta_{m}+2 x\right)\left(L_{m} e_{0}\right)(x) \leq k_{2}(K)+2 l(b+v(K))+ \\
& +l(\beta+2 b)(1+u(K))=k_{2}^{\prime}(K)
\end{aligned}
$$

where $v(K)=\sup \left\{v_{m}(K): m \in \mathbb{N}\right\}$ and $\beta=\sup \left\{\beta_{m}: m \in \mathbb{N}\right\}$.
Lemma 3.3. If $\alpha_{4}>3 \alpha_{2}-2$ then
i) If $x \in I \cap J$ and $\frac{\left(T_{4} L_{m}\right)(x)}{m^{\alpha_{4}}}$ is bounded for any $m \in \mathbb{N}$, then $\frac{\left(T_{4} K_{m}\right)(x)}{m^{\alpha_{4}}}$ is bounded for any $m \in \mathbb{N}$.
ii) If $K=[0, b] \subset I \cap J$ and $\frac{\left(T_{4} L_{m}\right)(x)}{m^{\alpha_{4}}}$ is bounded on K for any $m \in \mathbb{N}$, then $\frac{\left(T_{4} K_{m}\right)(x)}{m^{\alpha_{4}}}$ is bounded on K for any $m \in \mathbb{N}$.

Proof. We have

$$
\begin{aligned}
& \left(K_{m} \psi_{x}^{4}\right)(x)=\sum_{k=0}^{p_{m}} \varphi_{m, k}(x)\left(x_{m, k}-x\right)^{4}-4 \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) \beta_{m, k}\left(x_{m, k}-x\right)^{3}+ \\
& +6 \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) \beta_{m, k}^{2}\left(x_{m, k}-x\right)^{2}-4 \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) \beta_{m, k}^{3}\left(x_{m, k}-x\right)+ \\
& +\sum_{k=0}^{p_{m}} \varphi_{m, k}(x) \beta_{m, k}^{4} \leq\left(L_{m} \psi_{x}^{4}\right)(x)+4 \beta_{m}\left|\left(L_{m} \psi_{x}^{3}\right)(x)\right|+6 \beta_{m}^{2}\left(L_{m} \psi_{x}^{2}\right)(x)+ \\
& +4 \beta_{m}^{3}\left|\left(L_{m} \psi_{x}\right)(x)\right|+\beta_{m}^{4}\left(L_{m} e_{0}\right)(x)
\end{aligned}
$$

so that we can write

$$
\begin{aligned}
& \frac{\left(T_{4} K_{m}\right)(x)}{m^{\alpha_{4}}}=m^{4-\alpha_{4}}\left(K_{m} \psi_{x}^{4}\right)(x) \leq m^{4-\alpha_{4}}\left(L_{m} \psi_{x}^{4}\right)(x)+ \\
& +4 m^{-\alpha_{4}} \beta_{m}\left|\left(L_{m} \psi_{x}^{3}\right)(x)\right|+6 m^{4-\alpha_{4}} \beta_{m}^{2}\left(L_{m} \psi_{x}^{2}\right)(x)+ \\
& +4 m^{4-\alpha_{4}} \beta_{m}^{3}\left|\left(L_{m} \psi_{x}\right)(x)\right|+m^{4-\alpha_{4}} \beta_{m}^{4}\left(L_{m} e_{0}\right)(x)=m^{4-\alpha_{4}}\left(L_{m} \psi_{x}^{4}\right)(x)+ \\
& +4 \beta_{m} m^{4-\alpha_{4}}\left|\left(L_{m} \psi_{x}^{3}\right)(x)\right|+6\left(m^{2-\alpha_{2}} \beta_{m}\right)^{2} m^{2-\alpha_{2}}\left(L_{m} \psi_{x}^{2}\right)(x) m^{-2+3 \alpha_{2}-\alpha_{4}}+ \\
& +4\left(m^{2-\alpha_{2}} \beta_{m}\right)^{3}\left|\left(L_{m} \psi_{x}\right)(x)\right| m^{-2+3 \alpha_{2}-\alpha_{4}}+ \\
& +\left(m^{2-\alpha_{2}} \beta_{m}\right)^{4}\left(L_{m} e_{0}\right)(x) m^{-4+4 \alpha_{2}-\alpha_{4}} .
\end{aligned}
$$

Further, applying the Cauchy's inequality for linear and positive operators (see [17]), we get

$$
\left(L_{m} \psi_{x}^{3}\right)^{2}(x) \leq\left(L_{m} \psi_{x}^{2}\right)(x)\left(L_{m} \psi_{x}^{4}\right)(x)
$$

and

$$
\left[m^{\frac{6-\alpha_{2}-\alpha_{4}}{2}}\left|\left(L_{m} \psi_{x}^{3}\right)(x)\right|\right]^{2} \leq \frac{\left(T_{2} L_{m}\right)(x)}{m^{\alpha_{2}}} \frac{\left(T_{4} L_{m}\right)(x)}{m^{\alpha_{4}}}
$$

so that we have

$$
m^{4-\alpha_{4}} \beta_{m}\left(L_{m} \psi_{x}^{3}\right)(x)=m^{2-\alpha_{2}} \beta_{m} m^{\frac{6-\alpha_{2}-\alpha_{4}}{2}}\left(L_{m} \psi_{x}^{3}\right)(x) m^{\frac{-2+3 \alpha_{2}-\alpha_{4}}{2}}
$$

Taking into account the conditions $0<\alpha_{2}<2,0<\alpha_{4}<4, \alpha_{4}<\alpha_{2}+$ 2 and $\alpha_{4}>3 \alpha_{2}-2$, we obtain $-2+3 \alpha_{2}-\alpha_{4}<0$ so it follows that $\beta_{m} m^{4-\alpha_{4}}\left|\left(L_{m} \psi_{x}^{3}\right)(x)\right|$ is bounded. On the other hand, we have that $\left|\left(L_{m} \psi_{x}\right)(x)\right| \leq$ $\sqrt{\left(L_{m} e_{0}\right)(x)\left(L_{m} \psi_{x}^{2}\right)(x)}$ and $-4+4 \alpha_{2}-\alpha_{4}=\left(-2+3 \alpha_{2}-\alpha_{4}\right)+\left(-2+\alpha_{2}\right)<0$. From (3.9), (3.16), the above remarks and the inequality verified by $\frac{\left(T_{4} K_{m}\right)(x)}{m^{\alpha}}$, it follows the conclusion of the lemma.

Theorem 3.1. If $f \in E_{w}(I)$ is continuous at $x \in I \cap J$, then

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(K_{m} f\right)(x)=f(x) \tag{3.20}
\end{equation*}
$$

If f is continuous on $I, K \subset I \cap J$ is a compact, then the convergence given in (3.20) is uniform on K and

$$
\begin{equation*}
\left|\left(K_{m} f\right)(x)-\left(\sum_{k=0}^{p_{m}} \varphi_{m, k}(x)\right) f(x)\right| \leq\left(k_{0}^{\prime}(K)+k_{2}^{\prime}(K)\right) \omega\left(f ; \frac{1}{\sqrt{m^{2-\alpha_{2}}}}\right) \tag{3.21}
\end{equation*}
$$

for any $x \in K$ and any $m \in \mathbb{N}$.
Proof. One applies Theorem 2.1 for $s=0$ and Lemma 3.2.
Corollary 3.1. If $f \in E_{w}(I)$ is continuous on I,

$$
\sum_{k=0}^{p_{m}} \varphi_{m, k}(x)=1
$$

for any $x \in J$ and $m \in \mathbb{N}, K \subset I \cap J$ is a compact, then

$$
\begin{equation*}
\left|\left(K_{m} f\right)(x)-f(x)\right| \leq\left(k_{0}^{\prime}(K)+k_{2}^{\prime}(K)\right) \omega\left(f ; \frac{1}{\sqrt{m^{2-\alpha_{2}}}}\right) \tag{3.22}
\end{equation*}
$$

for any $x \in K$ and any $m \in \mathbb{N}$.
Proof. Directly from Theorem 3.1.

Lemma 3.4. We have

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} m^{2-\alpha_{2}} \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) \beta_{m, k}=0 \\
& \lim _{m \rightarrow \infty} m^{2-\alpha_{2}} \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) x_{m, k} \beta_{m, k}=0 \\
& \lim _{m \rightarrow \infty} m^{2-\alpha_{2}} \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) \beta_{m, k}^{2}=0
\end{aligned}
$$

Proof. For the first relation, we have $-\beta_{m} \leq \beta_{m, k} \leq \beta_{m}$ for any $m \in \mathbb{N}$, $k \in\left\{0,1, \ldots, p_{m}\right\} \cap \mathbb{N}_{0}$ so that

$$
\begin{aligned}
& -m^{2-\alpha_{2}} \beta_{m} \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) \leq m^{2-\alpha_{2}} \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) \beta_{m, k} \leq \\
& \leq m^{2-\alpha_{2}} \beta_{m} \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) \beta_{m, k}
\end{aligned}
$$

and we take into account that $\lim _{m \rightarrow \infty} m^{2-\alpha_{2}} \beta_{m}=0$. The other relations can be proved analogously.

Theorem 3.2. If $f \in E_{w}(I)$ is a two times differentiable function at $x \in I \cap J$, with $f^{(2)}$ continuous at x and $\frac{\left(T_{4} L_{m}\right)(x)}{m^{\alpha_{4}}}$ is bounded for any $m \in \mathbb{N}, m \geq m(2)$, then

$$
\begin{align*}
& \lim _{m \rightarrow \infty} m^{2-\alpha_{2}}\left[\left(K_{m} f\right)(x)-\left(T_{0} L_{m}\right)(x) f(x)-\frac{1}{m}\left(T_{1} L_{m}\right)(x) f^{(1)}(x)-\right. \tag{3.23}\\
& \left.-\frac{1}{2 m^{2}}\left(T_{2} L_{m}\right)(x) f^{(2)}(x)\right]=0
\end{align*}
$$

Proof. From Theorem 2.1, we have

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} m^{2-\alpha_{2}}\left[\left(K_{m} f\right)(x)-\left(T_{0} K_{m}\right)(x) f(x)-\frac{1}{m}\left(T_{1} K_{m}\right)(x) f^{(1)}(x)-\right. \\
& \left.-\frac{1}{2 m^{2}}\left(T_{2} K_{m}\right)(x) f^{(2)}(x)\right]=0
\end{aligned}
$$

But

$$
\begin{aligned}
\left(T_{0} K_{m}\right)(x) & =\left(T_{0} L_{m}\right)(x), \\
\left(T_{1} K_{m}\right)(x) & =\left(T_{1} L_{m}\right)(x)-m \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) \beta_{m, k}, \\
\left(T_{2} K_{m}\right)(x) & =\left(T_{2} L_{m}\right)(x)-2 m^{2} \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) x_{m, k} \beta_{m, k}+ \\
& +m^{2} \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) \beta_{m, k}^{2}+2 m^{2} x \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) \beta_{m, k}
\end{aligned}
$$

and taking Lemma 3.4 into account, the relation (3.23) results.
Remark 3.5. The relation (3.23) is a Voronovskaja-type theorem.
In the following, in every application, we have $\sum_{k=0}^{p_{m}} \varphi_{m, k}(x)=1$, so $\left(T_{0} L_{m}\right)(x)=1$ for any $x \in J$ and $m \in \mathbb{N}$ and $u_{m}(K)=0$ for any $K \subset I \cap J$ and $m \in \mathbb{N}$.

We consider the applications from [23]. In the following, by particularization of the sequence $y_{m, k}, m \in \mathbb{N}, k \in\left\{0,1, \ldots, p_{m}\right\} \cap \mathbb{N}_{0}$ and applying Corollary 3.1, Theorem 3.1 and Theorem 3.2 from this paper we can obtain convergence theorem, approximation theorems and Voronovskaja-type theorems for the new operators. Because every application is a simple substitute in the theorems of this section, we won't replace anything. In the Applications $3.1,3.2,3.5,3.6$ and 3.7 , we take $w(x)=1, x \in I$. In the Applications 3.3 and 3.4, we take $w(x)=\frac{1}{1+x^{2}}, x \in I$.
Application 3.1. If $I=J=[0,1], E(I)=F(J)=C([0,1]), x_{m, k}=\frac{k}{m}, m \in$ $\mathbb{N}, k \in\{0,1, \ldots, m\}$, we get the Bernstein operators. We have $u_{m}([0,1])=0$, $v_{m}([0,1])=0$ and $w_{m}([0,1])=\frac{1}{4 m}, m \in \mathbb{N}$. We consider the nodes $y_{m, k}=$ $\frac{\sqrt{k(k+1)}}{m_{1}}, m \in \mathbb{N}, k \in\{0,1, \ldots, m\}$. Then on verify immediately that $\beta_{m}=$ $\frac{m^{1}}{m+\sqrt{m(m+1)}}, m \in \mathbb{N}$ and $\lim _{m \rightarrow \infty} \beta_{m}=0$. In this case, the operators $\left(K_{m}\right)_{m \geq 1}$ have the form

$$
\left(K_{m} f\right)(x)=\sum_{k=0}^{m} p_{m, k}(x) f\left(\frac{\sqrt{k(k+1)}}{m}\right),
$$

$f \in C([0,1]), x \in[0,1], m \in \mathbb{N}$ and we get $\left(T_{1} B_{m}\right)(x)=0,\left(T_{2} B_{m}\right)(x)=$ $m x(1-x),\left(T_{4} B_{m}\right)(x)=\left(3 m^{2}-6 m\right) x^{2}(1-x)^{2}+m x(1-x), k_{0}(K)=k_{0}^{\prime}(K)=1$, $k_{2}(K)=\frac{5}{4}, k_{4}(K)=\frac{19}{16}, k_{2}^{\prime}(K)=\frac{11+2 \sqrt{2}}{4}$.

Application 3.2. We study a particular case of the Stancu operators. Let $\alpha=10$ and $\beta=-\frac{1}{2}$. We obtain $I=[0,22], K=[0,1]$ and for any $f \in$ $C([0,22]), x \in[0,1]$ and $m \in \mathbb{N}$

$$
\left(P_{m}^{(10,-1 / 2)} f\right)(x)=\sum_{k=0}^{m} p_{m, k}(x) f\left(\frac{2 k+20}{2 m-1}\right) .
$$

We consider the nodes $y_{m, k}=\frac{(4 k+40) m}{(2 m-1)^{2}}$. In this case, the operators $\left(K_{m}\right)_{m \geq 1}$ have the form

$$
\left(K_{m} f\right)(x)=\sum_{k=0}^{m} p_{m, k}(x) f\left(\frac{m(4 k+40)}{(2 m-1)^{2}}\right)
$$

where $f \in C([0,22]), x \in[0,1], m \in \mathbb{N}$. We get $\left(T_{1} P_{m}^{(10,-1 / 2)}\right)(x)=\frac{m(20+x)}{2 m-1}$, $\left(T_{2} P_{m}^{(10,-1 / 2)}\right)(x)=m^{2} \cdot \frac{4 m x(1-x)+(20+x)^{2}}{(2 m-1)^{2}}$, $\left(T_{4} P_{m}^{(10,-1 / 2)}\right)(x)=\frac{m^{4}}{(2 m-1)^{4}}\left[48 m^{2} x^{2}(1-x)^{2}+16 m x(1-x)-96 m x^{2}(1-x)^{2}+\right.$ $\left.32(20+x) m x(1-x)+24(20+x)^{2} m x(1-x)+(20+x)^{4}\right], k_{0}(K)=1, k_{0}^{\prime}(K)=1$, $\alpha_{2}=1, \alpha_{4}=2$; because $\lim _{m \rightarrow \infty} \frac{\left(T_{2} P_{m}^{(10,-1 / 2)}\right)(x)}{m}=x(1-x)$ and $x(1-x) \leq \frac{1}{4}$ for any $x \in[0,1]$, it follows that $k_{2}(K)=\frac{5}{4}$ and similarly $k_{4}(K)=\frac{19}{16}$. Further, we have $k_{2}^{\prime}(K)=100$, taking into account that $u_{m}(K)=0$ and $v_{m}(K)=\frac{42}{2 m-1}$.
Application 3.3. If $I=J=[0, \infty), E(I)=C_{2}([0, \infty)), F(J)=C([0, \infty))$, $K=[0, b], b>0, p_{m}=\infty, x_{m, k}=\frac{k}{m}, \varphi_{m, k}(x)=e^{-m x} \frac{(m x)^{k}}{k!}, m \in \mathbb{N}, k \in$ \mathbb{N}_{0}, we obtain the Mirakjan-Favard-Szász operators and we have $u_{m}(K)=0$, $v_{m}(K)=0$ and $w_{m}(K)=\frac{b}{m}, m \in \mathbb{N}$. We consider the nodes $y_{m, k}=\frac{2 k(k+1)}{m(2 k+1)}$, $m \in \mathbb{N}, k \in \mathbb{N}_{0}$ and we have $\beta_{m}=\frac{1}{2 m}, m \in \mathbb{N}$. In this case, the operators $\left(K_{m}\right)_{m \geq 1}$ are

$$
\left(K_{m} f\right)(x)=e^{-m x} \sum_{k=o}^{\infty} \frac{(m x)^{k}}{k!} f\left(\frac{2 k(k+1)}{m(2 k+1)}\right)
$$

where $f \in C_{2}([0, \infty)), x \in[0, \infty), m \in \mathbb{N}$. We get $\left(T_{1} S_{m}\right)(x)=0,\left(T_{2} S_{m}\right)(x)=$ $m x,\left(T_{4} S_{m}\right)(x)=3 m^{2} x^{2}+m x, k_{0}(K)=1=k_{0}^{\prime}(K), k_{2}(K)=b, k_{4}(K)=$ $3 b^{2}+b, k_{2}^{\prime}(K)=2 b+\frac{1}{4}($ see $[18])$.
Application 3.4. Let $I=J=[0, \infty), E(I)=C_{2}([0, \infty)), F(J)=C([0, \infty))$, $K=[0, b], b>0, p_{m}=\infty, x_{m, k}=\frac{k}{m}, \varphi_{m, k}(x)=(1+x)^{-m}\binom{m+k-1}{k}\left(\frac{x}{1+x}\right)^{k}$, $m \in \mathbb{N}, k \in \mathbb{N}_{0}$. In this case we get the Baskakov operators and we have
$u_{m}(K)=0, v_{m}(K)=0$ and $w_{m}(K)=\frac{b(1+b)}{2 m}, m \in \mathbb{N}$. We consider the nodes $y_{m, k}=\frac{\sqrt{4 k^{2}+4 k+2}}{2 m}, m \in \mathbb{N}, k \in \mathbb{N}_{0}$ and we have $\beta_{m}=\frac{1}{m \sqrt{2}}$. The operators $\left(K_{m}\right)_{m \geq 1}$ have the form

$$
\left(K_{m} f\right)(x)=(1+x)^{-m} \sum_{k=0}^{\infty}\binom{m+k-1}{k}\left(\frac{x}{1+x}\right)^{k} f\left(\frac{\sqrt{4 k^{2}+4 k+2}}{2 m}\right)
$$

where $f \in C_{2}([0, \infty)), x \in[0, \infty), m \in \mathbb{N}$. We get (see [18]) $\left(T_{1} V_{m}\right)(x)=0$, $\left(T_{2} V_{m}\right)(x)=m x(1+x),\left(T_{4} V_{m}\right)(x)=3 m(m+2) x^{4}+6 m(m+2) x^{3}+m(3 m+$ 7) $x^{2}+m x, k_{2}(K)=b(1+b), k_{4}(K)=9 b^{4}+18 b^{3}+10 b^{2}+b$ and $k_{2}^{\prime}(K)=$ $b^{2}+2(1+2 \sqrt{2})+\frac{1}{2}$.
Application 3.5. If $I=J=[0, \infty), E(I)=F(J)=C([0, \infty)), K=[0, b]$, $b>0, p_{m}=\infty, x_{m, k}=\frac{k}{m}, \varphi_{m, k}(x)=\frac{m(m+k)^{k-1}}{k!}\left(\frac{x}{1+x}\right)^{k} e^{-\frac{(k+m) x}{1+x}}, m \in \mathbb{N}$, $k \in \mathbb{N}_{0}$, we get the Ismail-May operators and we have $u_{m}(K)=0, v_{m}(K)=0$ and $w_{m}(K)=\frac{b(1+b)^{2}}{m}, m \in \mathbb{N}$. We consider the nodes $y_{m, k}=\frac{\sqrt[3]{k^{2}(k+1)}}{m}$, $m \in \mathbb{N}, k \in \mathbb{N}_{0}$ and we have $\beta_{m}=\frac{1}{3 m}$. In this case, the operators $\left(K_{m}^{m}\right)_{m \geq 1}$ are

$$
\left(K_{m} f\right)(x)=e^{\frac{-m x}{1+x}} \sum_{k=0}^{\infty} \frac{m(m+k)^{k-1}}{k!}\left(\frac{x}{1+x}\right)^{k} e^{-\frac{k x}{1+x}} f\left(\frac{\sqrt[3]{k^{2}(k+1)}}{m}\right)
$$

where $f \in C([0, \infty)), m \in \mathbb{N}$. We obtain $\left(T_{1} R_{m}\right)(x)=0,\left(T_{2} R_{m}\right)(x)=m x(1+$ $x)^{2},\left(T_{4} R_{m}\right)(x)=3 m^{2} x^{2}(1+x)^{4}+m(6 x+4) x^{2}(1+x)^{4}+m x(1+x)^{4}(1+3 x)^{2}$, $k_{2}(K)=1+b(1+b)^{2}, k_{4}(K)=1+b^{2}(1+b)^{4}$ and $k_{2}^{\prime}(K)=b^{3}+2 b^{2}+\frac{7}{3} b+\frac{10}{9}$ (see [20]).

For the Bleimann-Butzer-Hahn operators and for the Meyer-König and Zeller operators we only give the convergence and approximation theorems.
Application 3.6. We consider $I=J=[0, \infty), E(I)=F(J)=C_{B}([0, \infty))$, $K=[0, b], b>0, p_{m}=m, x_{m, k}=\frac{k}{m+1-k}, \varphi_{m, k}(x)=\frac{1}{(1+x)^{m}}\binom{m}{k} x^{k}, m \in \mathbb{N}$, $k \in\{0,1, \ldots, m\}$. In this case we get the Bleimann-Butzer-Hahn operators and we have $u_{m}(K)=0, v_{m}(K)=b\left(\frac{b}{1+b}\right)^{m}$ and $w_{m}(K)=\frac{4 b(1+b)^{2}}{m+2}, m \in \mathbb{N}$ (see [19]). We consider the nodes $y_{m, k}=\frac{\gamma_{m} k}{m+1-k}, m \in \mathbb{N}, k \in\{0,1, \ldots, m\}$, where $\left(\gamma_{m}\right)_{m \geq 1}$ is a sequence of real numbers with the property that $\lim _{m \rightarrow \infty} m(1-$ $\left.\gamma_{m}\right)=0$ and we have $\beta_{m}=m\left|1-\gamma_{m}\right|, m \in \mathbb{N}$. The operators $\left(K_{m}\right)_{m \geq 1}$ have the form

$$
\left(K_{m} f\right)(x)=(1+x)^{-m} \sum_{k=0}^{\infty}\binom{m}{k} x^{k} f\left(\frac{\gamma_{m} k}{m+1-k}\right)
$$

where $x \in[0, \infty), m \in \mathbb{N}, f \in C_{B}([0, \infty))$. We obtain $\left(T_{0} L_{m}\right)(x)=1$, $\left(T_{1} L_{m}\right)(x)=-m x\left(\frac{x}{1+x}\right)^{m}, k_{2}(K)=4 b(1+b)^{2}$, for $m \geq 24(1+b)$ and for $\beta_{m}=1-\frac{1}{m^{2}}, m \in \mathbb{N}$, we obtain $k_{2}^{\prime}(K)=4 b(1+b)^{2}+\frac{(1+2 b)(1+3 b)}{1+b}$.
Application 3.7. If $I=J=[0,1], E(I)=B([0,1]), E(J)=C([0,1]), K=$ $[0,1], p_{m}=\infty, x_{m, k}=\frac{k}{m+k},\left(\varphi_{m, k}\right)(x)=\binom{m+k}{k}(1-x)^{m+1} x^{k}, m \in \mathbb{N}, k \in \mathbb{N}_{0}$, we get the Meyer-König and Zeller operators and we have $u_{m}([0,1])=0$, $v_{m}([0,1])=0$ and $w_{m}([0,1])=\frac{1}{4(m+1)}, m \in \mathbb{N}$. We consider the nodes $y_{m, k}=\frac{k+\gamma_{m}}{m+k+\gamma_{m}}, m \in \mathbb{N}, k \in \mathbb{N}_{0}$, where $\left(\gamma_{m}\right)_{m \geq 1}$ is a sequence of real numbers such that

$$
\lim _{m \rightarrow \infty} \frac{\gamma_{m}}{m+\gamma_{m}}=0
$$

Then on verify immediately that $\beta_{m}=\frac{\gamma_{m}}{m+\gamma_{m}}, m \in \mathbb{N}$ and the operator $\left(K_{m}\right)_{m \geq 1}$ have the form

$$
\left(K_{m} f\right)(x)=\sum_{k=0}^{\infty}\binom{m+k}{k}(1-x)^{m+1} x^{k} f\left(\frac{k+\gamma_{m}}{m+k+\gamma_{m}}\right)
$$

where $f \in B([0,1]), x \in[0,1], m \in \mathbb{N}$. For $\gamma_{m}=\frac{1}{m}$, we obtain $\left(T_{0} Z_{m}\right)(x)=1$, $k_{0}(K)=1, k_{2}(K)=2,\left(T_{1} Z_{m}\right)(x)=0$ (see [18]) and $k_{2}^{\prime}(K)=\frac{13}{2}$.

References

[1] Agratini, O., Approximation by linear operators, Cluj University Press, Cluj-Napoca, 2000 (Romanian).
[2] Baskakov, V. A., An example of a sequence of linear positive operators in the space of continuous functions, Dokl. Acad. Nauk, SSSR, 113 (1957), 249-251.
[3] Becker, M., Nessel, R. J., A global approximation theorem for MeyerKönig and Zeller operators, Math. Zeitschr., 160 (1978), 195-206.
[4] Bleimann, G., Butzer, P. L., Hahn, L. A., Bernstein-type operator approximating continuous functions on the semi-axis, Indag. Math., 42 (1980), 255-262.
[5] Bernstein, S. N., Démonstration du théorème de Weierstrass fondée sur le calcul de probabilités, Commun. Soc. Math. Kharkow 13(2) (1912-1913), 1-2.
[6] Cheney, E. W., Sharma, A., Bernstein power series, Canadian J. Math., 16 (1964), 2, 241-252.
[7] Ditzian, Z., Totik, V., Moduli of Smoothness, Springer Verlag, Berlin, 1987.
[8] Favard, J., Sur les multiplicateurs d'interpolation, J. Math. Pures Appl., 23 (9) (1944), 219-247.
[9] Fărcaş, M. D., An extension for the Bernstein-Stancu operators, An Univ. Oradea, Fasc. Mat., Tom 15 (2008), 23-27.
[10] Ismail, M., May, C. P., On a family of approximation operators, J. Math. Anal. Appl., 63 (1978), 446-462.
[11] Meyer-König, W., Zeller, K., Bernsteinsche Potenzreihen, Studia Math., 19 (1960), 89-94.
[12] Mirakjan, G. M., Approximation of continuous functions with the aid of polynomials, Dokl. Acad. Nauk SSSR, 31 (1941), 201-205 (Russian).
[13] Mortici, C., Oancea, I., A nonsmooth extension for the Bernstein-Stancu operators and an application, Studia Univ. "Babeş-Bolyai", Mathematica, 51(2) 2006, 69-81.
[14] Müller, M. W., Die Folge der Gammaoperatoren, Dissertation, Stuttgart, 1967.
[15] Pop, O. T., New properties of the Bernstein-Stancu operators, Anal. Univ. Oradea, Fasc. Matematica, 11 (2004), 51-60.
[16] Pop, O. T., The generalization of Voronovskaja's theorem for a class of linear and positive operators, Rev. Anal. Num. Théor. Approx., 34 (2005), No. 1, 79-91.
[17] Pop, O. T., About the first order modulus of smoothness, Carpathian J. Math., 20 (2004), No. 1, 101-108.
[18] Pop, O. T., About some linear and positive operators defined by infinite sum, Dem. Math., 39 (2006), No. 2, 377-388.
[19] Pop, O. T., On operators of the type Bleimann, Butzer and Hahn, Anal. Univ. Timişoara, 43 (2005), Fasc. 1, 115-124.
[20] Pop, O. T., The generalization of Voronovskaja's theorem for exponential operators, Creative Math \& Inf., 16 (2007), 54-62.
[21] Pop, O. T., About a general property for a class of linear positive operators and applications, Rev. Anal. Num. Théor. Approx., 34 (2005), No. 2, 175180.
[22] Pop, O. T., About some linear operators, International Journal of Mathematics and Mathematical Sciences, vol. 2007, Article ID 91781, 13 pages, 2007.
[23] Pop, O. T., Fărcaş, M., About a class of linear positive operators obtained by choosing the nodes, J. Inequal. Pure Math. 10(1) (2009), Art. 30, 9pp.
[24] Stancu, D. D., About a generalization of Bernstein's polynomial, Studia Univ. Babeş-Bolyai, Ser. Math.-Phys., 14 (1969), 31-45 (Romanian).
[25] Stancu, D. D., Coman, Gh., Agratini, O., Trîmbiţaş, R., Numerical analysis and approximation theory, I, Cluj University Press, Cluj-Napoca, 2001 (Romanian).
[26] Szász, O., Generalization of. S. N. Bernstein's polynomials to the infinite interval, J. Research, National Bureau of Standards, 45 (1950), 239-245.
[27] Timan, A. F., Theory of Approximation of Functions of Real Variable, New York: Macmillan Co. 1963, MR22\#8257.
[28] Voronovskaja, E., Détermination de la forme asymptotique d'approximation des fonctions par les polynômes de S. N. Bernstein, C. R. Acad. Sci. URSS (1932), 79-85.

National College "Mihai Eminescu"
5 Mihai Eminescu, 440014 Satu Mare, Romania
ovidiutiberiu@yahoo.com
National College "Mihai Eminescu"
5 Mihai Eminescu, 440014 Satu Mare, Romania
mirceafarcas2005@yahoo.com
North University of Baia Mare
Department of Mathematics and Computer Science
76 Victoriei, 430122 Baia Mare, Romania
barbosudan@yahoo.com

[^0]: Key Words: Linear and positive operators, convergence theorem, the first order modulus of smoothness, Voronovskaja-type theorem, Baskakov operators, Bernstein operators, Ismail-May operators, Mirakyan-Favard-Szasz operators, Stancu operators, Bleimann-ButzerHahn operators.

 Mathematics Subject Classification: 41A10, 41A25, 41A35, 41A36
 Received: January, 2010
 Accepted: December, 2010

