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THE L(2, 1)-LABELING ON TOTAL GRAPHS
OF COMPLETE MULTIPARTITE GRAPHS

Ruxandra Marinescu-Ghemeci and Gabriela Mihai

Abstract

An L(2, 1)-labeling of a connected graph G is defined as a function f
from the vertex set V (G) to the set of all nonnegative integers such that
|f(u) − f(v)| ≥ 2 if dG(u, v) = 1 and |f(u) − f(v)| ≥ 1 if dG(u, v) = 2,
where dG(u, v) denotes the distance between vertices u and v in G. The
L(2, 1)-labeling number of G, denoted by λ(G), is the smallest number
k such that G has an L(2, 1)-labeling f with max{f(v) : v ∈ V (G)} = k.
In this paper, we consider the total graphs of the complete multipartite
graphs and provide exact value for their λ-numbers.

1 Introduction

Motivated by the frequency assignment problem, Yeh [8] and Griggs and
Yeh [3] proposed the notion of L(2, 1)-labeling of a simple graph. An L(2, 1)-
labeling of a graph is a coloring of its vertices with nonnegative integers such
that the labels on adjacent vertices differ by at least 2 and the labels on vertices
at distance two differ by at least 1. This concept generalizes the notion of
vertex coloring, because vertex coloring is the same as L(1, 0)-labeling.

The L(2, 1)-labeling number of G, denoted by λ(G), is the smallest number
k, such that G has a L(2, 1)-labeling with no label greater than k.

Griggs and Yeh [3] showed that every graph with maximum degree ∆ has
an L(2, 1)-labeling for which the value λ is at most ∆2 + 2∆. Chang and Kuo
[1] provided a better upper bound ∆2 + ∆. Griggs and Yeh [3] conjectured
that the best bound is ∆2 for any graph G with the maximum degree ∆ ≥ 2;
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this bound is valid for graphs having diameter 2. There are many articles that
are studying the problem of L(2, 1) - labelings ([1-7]). Most of these papers
consider the values of λ on particular classes of graphs. For example, Shao,
Yeh and Zhang [7] determined the λ-numbers for the total graphs of complete
graphs. Determining the value of λ was proved to be NP -complete [3].

The goal of this paper is to determine the exact value of λ for total graphs
of the complete multipartite graphs. It also provides a better upper bound for
λ-numbers as function of ∆ corresponding to this class of graphs.

For basic terminology and notation in graph theory we refer [4].

2 Total graphs of complete multipartite graphs

Let G be a graph. We denote by δ(G) its minimum degree and by ∆(G)
its maximum degree.

The total graph T (G) of graph G is the graph whose vertices correspond
to the vertices and edges of G, and whose two vertices are joint if and only
if the corresponding vertices are adjacent, edges are adjacent or vertices and
edges are incident in G.

In this paper we consider the complete multipartite graphs Kn1,n2,...,np

with n1 ≤ n2 ≤ ... ≤ np.
Next, we will use the following notations. If vertices x and y are adja-

cent in Kn1,n2,...,np
, then the edge [x, y] will be a vertex in the total graph

T (Kn1,n2,...,np), denoted by xy.
We consider the multipartition V (Kn1,n2,...,np

) = V1 ∪ V2 ∪ ... ∪ Vp, where
partite sets V1, V2, ..., Vp are disjoint and |Vi| = ni for 1 ≤ i ≤ p. We also
denote by xk

i the k-th vertex of Vi, where 1 ≤ i ≤ p and 1 ≤ k ≤ ni. The
number of vertices of the complete multipartite graph Kn1,n2,...,np

is denoted

by n. Thus, n =
∑

1≤i≤p

ni.

We have

|V (T (Kn1,n2,...,np))| = |V (Kn1,n2,...,np)|+|E(Kn1,n2,...,np)| = n+
∑

1≤i<j≤p

ninj .

Lemma 2.1. If G is the total graph T (Kn1,n2,...,np
) then δ(G) = 2(n − np)

and ∆(G) = 2(n− n1).

Proof. Since it is easy to see that in the total graph T (Kn1,n2,...,np
) we have

d(xk
i) = 2(n−ni) and d(xk

ixt
j) = 2n−ni−nj , for 1 ≤ i 6= j ≤ p, 1 ≤ k ≤ ni

and 1 ≤ t ≤ nj , the result follows.
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Let u be a vertex of the total graph T (G). If u corresponds to a vertex in
graph G then it is called a v-vertex. Otherwise, if u corresponds to an edge in
G, then it is called an e-vertex [7].

Lemma 2.2. The total graph T (Kn1,n2,...,np
) has the diameter

diam(T (Kn1,n2,...,np
)) =

{
1, if p = 2 and n1 = n2 = 1
2, otherwise.

Proof. The total graph T (K1,1) is K3; therefore, in this case diam(T (K1,1)) =
1. Otherwise, from the definition of the total graph T (Kn1,n2,...,np

), we have
dT (Kn1,n2,...,np )(u1, u2) = 1 if and only if u1 and u2 are v-vertices in different
partite sets, or one of them is a v-vertex and the other is an e-vertex that
has one extremity equal to the first, or u1 and u2 are e-vertices that have
one common extremity. Otherwise, dT (Kn1,n2,...,np )(u1, u2) = 2 because in
all cases there exists a v-vertex or an e-vertex that is adjacent with both
vertices u1 and u2. Moreover, for p ≥ 3 or (p = 2 and np ≥ 2) there exist in
Kn1,n2,...,np a vertex and an edge that are not incident. Therefore, in this case

diam(T (Kn1,n2,...,np
)) = 2.

3 λ-numbers for total graphs T (Kn1,n2,...,np)

Before proving Theorem 3.6, we need the following results. For a graph
G, we denote by G its complement and by c(G) the smallest number of vertex-
disjoint paths in G needed to cover its vertex set.

Theorem 3.1. (Dirac). Let G be a graph. If δ(G) ≥ |V (G)|/2 then there is
a Hamiltonian cycle in G.

Theorem 3.2. [2]. Let G be a graph of order n that has diameter 2 and G
its complement. If c(G)=1 then λ(G) = n− 1.

Lemma 3.3. If G is the total graph T (Kn1,n2,...,np) then the minimum degree
of its complement is

δ(G) =
∑

1≤i<j≤p

ninj + 2n1 − n− 1.

Proof. We know that dG(v) = |V (G)| − 1− dG(v) for all v ∈ V (G). Next, the

result follows from Lemma 2.1.
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Lemma 3.4. [7]

λ(T (Kn)) =

 4, if n = 2
7, if n = 3(
n
2

)
, if n ≥ 4.

Lemma 3.5. [6]

λ(T (Kn,m)) =

 4, if n = m = 1
2m+ 1, if n = 1 and m ≥ 2
nm+ n+m− 1, if m ≥ n ≥ 2.

Theorem 3.6. If G is the total graph T (Kn1,n2,...,np
), where p ≥ 3 and np ≥ 2

then
λ(G) = n+

∑
1≤i<j≤p

ninj − 1.

Proof. By Lemma 2.2 we have diam(G) = 2. In order to determine λ(G) we
will use Theorem 3.2. For that, we will find c(G). First we study the cases
in which G satisfies condition from Dirac’s Theorem 3.1. In this cases G is
Hamiltonian, hence c(G) = 1 and by Theorem 3.2 we have λ(G) = |V (G)|−1 =

n+
∑

1≤i<j≤p

ninj − 1. The other cases will be studied individually.

Let S = 2δ(G)− |V (G)|. By Lemma 3.3 we obtain

S = 2

 ∑
1≤i<j≤p

ninj + 2n1 − n− 1

− n− ∑
1≤i<j≤p

ninj =

= np(n1 + n2 + . . .+ np−1) + np−1(n1 + n2 + . . .+ np−2) + . . .+

+n2n1 + 4n1 − 3n− 2.

Dirac’s condition for hamiltonicity is satisfied if and only if S ≥ 0.
For p ≥ 4 we will prove that the following inequality holds:

S ≥ np(n1 + n2 + . . .+ np−1)− (n1 + n2 + n3)− 3np + n1 − 2. (1)

Indeed, denote by

S1 = np(n1 + n2 + . . .+ np−1)− 3np + n1 − 2.

Since 1 ≤ n1 ≤ n2 ≤ . . . ≤ np we have

S = S1 + np−1(n1 + n2 + . . .+ np−2) + . . .+ n4(n3 + n2 + n1)+
+n3(n2 + n1) + n2n1 − 3(n2 + . . .+ np−1) ≥

≥ S1 + 3(np−1 + . . .+ n4) + 2n3 + n3(n2 − n1) + n2n1−
−3(n2 + . . .+ np−1) =

= S1 − (n1 + n2 + n3) + n3(n2 − n1) + n2n1 + n1 − 2n2.
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If n2 > n1 it follows that

n3(n2 − n1) + n2n1 + n1 − 2n2 ≥ n3 + n2 − 2n2 ≥ 0.

If n2 = n1 then

n3(n2 − n1) + n2n1 + n1 − 2n2 = n2
1 − n1 ≥ 0.

Hence
S ≥ S1 − (n1 + n2 + n3)

and inequality (1) holds.
For p ≥ 5, by (1) we obtain

S ≥ np(n1 + n2 + n3 + n4)− (n1 + n2 + n3)− 3np + n1 − 2 =
= npn4 − 3np + np(n1 + n2 + n3)− (n2 + n3)− 2.

Function f : N+
3 −→ Z, defined by

f(n1, n2, n3) = np(n1 + n2 + n3)− (n2 + n3)− 2

is increasing in n1, n2, n3, hence

f(n1, n2, n3) ≥ f(1, 1, 1) = 3np − 4.

It follows that
S ≥ npn4 − 4.

Then we deduce S ≥ 0 for n4 ≥ 2 or n5 ≥ 4.
For p = 4, by (1) we have

S ≥ n4(n1 + n2 + n3)− 3n4 − (n2 + n3)− 2.

Function g : N+
4 −→ Z, defined by

g(n1, n2, n3, n4) = n4(n1 + n2 + n3)− 3n4 − (n2 + n3)− 2

is also increasing in n1, n2, n3, n4, hence
- for n1 ≥ 2, S ≥ g(2, 2, 2, 2) = 0;
- otherwise, for n3 ≥ 3, S ≥ g(1, 1, 3, 3) = 0;
- otherwise, for n3 = 2 and n4 ≥ 5, S ≥ g(1, 1, 2, 5) = 0;
- otherwise, for n2 = 2 and n4 ≥ 4, S ≥ g(1, 2, 2, 4) = 2.
If p = 3 then S = (n1− 1)(n2 +n3 + 1) + (n2− 2)(n3− 2)− 5 and it is easy

to prove that S ≥ 0 for: n1 ≥ 2 or n2 ≥ 5 or (n2 = 4 and n3 ≥ 5) or (n2 = 3
and n3 ≥ 7).
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It remains to consider the following cases: (1) p = 5 and n1 = n2 = n3 =
n4 = 1 and n5 ∈ {2, 3}; (2) p = 4 with subcases (2.1) n1 = n2 = n3 = 1, (2.2)
n1 = n2 = 1, n3 = 2 and n4 ∈ {2, 3, 4}, (2.3) n1 = 1 and n2 = n3 = n4 = 2,
(2.4) n1 = 1, n2 = n3 = 2 and n4 = 3; (3) p = 3 with subcases (3.1) n1 =
n2 = 1, (3.2) n1 = 1 and n2 = 2, (3.3) n1 = 1, n2 = 3 and n3 ∈ {3, 4, 5, 6},
(3.4) n1 = 1 and n2 = n3 = 4.
Case 1. p = 5

We can directly verify that T (K1,1,1,1,2) and T (K1,1,1,1,3) have a Hamilto-
nian path. For example, L = x1

1, x3
1x

5
1, x2

1x
4
1, x1

1x
5
1, x5

2, x5
1, x4

1x
5
2, x2

1x
5
1, x3

1,
x1

1x
4
1, x2

1x
3
1, x1

1x
5
2, x2

1, x3
1x

4
1, x1

1x
2
1, x3

1x
5
2, x4

1, x1
1x

3
1, x2

1x
5
2, x4

1x
5
1 is a Hamiltonian

path in T (K1,1,1,1,2) and L = x1
1, x2

1x
5
1, x1

1x
5
2, x5

3, x4
1x

5
2, x3

1x
5
1, x4

1, x2
1x

3
1, x1

1x
4
1,

x2
1, x3

1x
5
3, x2

1x
5
2, x1

1x
3
1, x4

1x
5
3, x3

1, x2
1x

5
3, x4

1x
5
1, x3

1x
5
2, x1

1x
2
1, x3

1x
4
1, x1

1x
5
1, x5

2, x2
1x

4
1,

x1
1x

5
3, x5

1 is a Hamiltonian path in T (K1,1,1,1,3).
Case 2. p = 4

(2.1) For T (K1,1,1,2) we can construct a Hamiltonain path, for example
L2 = x4

1, x1
1x

4
2, x2

1, x3
1x

4
1, x1

1x
2
1, x3

1, x1
1x

4
1, x2

1x
3
1, x1

1, x2
1x

4
2, x1

1x
3
1, x4

2, x2
1x

4
1, x3

1x
4
2.

For m ≥ 3 we will prove by induction on m that T (K1,1,1,m) has a Hamil-
tonian path Lm, having the extremities x4

m and x2
1x

4
m and containing the

subpath xi1x
4
m, x2

1, xj1x
4
m, where i, j ∈ {1, 3}, i 6= j.

For m = 3 the graph T (K1,1,1,3) has such a Hamiltonian path L3 = x2
1x

4
3,

x4
1, x1

1x
4
2, x3

1x
4
3, x2

1, x1
1x

4
3, x3

1x
4
1, x1

1x
2
1, x3

1, x1
1x

4
1, x2

1x
3
1, x1

1, x2
1x

4
2, x1

1x
3
1, x4

2, x2
1x

4
1,

x3
1x

4
2, x4

3.
Let m ≥ 3 and assume that T (K1,1,1,m) has a Hamiltonian path de-

noted by Lm, having the extremities x4
m and x2

1x
4
m and containing the sub-

path xi1x
4
m, x2

1, xj1x
4
m, where i, j ∈ {1, 3}, i 6= j. Since V (T (K1,1,1,m+1)) =

V (T (K1,1,1,m)) ∪ {x4
m+1, x1

1x
4
m+1, x2

1x
4
m+1, x3

1x
4
m+1}, we can obtain a Hamil-

tonian path Lm+1 for T (K1,1,1,m+1) from Lm by connecting the vertex x4
m+1

to the extremity x2
1x

4
m of Lm and the vertex x2

1x
4
m+1 to the extremity x4

m of

Lm, and transforming the subpath xi1x
4
m, x2

1, xj1x
4
m, where i, j ∈ {1, 3}, i 6= j

of Lm into xi1x
4
m, x4−i

1 x4
m+1, x2

1, x4−j
1 x4

m+1, xj1x
4
m. The Hamiltonian path

Lm+1 satisfies the induction hypothesis.
(2.2) We can directly verify that T (K1,1,2,2), T (K1,1,2,3) and T (K1,1,2,4)

have a Hamiltonian path. For example, L = x1
1, x3

1x
4
2, x2

1x
4
1, x1

1x
4
2, x4

1, x1
1x

3
1,

x2
1, x3

2x
4
1, x2

1x
4
2, x1

1x
4
1, x4

2, x2
1x

3
2, x3

1x
4
1, x1

1x
3
2, x2

1x
3
1, x3

2x
4
2, x1

1x
2
1, x3

1, x3
2 is a

Hamiltonian path in T (K1,1,2,2), L = x1
1, x3

1x
4
2, x4

1, x2
1x

4
3, x1

1x
3
1, x2

1x
4
1, x1

1x
4
2,

x2
1x

3
2, x4

2, x3
1x

4
1, x2

1, x3
1x

4
3, x3

2x
4
2, x1

1x
4
1, x2

1x
3
1, x1

1x
3
2, x4

3, x2
1x

4
2, x1

1x
4
3, x3

2x
4
1, x3

1, x3
2,

x1
1x

2
1, x3

2x
4
3 is a Hamiltonian path in T (K1,1,2,3) and L = x1

1, x3
1x

4
1, x4

2, x2
1x

4
1,

x1
1x

3
1, x2

1x
3
2, x4

4, x2
1x

4
3, x3

2, x3
1x

4
4, x3

2x
4
3, x2

1x
4
4, x1

1x
4
3, x2

1x
3
1, x3

1x
4
2, x3

2x
4
1, x2

1, x1
1x

4
1,

x3
1x

4
3, x3

2x
4
2, x1

1x
2
1, x3

2x
4
4, x1

1x
4
2, x3

1, x2
1x

4
2, x1

1x
4
4, x4

1, x1
1x

3
2, x4

3 is a Hamiltonian
path in T (K1,1,2,4).

(2.3) We can directly verify that L = x1
1, x2

2x
3
2, x1

1x
4
1, x2

1x
4
2, x3

2x
4
1, x2

1, x1
1x

2
2,
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x2
1x

3
2, x4

2, x1
1x

3
2, x2

2x
3
1, x1

1x
2
1, x2

2x
4
2, x4

1, x3
1x

4
2, x2

2, x3
2x

4
2, x2

2x
4
1, x2

1x
3
1, x1

1x
4
2, x3

1x
4
1,

x3
2, x1

1x
3
1, x2

1x
4
1, x3

1 is a Hamiltonian path in T (K1,2,2,2).
(2.4) In this case we obtain directly S = 1 > 0 and the Dirac’s condition

for hamiltonicity is satisfied.
Case 3. p = 3

(3.1) For T (K1,1,2) we can construct a Hamiltonain path, for example
L2 = x3

1, x1
1x

3
2, x2

1, x1
1x

3
1, x2

1x
3
2, x1

1, x2
1x

3
1, x3

2, x1
1x

2
1.

For m ≥ 3 we will prove by induction on m that T (K1,1,m) has a Hamil-
tonian path Lm having the vertex x3

m as an extremity and containing the
subpath xi1x

3
m, x3

1, xj1x
3
m, where i, j ∈ {1, 2}, i 6= j.

For m = 3 the graph T (K1,1,3) has such a Hamiltonian path L3 = x1
1x

3
3,

x3
1, x2

1x
3
3, x1

1x
3
2, x2

1, x1
1x

3
1, x2

1x
3
2, x1

1, x2
1x

3
1, x3

2, x1
1x

2
1, x3

3.
Let m ≥ 3 and assume that T (K1,1,m) has a Hamiltonian path denoted by

Lm, having the vertex x3
m as an extremity and containing the subpath xi1x

3
m,

x3
1, xj1x

3
m, where i, j ∈ {1, 2}, i 6= j. Since

V (T (K1,1,m+1)) = V (T (K1,1,m)) ∪ {x1
1x

3
m+1, x

2
1x

3
m+1, x

3
m+1},

we can obtain a Hamiltonian path Lm+1for T (K1,1,m+1) from Lm by connect-
ing the vertex x3

m+1 to the extremity x3
m of Lm and transforming the subpath

xi1x
3
m, x3

1, xj1x
3
m, where i, j ∈ {1, 2}, i 6= j of Lm into xi1x

3
m, x3−i

1 x3
m+1, x3

1,

x3−j
1 x3

m+1, xj1x
3
m. The Hamiltonian path Lm+1 satisfies the induction hypoth-

esis.
(3.2) We will prove by induction on m that T (K1,2,m) has a Hamiltonian

path Lm containing the subpaths x1
1x

3
m, x3

1, x2
1x

3
m and x3

m, x
1
1x

3
1, x

2
2x

3
m.

For T (K1,2,2) we can construct such a Hamiltonain path, for example L2=
x1

1x
3
2, x3

1, x2
1x

3
2, x2

2, x1
1x

2
1, x2

2x
3
1, x3

2, x1
1x

3
1, x2

2x
3
2, x1

1, x2
1x

3
1, x1

1x
2
2, x2

1.
Let m ≥ 2 and assume that T (K1,2,m) has a Hamiltonian path denoted

by Lm, containing the subpaths x1
1x

3
m, x3

1, x2
1x

3
m, and x3

m, x1
1x

3
1, x2

2x
3
m. We

have V (T (K1,2,m+1)) = V (T (K1,2,m)) ∪ {x1
1x

3
m+1, x

2
1x

3
m+1, x

2
2x

3
m+1, x

3
m+1}.

Let L′m+1 be the path obtained from Lm by replacing the subpath x1
1x

3
m,

x3
1, x2

1x
3
m with x1

1x
3
m, x2

1x
3
m+1, x3

1, x1
1x

3
m+1, x2

1x
3
m and the subpath x3

m, x1
1x

3
1,

x2
2x

3
m with x3

m, x2
2x

3
m+1, x1

1x
3
1, x3

m+1, x2
2x

3
m. Then the vertices of L′m+1 in

reverse order form a path Lm+1 which satisfies the induction hypothesis.
(3.3) For n3 ≤ 6, it can be verified that T (K1,3,n3

) has a Hamiltonian
path. Moreover, it can be proved by induction on m that, for every m ≥ 3,
T (K1,3,m) has a Hamiltonian path Lm having the vertex x3

m as an extremity
and containing the subpaths x1

1x
3
m, x3

1, x2
1x

3
m and x2

2x
3
m, x1

1, x2
3x

3
m. Indeed, for

m = 3, T (K1,3,3) has such a path L3 = x1
1x

2
3, x2

1, x2
2, x1

1x
2
1, x3

2, x1
1x

2
2, x2

3, x2
2x

3
1,

x2
3x

3
2, x1

1x
3
3, x3

1, x2
1x

3
3, x2

3x
3
1, x2

2x
3
2, x1

1x
3
1, x2

1x
3
2, x2

2x
3
3, x1

1, x2
3x

3
3, x1

1x
3
2, x2

1x
3
1, x3

3.
Let m ≥ 3 and assume that T (K1,3,m) has a Hamiltonian path denoted by

Lm having the vertex x3
m as an extremity and containing the subpaths x1

1x
3
m,
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x3
1, x2

1x
3
m and x2

2x
3
m, x1

1, x2
3x

3
m. We have V (T (K1,3,m+1)) = V (T (K1,3,m)) ∪

{x1
1x

3
m+1, x

2
1x

3
m+1, x

2
2x

3
m+1, x

2
3x

3
m+1, x

3
m+1}. Let L′m+1 be the path obtained

from Lm by connecting the vertex x3
m+1 to the extremity x3

m of Lm and
replacing the subpath x1

1x
3
m, x3

1, x2
1x

3
m with x1

1x
3
m, x2

1x
3
m+1, x3

1, x1
1x

3
m+1, x2

1x
3
m

and the subpath x2
2x

3
m, x1

1, x2
3x

3
m with x2

2x
3
m, x2

3x
3
m+1, x1

1, x2
2x

3
m+1, x2

3x
3
m.

Then the vertices of L′m+1 in reverse order form a path Lm+1 which satisfies
the induction hypothesis for m+ 1.

(3.4) We can see directly that T (K1,4,4) has a Hamiltonian path L = x2
3x

3
1,

x1
1, x2

1x
3
1, x1

1x
2
4, x3

2, x2
4x

3
3, x2

2x
3
2, x1

1x
3
3, x3

4, x2
4x

3
1, x2

1, x2
2x

3
1, x2

4x
3
4, x1

1x
3
1, x2

1x
3
4,

x2
2, x2

3x
3
4, x2

1x
3
3, x1

1x
2
3, x2

2x
3
3, x2

4x
3
2, x1

1x
2
2, x2

3x
3
3, x1

1x
3
2, x2

3, x2
1x

3
2, x2

2x
3
4, x2

4, x1
1x

3
4,

x2
3x

3
2, x3

1, x1
1x

2
1, x3

3.

Corollary 3.7. λ(T (Kn1,n2,...,np
)) ≤ p

p−1 (∆2

8 + ∆
2 ) − 1 for all p ≥ 4 or p =

3 and n3 ≥ 2.

Proof. Let G be the total graph T (Kn1,n2,...,np).
By Cauchy - Schwarz inequality for p-vectors (n1, . . . , np) and (1, . . . , 1)

we have the inequality

n2
1 + n2

2 + . . .+ n2
p ≥

(n1 + n2 + . . .+ np)2

p
=
n2

p
.

Since, by Lemma 2.1, the total graph G has the maximum degree ∆ =
2(n− n1), and n = n1 + n2 + . . .+ np ≥ pn1, we obtain the inequality

n ≤ p

2(p− 1)
∆.

Using these two inequalities it follows that∑
1≤i<j≤p

ninj =
n2 − (n2

1 + ...+ n2
p)

2
≤ p− 1

2p
n2 ≤ p

8(p− 1)
∆2.

By Theorem 3.6 for all p ≥ 4 or p = 3 and n3 ≥ 2 we have

λ(G) = n+
∑

1≤i<j≤p

ninj − 1 ≤ p

2(p− 1)
∆ +

p

8(p− 1)
∆2 − 1 =

=
p

p− 1

(
∆2

8
+

∆

2

)
− 1.
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