

A GENERALIZATION OF THE *n*-WEAK AMENABILITY OF BANACH ALGEBRAS

O.T. Mewomo and G. Akinbo

Abstract

Let A be a Banach algebra and $\varphi : A \to A$ be a continuous homomorphism. We generalize the notion of *n*-weak amenability of A to that of $(\varphi) - n$ -weak amenability for $n \in \mathbb{N}$. We give conditions under which the module extension Banach algebra and second dual of A are $(\varphi) - n$ -weakly amenable.

1 Introduction

In [4], Bodaghi, Gordji and Medghalchi generalized the concept of weak amenability of Banach algebras to that of (φ, ψ) -weak amenability. They determined the relations between weak amenability and (φ, ψ) -weak amenability of a Banach algebra A.

Also, in [7], Dales, Ghahramani, and Gronbaek introduced the concept of n-weak amenability for Banach algebras for $n \in \mathbb{N}$. They determined some relations between m- and n-weak amenability for general Banach algebras and for Banach algebras in various classes, and proved that, for each $n \in \mathbb{N}$, (n + 2)- weak amenability always implies n-weak amenability. Let A be a weakly amenable Banach algebra. Then it is also proved in [7] that in the case where A is an ideal in its second dual (A'', \Box) , A is necessarily (2m-1)-weakly amenable for each $m \in \mathbb{N}$. The authors of [7] asked the following questions: (i) Is a weakly amenable Banach algebra necessarily 3-weakly amenable? (ii) Is a 2-weakly amenable Banach algebra necessarily 4-weakly amenable? A

Key Words: Banach algebra, continuous homomorphism, (φ)-derivation, (φ) – n-weak amenability.

Mathematics Subject Classification: 46H20, 46H10, 46H25 Received: April, 2010

Accepted: December, 2010

counter-example resolving question (i) was given by Zhang in [18], but it seems that question (ii) is still open.

It is also shown in Corollary 5.4 of [7] that for certain Banach space E the Banach algebra $\mathcal{N}(E)$ of nuclear operators on E is *n*-weakly amenable if and only if n is odd.

Let $L^1(G)$ be the group algebra of a locally compact group G. It is proved in Theorem 4.1 of [7] that each group algebra is *n*-weakly amenable whenever n is odd, and it is conjectured that $L^1(G)$ is *n*-weakly amenable for each $n \in \mathbb{N}$; this is true whenever G is amenable, and it is true when G is a free group [12].

A class of Banach algebras that was not considered in [3] is the Banach algebras on semigroups. In [13] Mewomo considered this class of Banach algebras by examining the *n*-weak amenability of some semigroup algebras, and give an easier example of a Banach algebra which is *n*-weakly amenable if n is odd.

In this paper, we shall extend the notion of (φ, ψ) -weak amenability to that of $(\varphi) - n$ - weak amenability of Banach algebras.

2 Preliminaries

First, we recall some standard notions; for further details, see [6] and [17].

Let A be an algebra and let X be an A-bimodule. A *derivation* from A to X is a linear map $D: A \to X$ such that

$$D(ab) = Da \cdot b + a \cdot Db \quad (a, b \in A).$$

For example, $\delta_x : a \mapsto a \cdot x - x \cdot a$ is a derivation; derivations of this form are the *inner derivations*.

Let A be a Banach algebra, and let X be an A-bimodule. Then X is a Banach A-bimodule if X is a Banach space and if there is a constant k > 0 such that

$$||a \cdot x|| \le k ||a|| ||x||, ||x \cdot a|| \le k ||a|| ||x|| (a \in A, x \in X).$$

By renorming X, we can suppose that k = 1. For example, A itself is Banach A-bimodule, and X', the dual space of a Banach A-bimodule X, is a Banach A-bimodule with respect to the module operations defined by

$$\langle x, a \cdot \lambda \rangle = \langle x \cdot a, \lambda \rangle, \quad \langle x, \lambda \cdot a \rangle = \langle a \cdot x, \lambda \rangle \quad (x \in X)$$

for $a \in A$ and $\lambda \in X'$; we say that X' is the *dual module* of X. In particular every closed two-sided ideal I of A is Banach A-bimodule and I' the dual space of I is a dual A-bimodule.

Successively, the duals $X^{(n)}$ are Banach A-bimodules; in particular $A^{(n)}$ is a Banach A-bimodule for each $n \in \mathbb{N}$. We take $X^{(0)} = X$.

Let A be a Banach algebra, and let X be a Banach A-bimodule. Then $\mathcal{Z}^1(A, X)$ is the space of all continuous derivations from A into X, $\mathcal{N}^1(A, X)$ is the space of all inner derivations from A into X, and the first cohomology group of A with coefficients in X is the quotient space

$$\mathcal{H}^1(A, X) = \mathcal{Z}^1(A, X) / \mathcal{N}^1(A, X) .$$

The Banach algebra A is amenable if $\mathcal{H}^1(A, X') = \{0\}$ for each Banach Abimodule X and weakly amenable if $\mathcal{H}^1(A, A') = \{0\}$. For instance, the group algebra, $L^1(G)$ of a locally compact group G is always weakly amenable ([12]), and is amenable if and only if G is amenable in the classical sense ([11]). Also, a C^* -algebra is always weakly amenable ([10]) and is amenable if and only if it is nuclear ([5]).

Let A be a Banach algebra and let φ, ψ be continuous homomorphisms on A. As in [4], we consider the following module actions on A,

$$a \cdot x := \varphi(a)x, \quad x \cdot a := x\psi(a) \quad (a, x \in A).$$

The authors in [4] denote the above A-module by $A_{(\varphi,\psi)}$.

Let X be an A-module. A bounded linear mapping $d: A \to X$ is called a (φ, ψ) -derivation if

$$d(ab) = d(a) \cdot \varphi(a) + \psi(a) \cdot d(b) \quad (a, b \in A).$$

A bounded linear mapping $d:A\to X$ is called a $(\varphi,\psi)\text{-}$ inner derivation if there exists $x\in X$ such that

$$d(a) = x \cdot \varphi(a) - \psi(a) \cdot x \quad (a \in A).$$

A derivation $D: A \to X$ is called approximately (φ, ψ) - inner if there exsits a net (x_{α}) in X such that, for all $a \in A$,

$$D(a) = \lim_{\alpha} (x_{\alpha} \cdot \varphi(a) - \psi(a) \cdot x_{\alpha})$$

in norm.

Derivations of this form are studied in [14,15,16].

The authors in [4] defined A to be (φ, ψ) -weakly amenable if $\mathcal{H}^1(A, (A_{(\varphi, \psi)})') = \{0\}.$

In this paper, we consider the case in which $\varphi = \psi$ and denote (φ, φ) -derivation, (φ, φ) -inner derivation by (φ) -derivation, (φ) -inner derivation respectively.

3 $(\varphi) - n$ -Weak Amenability

Let A and B be Banach algebras. Suppose $\varphi : A \to B$ is a continuous homomorphism, then $B^{(n)}$ can be regarded as an A-module under the module actions

$$a \cdot m = \varphi(a) \cdot m, m \cdot a = m \cdot \varphi(a) \quad (a \in A, m \in B^{(n)}, n \in \mathbb{N}).$$

Let $\varphi:A\to A$ be a continuous homomorphism, then $A^{(n)}$ is an A-module with the module actions

$$a \cdot m = \varphi(a) \cdot m, m \cdot a = m \cdot \varphi(a) \quad (a \in A, m \in A^{(n)}, n \in \mathbb{N}).$$

A direct verification shows that the dual mappings $\varphi' : A' \to A'$ and $\varphi'' : A'' \to A''$ are A-module morphisms. This is also true for the higher dual mappings

 $\varphi^{(2n-1)}$: $A^{(2n-1)} \rightarrow A^{(2n-1)}$ and $\varphi^{(2n)}$: $A^{(2n)} \rightarrow A^{(2n)}$

Proposition 3.1 Let A and B be Banach algebras and let $\varphi : A \to A, \varphi : B \to B$ be continuous homomorphism. Let $\varphi_1 : A \to B$ and $\varphi_2 : B \to A$ be continuous homomorphisms such that $\varphi_1 \circ \varphi_2 = I_B$.

(i) Suppose $D: B \to B^{(2n-1)}$ is a (φ) -derivation, then $\tilde{D} = (\varphi_1^{(2n-1)} \circ D \circ \varphi_1) : A \to A^{(2n-1)}$ is $(\varphi \circ \varphi_1)$ -derivation.

(ii) Suppose $D: B \to B^{(2n)}$ is a (φ) -derivation, then $\overline{D} = (\varphi_2^{(2n)} \circ D \circ \varphi_1) : A \to A^{(2n)}$ is $(\varphi \circ \varphi_1)$ -derivation.

(iii) Suppose \tilde{D} is $(\varphi \circ \varphi_1)$ -inner, then D is inner

(iv) Suppose \overline{D} is $(\varphi \circ \varphi_1)$ -inner, then D is (φ) -inner.

(v) Suppose A is $(\varphi \circ \varphi_1) - n$ -weakly amenable for $n \in \mathbb{N}$, then B is $(\varphi) - n$ -weakly amenable.

Proof (i) Let $D: B \to B^{(2n-1)}$ be a (φ) -derivation. Then, for $a, b \in A$, we have

$$\begin{split} \tilde{D}(ab) &= (\varphi_1^{(2n-1)} \circ D \circ \varphi_1)(ab) = \varphi_1^{(2n-1)} \circ D(\varphi_1(a)\varphi_1(b)) \\ &= \varphi_1^{(2n-1)} \left(D(\varphi_1(a))\varphi(\varphi_1(b)) + \varphi(\varphi_1(a))D(\varphi_1(b)) \right) \\ &= \varphi(\varphi_1(b)) \cdot \varphi_1^{(2n-1)} \left(D(\varphi_1(a)) \right) + \varphi_1^{(2n-1)} \left(D(\varphi_1(b)) \right) \cdot \varphi(\varphi_1(a)) \\ &= \varphi(\varphi_1(b)) \cdot \tilde{D}(a) + \tilde{D}(b) \cdot \varphi(\varphi_1(a)) \\ &= \varphi \circ \varphi_1(b) \cdot \tilde{D}(a) + \tilde{D}(b) \cdot \varphi \circ \varphi_1(a) \end{split}$$

Thus \tilde{D} is $(\varphi \circ \varphi_1)$ -derivation.

(ii) Let $D: B \to B^{(2n)}$ be a (φ) -derivation. Then, for $a, b \in A$, we have

$$\begin{split} \bar{D}(ab) &= (\varphi_2^{(2n)} \circ D \circ \varphi_1)(ab) = \varphi_2^{(2n)} \circ D(\varphi_1(a)\varphi_1(b)) \\ &= \varphi_2^{(2n)} \left(D(\varphi_1(a))\varphi(\varphi_1(b)) + \varphi(\varphi_1(a))D(\varphi_1(b)) \right) \\ &= \varphi(\varphi_1(b)) \cdot \varphi_2^{(2n)} (D(\varphi_1(a))) + \varphi_2^{(2n)} (D(\varphi_1(b))) \cdot \varphi(\varphi_1(a)) \\ &= \varphi(\varphi_1(b)) \cdot \bar{D}(a) + \bar{D}(b) \cdot \varphi(\varphi_1(a)) \\ &= \varphi \circ \varphi_1(b) \cdot \bar{D}(a) + \bar{D}(b) \cdot \varphi \circ \varphi_1(a) \end{split}$$

Thus \overline{D} is $(\varphi \circ \varphi_1)$ -derivation.

(iii) Clearly, $\varphi_2^{(2n-1)}: A^{(2n-1)} \to B^{(2n-1)}$ is a *B*-module morphism. Suppose \tilde{D} is $(\varphi \circ \varphi_1)$ -inner, then there exists $F \in A^{(2n-1)}$ with

$$\tilde{D}(a) = \varphi \circ \varphi_1(a) \cdot F - F \cdot \varphi \circ \varphi_1(a) \quad (a \in A).$$

Since $\varphi_1 \circ \varphi_2 = I_B$, we have $\varphi_1^{(2n-2)} \circ \varphi_2^{(2n-2)} = I_{B^{(2n-2)}}$, and so for every $b \in B$ and $m \in B^{(2n-2)}$, we have

$$\begin{split} \langle D(b), m \rangle &= \langle D(\varphi_1 \circ \varphi_2(b)), \varphi_1^{(2n-2)} \circ \varphi_2^{(2n-2)}(m) \rangle \\ &= \langle \varphi_1^{(2n-1)} \circ D \circ \varphi_1(\varphi_2(b)), \varphi_2^{(2n-2)}(m) \rangle \\ &\quad \langle \tilde{D}(\varphi_2(b)), \varphi_2^{(2n-2)}(m) \rangle \\ \langle \varphi \circ \varphi_1(\varphi_2(b)) \cdot F - F \cdot \varphi \circ \varphi_1(\varphi_2(b)), \varphi_2^{(2n-2)}(m) \rangle \end{split}$$

(Since \tilde{D} is $(\varphi \circ \varphi_1)$ -inner)

$$\begin{split} \langle \varphi(b) \cdot F - F \cdot \varphi(b), \varphi_2^{(2n-2)}(m) \rangle \\ &= \langle \varphi_2^{(2n-1)}(\varphi(b) \cdot F - F \cdot \varphi(b)), m \rangle \\ \langle \varphi(b) \cdot \varphi_2^{(2n-1)}(F) - \varphi_2^{(2n-1)}(F) \cdot \varphi(b), m \rangle \end{split}$$

Thus, D is (φ) -inner.

- (iv) The proof of (iv) is similar to that of (iii).
- (v) This follows directly from (i),(ii),(iii) and (iv)

Theorem 3.2 Let A be a Banach algebra such that $A = B \oplus I$ for some closed ideal I and closed subalgebra B. Let $\varphi : A \to A$ be a continuous homomorphism. Suppose A is $(\varphi \circ \varphi_1) - n$ -weakly amenable where $\varphi_1 : A \to B$ is a natural projection of A onto B. Then B is $(\varphi) - n$ -weakly amenable.

Proof Let $\varphi_2 : B \to A$ be the natural injection into A. Clearly, φ_1 and φ_2 are continuous homomorphism with $\varphi_1 \circ \varphi_2 = I_B$. Thus, the result follows from Proposition 3.1.

We recall that a short exact sequence of Banach algebras is a triple of Banach algebras A, B and C together with a pair of continuous homomorphism $\varphi : A \to B$ and $\psi : B \to C$ such that φ is injective, its image $\varphi(A)$ equals $Kernel(\psi)$, and ψ is surjective. This short exact sequence is denoted by

$$0 \to A \to B \to C \to 0.$$

The short exact sequence is said to be split if there is a continuous homomorphism $\chi: C \to B$ with $\psi \circ \chi$ the identity map on C (see [17] for details).

Corollary 3.3 Let A be a Banach algebra and let I be a closed ideal of A. Let $\varphi : A \to A$, and $\varphi_1 : A \to A/I$. Suppose the natural short exact sequence

$$0 \to A \to A \to A/I \to 0$$

splits. If A is $(\varphi \circ \varphi_1) - n$ -weakly amenable, then A/I is $(\varphi) - n$ -weakly amenable.

Proof Since the short exact sequence split, there exists a continuous homomorphism $\varphi_2 : A/I \to A$ such that $\varphi_1 \circ \varphi_2 = I_{A/I}$. Thus the result follows from above result.

Proposition 3.4 Let A be an algebra and let X be an A-bimodule. Define \mathcal{A} to be the linear space $A \oplus X$ with the product

$$(a, x) \cdot (b, y) = (ab, ay + xb) \quad (a, b \in A, x, y \in X).$$

(i) A is an algebra with respect to the specified product; A is commutative if and only if A is commutative and X is an A-module. The map $\Phi : A \to A$ defined by $\Phi((a, x)) = a$ is an epimorphism.

(ii) Let $D : A \to X$ be a map and let $\varphi : A \to A$ be a continuous homomorphism. Define $\theta : A \to A$ by $\theta(a) = (\varphi(a), D(a))(a \in A)$. Then θ is a homomorphism if and only if D is a (φ) -derivation.

(iii) Suppose $D: A \to X$ is a (φ) -derivation. Then $D: A \to A$ defined by $\tilde{D}((a, x)) = (0, D(a))$ is a $(\theta \circ \Phi)$ -derivation

Proof (i) This is Theorem 1.8.14 (i) of [6].

(ii) Suppose D is a (φ) -derivation. Then, for $a, b \in A$,

$$\begin{aligned} \theta(ab) &= (\varphi(ab), D(ab)) \\ &= (\varphi(a)\varphi(b), D(a) \cdot \varphi(b) + \varphi(a) \cdot D(b)) \\ &= (\varphi(a), D(a)) \cdot (\varphi(b), D(b)) = \theta(a) \cdot \theta(b). \end{aligned}$$

Conversely, suppose θ is a homomorphism. It is easy to see that $D(ab) = D(a) \cdot \varphi(b) + \varphi(a) \cdot D(b)$.

(iii) Since D is a (φ) -derivation, then θ is a homomorphism by (ii) and so by (i) Φ is a homomorphism. Let $(a, x), (b, y) \in \mathcal{A}, a, b \in \mathcal{A}, x, y \in X$. Then

$$\begin{split} \tilde{D}((a,x)) \cdot \theta \circ \Phi((b,y)) + \theta \circ \Phi((a,x)) \cdot \tilde{D}((b,y)) \\ &= (0,D(a)) \cdot \theta(b) + \theta(a) \cdot (0,D(b)) \\ (0,D(a)) \cdot (\varphi(b),D(b)) + (\varphi(a),D(a)) \cdot (0,D(b)) \\ &= (0,D(a) \cdot \varphi(b)) + (0,\varphi(a) \cdot D(b)) \\ &\quad (0,D(a) \cdot \varphi(b) + \varphi(a) \cdot D(b)) \\ &= (0,D(ab)) = \tilde{D}((ab,a \cdot y + x \cdot b)) \\ &= \tilde{D}((a,x)(b,y)) \end{split}$$

and so \tilde{D} is a $(\theta \circ \Phi)$ -derivation.

Let A be a Banach algebra and let X be a Banach A-bimodule. Then the l^1 -direct sum $\mathcal{A} = A \oplus X$ is a Banach algebra under the product

$$(a, x) \cdot (b, y) = (ab, ay + xb) \quad (a, b \in A, x, y \in X).$$

This is known as a module extension Banach algebra. Since X is an ideal of \mathcal{A} and A is a closed subalgebra of \mathcal{A} , then as a consequence of Theorem 3.2, we have the next result.

Corollary 3.5 Let A be a Banach algebra and X be a Banach A-bimodule. Let $\varphi : A \oplus X \to A \oplus X$ be a continuous homomorphism and $\varphi_1 : A \oplus X \to A$ a projection of $A \oplus X$ onto A. Suppose $A \oplus X$ is $(\varphi \circ \varphi_1) - n$ -weakly amenable, then A is $(\varphi) - n$ -weakly amenable.

Let A be a Banach algebra and let X be a Banach A-bimodule. The higher duals $X^{(n)}$ are Banach A-bimodules. We recall that a Banach A-bimodule X is symmetric if $a \cdot x = x \cdot a$ for $n \in \mathbb{N}, a \in A, x \in X$. If X is symmetric, then each higher dual $X^{(n)}$ is symmetric. Let $\varphi : A \to A$ be a continuous homomorphism, since $A^{(n)}$ is a Banach A-module under the module actions

$$a \cdot m = \varphi(a) \cdot m, m \cdot a = m \cdot \varphi(a) \quad (a \in A, m \in A^{(n)})$$

By using the fact that $(A_{(\varphi,\varphi)})'$ is a symmetric Banach A-module (see Example 4.1 of [4]), we have the next result.

Proposition Let A be a commutative weakly amenable Banach algebra and let $\varphi : A \to A$ be a continuous homomorphism. Then A is $(\varphi) - n$ -weakly

 $\varphi : A \to A$ be a continuous homomorphism. Then A is $(\varphi) - n$ -weakly amenable.

Proof This follows from Theorem 1.5 of [3] and the above explanation.

4 $(\varphi) - n$ -Weak Amenability of the Second Dual

Let A be a Banach algebra. There are two products on the second dual A'' of A, these products are denoted by \Box and \diamond and are called the first and second Arens products on A; the original definitions of the two products were given in [1]. We recall briefly the definitions of \Box and \diamond .

First, for $\lambda \in A'$, we have

$$\langle b, a \cdot \lambda \rangle = \langle ba, \lambda \rangle, \langle b, \lambda \cdot a \rangle = \langle ab, \lambda \rangle (a, b \in A)$$

For $\lambda \in A'$ and $\psi \in A''$, define $\lambda \cdot \psi$ and $\psi \cdot \lambda$ in A' by

$$\langle a, \lambda \cdot \psi \rangle = \langle \psi, a \cdot \lambda \rangle, \langle a, \psi \cdot \lambda \rangle = \langle \psi, \lambda \cdot a \rangle (a \in A).$$

Finally, for $\psi_1, \psi_2 \in A''$, define

$$\langle \psi_1 \Box \psi_2, \lambda \rangle = \langle \psi_1, \psi_2 \cdot \lambda \rangle,$$
$$\langle \psi_1 \diamond \psi_2, \lambda \rangle = \langle \psi_2, \lambda \cdot \psi_1 \rangle (\lambda \in A')$$

The Banach algebra A is said to be Arens regular if the two products \Box and \diamond concide in $A^{\prime\prime}$

Suppose that $\psi_1 = \lim_{\alpha a_{\alpha}} a_{\alpha}$ and $\psi_2 = \lim_{\beta b_{\beta}} b_{\beta}$ for nets (a_{α}) and (b_{β}) in A. Then

$$\psi_1 \sqcup \psi_2 = lim_\alpha lim_\beta a_\alpha b_\beta$$

$$\psi_1 \diamond \psi_2 = \lim_{\beta} \lim_{\alpha} a_{\alpha} b_{\beta},$$

where all limits are taken in the $\sigma(A'', A')$ -topology on A''.

Theorem 4.1 [9] Let A be a Banach algebra. Then both (A'', \Box) and (A'', \diamond) are Banach algebras containing A as a closed subalgebra.

Using Theorem 4.1, we have that (A'', \Box) and (A'', \diamond) are Banach Abimodule with respect to the product on (A'', \Box) and (A'', \diamond) respectively. Let A and B be Banach algebras, and let $\varphi : A \to B$ be a continuous homomorphism. Then $\varphi'' : (A'', \Box) \to (B'', \Box)$ is a continuous homomorphism. Let A be a closed subalgebra of B. Then we regard (A'', \Box) as a closed subalgebra of (B'', \Box) . For further details on these products see [8].

We also recall that a Banach algebra A is called a dual Banach algebra if there is a closed submodule A' of A' such that $A'_{i} = A$.

Proposition 4.2 (See [8, Proposition 5.2])

For a Banach algebra A the following statements are equivalent (i) (A'', \Box) is a dual Banach algebra (with predual A') (ii) A is Arens regular.

As a consequence of Theorem 3.2 and Theorem 4.1, we have the next result.

Proposition 4.3 Let A be a dual Banach algebra and let $\varphi : A \to A$ be a continuous homomorphism. Suppose (A'', \Box) is $(\varphi \circ \varphi_1) - n$ -weakly amenable for $\varphi_1 : A'' \to A$ a natural projection of A'' onto A, then A is $(\varphi) - n$ -weakly amenable.

Proof Let A be a dual Banach algebra with respect to the predual A' and let $i : A' \to A'$ be the canonical embedding with adjoint φ_1 and $\varphi_2 : A \to A''$ be the canonical embedding. Clearly, $\varphi_1 \circ \varphi_2 = I_A$ and $\varphi_2 : A \to A''$ is a homomorphism. Also, $\varphi_1 : A'' \to A$ is a homomorphism since for $a \in A', \psi_1, \psi_2 \in A''$ with nets $(a_\alpha), (b_\beta)$ in A such that $\psi_1 = \lim_{\alpha} a_\alpha, \psi_2 = \lim_{\beta} b_\beta$, we have

$$\begin{split} \langle \varphi_1(\psi_1 \Box \psi_2), a \rangle &= \langle \psi_1 \Box \psi_2, i(a) \rangle \\ &= lim_\alpha lim_\beta \langle a_\alpha b_\beta, i(a) \rangle \\ &= lim_\alpha lim_\beta \langle \varphi_1(a_\alpha) \varphi_1(b_\beta), a \rangle \\ &= lim_\alpha \langle i(a \cdot \varphi_1(a_\alpha)), \psi_2 \rangle \\ &= lim_\alpha \langle a_\alpha, i(\varphi_1(\psi_2) \cdot a) \rangle \\ &= \langle \psi_1, i(\varphi_1(\psi_2) \cdot a) \rangle \\ &= \langle \varphi_1(\psi_1) \varphi_1(\psi_2), a \rangle. \end{split}$$

Thus, the result follows using Theorem 3.2.

Proposition 4.4 Let A be a Banach algebra, let $\varphi : A \to A$ be a continuous homomorphism and let X be a Banach A-bimodule. Suppose $D : A \to X$ is a continuous (φ) -derivation. Then $D'' : (A'', \Box) \to X''$ is a continuous (φ'') -derivation.

Proof Clearly $D'': A'' \to X''$ is a continuous linear operator. Let $\psi_1, \psi_2 \in A''$ with $\psi_1 = \lim_{\alpha} a_{\alpha}$ and $\psi_2 = \lim_{\beta} b_{\beta}$ in $(A'', \sigma(A'', A))$, where $(a_{\alpha}), (b_{\beta})$ are nets in A with $||a_{\alpha}|| \leq ||\psi_1||$ and $||b_{\beta}|| \leq ||\psi_2||$. Then

$$D''(\psi_1 \Box \psi_2) = D''(lim_\alpha lim_\beta a_\alpha b_\beta)$$
$$= lim_\alpha lim_\beta D(a_\alpha b_\beta)$$
$$= lim_\alpha lim_\beta (D(a_\alpha) \cdot \varphi(b_\beta) + \varphi(a_\alpha) \cdot D(b_\beta))$$
$$= D''(\psi_1) \cdot \varphi''(\psi_2) + \varphi''(\psi_1) \cdot D''(\psi_2)$$

and so D'' is a (φ'') -derivation.

Theorem 4.5 Let A be a Banach algebra, let $\varphi : A \to A$ be a continuous homomorphism, and let $D_{\varphi} : A \to (A'', \Box)$ be a continuous (φ) -derivation. Suppose A is Arens regular. Then there is a continuous (φ'') -derivation $D_{\varphi''} : (A'', \Box) \to (A'', \Box)$ such that

$$D_{\varphi''}(\tilde{a}) = D_{\varphi}(a) \quad (a \in A),$$

and \tilde{a} is the canonical image in A'' of $a \in A$.

Proof By Proposition 4.4, $D''_{\varphi}: (A'', \Box) \to A''''$ is a continuous (φ'') derivation. By using the fact that A is Arens regular, we have that the canonical projection $P: A'''' \to A''$ is a (A'', \Box) -bimodule morphism. Let $\psi \in A''$ such that $a_{\alpha} \to \psi$ in $\sigma(A'', A')$, where (a_{α}) is a bounded net in A. We have $\tilde{a_{\alpha}} \to \tilde{\psi}$ in $\sigma(A'', A')$, where $\tilde{\psi}$ is the canonical image of ψ in A''. By taking $D_{\varphi''} = P \circ D''_{\varphi}, D_{\varphi''}$ clearly satisfy $D_{\varphi''}(\tilde{a}) = D_{\varphi}(a)(a \in A)$.

Corollary 4.6 Let A be a Banach algebra which is Arens regular and let $\varphi : A \to A$ be a continuous derivation. Suppose every continuous (φ'') derivation from (A'', \Box) to (A'', \Box) is (φ'') - inner. Then A is (φ) -2-weakly amenable.

Proof Let $D: A \to A''$ be a continuous (φ) -derivation. By Theorem 4.5, there exists a continuous (φ'') -derivation \tilde{D} such that $\tilde{D}(\tilde{a}) = D(a) \quad (a \in A)$. Thus, there exists $\psi_1 \in A''$ such that

$$\tilde{D}(\psi_2) = \varphi''(\psi_2)_1 - \psi_1''(\psi_2) \quad (\psi_1 \in A'').$$

In particular,

$$D(a) = \varphi(a) \cdot \psi_1 - \psi_1 \cdot \varphi(a) \quad (a \in A)$$

and so D is (φ) -inner. Thus, A is (φ) -2-weakly amenable.

Corollary 4.7 Let A be a Banach algebra and let $\varphi : A \to A$ be a continuous homomorphism. Suppose (A'', \Box) is a dual Banach algebra (with predual A_{\prime}) and every continuous (φ'') -derivation from A'' to A'' is (φ'') -inner. Then A is (φ) -2-weakly amenable.

Proof This follows Proposition 4.2 and the above result.

References

- Arens R, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839–848.
- [2] Arens R, Operations induced in function classes, Monatsh Math. 55 (1951), 1–19.
- [3] Bade W.G, Curtis P.C and Dales H.G, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. 3 (1987), 359–377.
- [4] Bodaghi A, Gordji M.E and Medghalchi A.R, A generalization of the weak amenability of Banach algebras, Banach J. Math. Anal. 3 (2009), 131–142.
- [5] Connes A, On the cohomology of operator algebras, J. Funct. Anal. 28 (1978), 248–253.
- [6] Dales H.G, Banach algebras and automatic continuity, London Mathematical Society Monographs, New Series, Volume 24, The Clarendon Press, Oxford, 2000.
- [7] Dales H.G, Grahramani F, and Gronbaek N, Derivations into iterated duals of Banach algebras, Studia Math. 128 (1998), 19–54.
- [8] Dales H.G, Rodrigues-Palacios A and Velasco M.V, The second transpose of a derivation, J. London Math. Soc. 64(2) (2001), 707–721.
- [9] Dales H.G and Lau A.T-M, The second duals of Beurling algebras, Memoirs American Math. Soc., 177 (2005), 1–191.
- [10] Haagerup U, All nuclear C*-algebras are amenable, Invent. Math. 74 (1983), 305–319.
- [11] Johnson B.E, Cohomology in Banach algebras, Memoirs American Math. Soc. 127 (1972).

- [12] B.E. Johnson, Weak amenability of group algebras, Bull. London Math. Soc. 23 (1991).
- [13] Mewomo O.T, On n-weak amenability of Rees semigroup algebras, Proc. Indian Acad. Sci. (Math. Sci.), 118(4) (2008), 547–555.
- [14] Mirzavaziri M. and Moslehian M.S, Automatic continuity of σ -derivations in C^{*}-algebras, Proc. American Math. Soc. **134**(11) (2006), 3319–3327.
- [15] Mirzavaziri M. and Moslehian M.S, σ -derivations in Banach algebras, Bull. Iranian Math. Soc. (2006), 65–78.
- [16] Moslehian M.S and Motlagh A.N, Some notes on (σ, τ) -amenability of Banach algebras, Stud. Univ. Babes-Bolyai Math. **53**(3) (2008), 57–68.
- [17] Palmer T.M, Banach algebra and the general theory of *-algebras, Cambridge University Press, Vol. (1994).
- [18] Yong Zhang, Weak amenability of module extensions of Banach algebra, Trans. Amer. Math. Soc., 354(10) (2002), 4131–4151.

Department of Mathematics University of Agriculture Abeokuta, Nigeria tosinmewomo@yahoo.com , mewomoot@unaab.edu.ng Department of Mathematics Obafemi Awolowo University Ile - Ife, Nigeria agnebg@yahoo.co.uk