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THE COLLAPSIBILITY OF HEXAGON
2-COMPLEXES WITH THE 12-PROPERTY

Ioana-Claudia Lazăr

Abstract

We give some necessary and sufficient conditions for the collapsibility
of a finite, 2-dimensional hexagon complex. We will show that any finite
simply connected hexagon 2-complex with the 12-property is collapsi-
ble whereas any locally finite such complex has a simple combinatorial
structure.

1 Introduction

We investigate in this paper combinatorial conditions which guarantee the
collapsibility of a finite, 2-dimensional hexagon complex.

The combinatorial condition we consider is given by the 12-property of a
hexagon complex (see [6], [7], [13], [17]). A hexagon 2-complex has the 12-
property if the link of each vertex is a graph of girth at least 12. The girth of
a graph is defined as the minimum number of edges in a circuit (see [9], [10],
[11], [12]).

The collapsibility of finite simplicial complexes was studied before. W.
White showed in 1967 that a finite, 2-dimensional simplicial complex is col-
lapsible if and only if it admits a strongly convex metric (see [18]).

The collapsibility of a finite simplicial 2-complex can be also ensured by a
CAT(0) metric (see [4], [1], [3], [5]). A proof for the fact that finite simplicial
2-complexes with a CAT(0) metric, retract to a point through CAT(0) spaces,
is given in [14].

Key Words: hexagon 2-complex, star of a cell, link of a cell, systole of a complex,
12-property, collapsibility, van Kampen diagram.

Mathematics Subject Classification: 05C99, 05C75
Received: October, 2010
Accepted: December, 2010

191



192 Ioana-Claudia Lazăr

J. Corson and B. Trace proved further that a finite, simply connected, 2-
dimensional simplicial complex with the 6-property, collapses to a point (see
[7]).

K. Crowley showed, under a technical condition, that any finite simplicial
complex of dimension 3 or less endowed with the standard piecewise Euclidean
metric that is non-positively curved simplicially collapses to a point (see [8]).

The results obtained in this paper are based on regular tessellations of the
Euclidean plane. There are only three regular tessellations of the Euclidean
plane: by triangles, squares, and hexagons. J. Corson and B. Trace used in
[7] the first possibility of subdividing the Euclidean plane (by triangles) when
showing the collapsibility of finite, simply connected, 2-dimensional simplicial
complexes with the 6-property. Using the second possibility of subdividing the
Euclidean plane (by squares), it is shown in [15] that finite, simply connected,
square 2-complexes with the 8-property, collapse to a point. We focus in this
paper on the third possibility of subdividing the Euclidean plane (by hexagons)
and obtain similar results.

The main result of the paper states that finite, simply connected, hexagon
2-complexes with the 12-property, collapse to a point. Besides, we show that
any locally finite, simply connected, 2-dimensional hexagon complex with the
12-property, is an infinite ascending union of collapsible subcomplexes. The
paper’s results are included in the author’s Ph.D. Thesis (see [16]).

Our main result on finite hexagon 2-complexes with the 12−property will
reveal an important metric property of a particular class of such complexes
called hexagonal 2-complexes (see [2]). What distinguishes hexagonal 2-complexes
among hexagon 2-complexes is that the intersection of any two 2-cells in a
hexagonal 2-complex is either the empty set, or a single common face of the
two intersecting cells. In a hexagon 2-complex such intersection may be a
union of faces (see [4], chapter I.7, page 114; [9], Appendix A, page 404).

2 Preliminaries

We present in this section the notions we shall work with and the results we
shall refer to.

Let k be a real number. Let Xn
k denote a simply connected complete

Riemannian n−manifold of constant curvature k.
A convex Xn

k -polyhedral cell C is the convex hull of a finite set of points
in Xn

k . The support of a point x ∈ C, denoted supp(x), is the unique face of
C containing x in its interior.

Let (Cλ : λ ∈ Λ) be a family of convex Xn
k -polyhedral cells and let L =

∪λ∈Λ(Cλx{λ}) denote their disjoint union. Let ∼ be an equivalence relation
on L and let K = L|∼. Let p : L → K be the natural projection and define
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pλ : Cλ → K by pλ(x) := p(x, λ). K is called an n-dimensional Xn
k -polyhedral

complex if:

1. for all λ ∈ Λ, the restriction of pλ to the interior of each face of Cλ is
injective;

2. for all λ1, λ2 ∈ Λ and x1 ∈ Cλ1
, x2 ∈ Cλ2

, if pλ1
(x1) = pλ2

(x2) then there
is an isometry h : supp(x1)→ supp(x2) such that pλ1

(y) = pλ2
(h(y)) for

all y ∈ supp(x1).

A 2-dimensional hexagon complex is a 2-dimensional X2
k -polyhedral com-

plex whose 2-cells have six 1-dimensional faces. We note that the intersection
of any two cells in a hexagon 2-complex is either the empty set, or at most
six common vertices, or / and at most six common edges. So in a hexagon
2-complex such intersection may be a union of faces.

Let K be a cell complex. |K| denotes the underlying space of K, and K(k)

denotes the k-skeleton of K.
Let α be an i-cell of K. If β is a k-dimensional face of α but not of

any other cell in K, then we say there is an elementary collapse from K
to K ′ = K \ {α, β}. We denote an elementary collapse by K ↘ K ′. If
K = K0 ⊇ K1 ⊇ ... ⊇ Kn = L are cell complexes such that there is an
elementary collapse from Kj−1 to Kj , 1 ≤ j ≤ n, then we say that K collapses
to L.

A closed edge is an edge together with its endpoints. An oriented edge
of K is an oriented 1-cell of K, e = [v0, v1]. We denote by i(e) = v0, the
initial vertex of e, by t(e) = v1, the terminus of e, and by e−1 = [v1, v0], the
inverse of e. A finite sequence α = e1e2...en of oriented closed edges in K
such that t(ei) = i(ei+1) for all 1 ≤ i ≤ n− 1, is called an edge-path in K. If
t(en) = i(e0), then we call α a closed edge-path or cycle. We denote by |α| the
number of 1-cells contained in α and we call |α| the length of α.

Let σ be a cell of K. The star of σ in K, denoted St(σ,K), is the union
of all cells that contain σ. The link of σ in K, denoted Lk(σ,K), consists of
all cells in the star of σ in K which are disjoint from σ and which, together
with σ, span a cell of K.

A subcomplex L in K is called full (in K) if any cell of K spanned by a
set of vertices in L, is a cell of L. A full cycle in K is a cycle that is full as
subcomplex of K. The systole of K is given by

sys(K) = min{|α| : α is a full cycle in K}.

A cell 2-complex has the k-property if the link of each of its vertices is a
graph of systole at least k, k ∈ {6, 8, 12}.

Let v be a vertex of K. The degree of v, denoted by degv, is the number
of oriented edges having v as initial vertex.
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A combinatorial map f : K1 → K2 between the cell complexes K1 and K2

is a continuous map such that each open cell of K1 is mapped homeomorphi-
cally onto an open cell of K2. A combinatorial 2-complex is a 2-dimensional
cell complex whose 2-cells are attached along immersions of S1 into the 1-
skeleton of the complex. A combinatorial disk is a combinatorial 2-complex
homeomorphic to a disk.

Van Kampen diagrams constitute a significant part of small cancellation
theory (see [17]). They are an adequate tool for studying the collapsibility
of finite cell complexes of dimension 2. We shall study a cell complex K by
associating to each closed edge-path α in K a diagram in the Euclidean plane,
called a van Kampen diagram, which contains all the essential information
about α.

Let α = e0e1...en be a closed edge-path in K. A van Kampen diagram for
α is a pair (D,φ). D is a finite, simply connected combinatorial disk embedded
in the plane, bounded by the closed edge-path β = f0f1...fn. φ : D → K is
a combinatorial map assigning to each oriented edge fi of β in D an oriented
edge φ(fi) = ei of α in K such that φ(f−1

i ) = φ(fi)
−1 for all 0 ≤ i ≤ n.

A region is a 2-cell of K. Let α = e0e1...en be a closed edge-path in K and
let (D,φ) be a van Kampen diagram for α. The area of the diagram is given
by the number of regions of D.

We present further some important results dealing with van Kampen dia-
grams.

Theorem 2.1. Let K be a 2-dimensional cell complex and let α be a
closed edge-path in K. α is null-homotopic if and only if there exists a van
Kampen diagram for α.

For the proof see [17], chapter V, page 237− 239.
Let α be a closed edge-path in K and let (D,φ) be a van Kampen diagram

for α. Let D1, D2 be regions (not necessarily distinct) of D with an edge e ⊆
∂D1

⋂
∂D2. Let eδ1 and δ2e

−1 be boundary cycles of D1 and D2, respectively.
Let φ(δ1) = f1 and φ(δ2) = f2. The diagram (D,φ) is called reduced if one
never has f2 = f−1

1 .

Theorem 2.2. Let K be a 2-dimensional cell complex and let α be a
closed edge-path in K. Let (D,φ) be a van Kampen diagram for α. If (D,φ)
is a van Kampen diagram of minimal area, then the diagram is reduced.

For the proof we refer to [17], chapter V, page 241.

Theorem 2.3. Let K be a 2-dimensional cell complex with the k-property,
k ∈ {6, 8, 12}, and let α be a closed edge-path in K. If (D,φ) is a reduced van
Kampen diagram for α, then D also has the k-property.

For the proof we refer to [17], chapter V, page 242.
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3 Collapsing a 2-dimensional hexagon complex with the
12-property

This section provides a combinatorial characterization of collapsible 2-complexes.
Namely, we prove that finite, simply connected, 2-dimensional hexagon com-
plexes with the 12-property, collapse to a point. Besides, we show that any
locally finite, simply connected, 2-dimensional hexagon complex with the 12-
property is an infinite ascending union of collapsible subcomplexes.

The following lemma gives an important property of hexagon disk whose
interior vertices have degree at least 3.

Lemma 3.1. Let D be a hexagon disk whose interior vertices have degree
at least 3. Then ∑

v∈∂D
( 5

2 − degv) ≥ 3,

summing over the boundary vertices of D.

Proof. We denote the set of interior vertices of D by int(D). We denote by
V , Vint, Vext, E, Eext and F , the number of vertices, interior vertices, exterior
vertices, edges, exterior edges and 2-cells of D, respectively. The following
relations hold in any hexagon disk: 1 = V − E + F (Euler’s characteristic),
2E−Eext = 6F , Vext = Eext,

∑
v degv = 2E. Using these relations, we obtain

6 = 6(V − E + F ) =

= 6V − 4E − Vext =

= (6Vint − 2
∑

v∈int(D)

degv) + (5Vext − 2
∑

v∈∂D

degv).

So

3 =
∑

v∈int(D)

(3− degv) +
∑

v∈∂D

( 5
2 − degv).

Because D is a hexagon disk whose interior vertices have degree at least 3, we
have:

∑
v∈int(D)

(3− degv) ≤ 0. The above relation further implies:

∑
v∈∂D

( 5
2 − degv) ≥ 3.

Let K be a hexagon complex. We introduce the following elementary
operations on edge-paths in K.
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1. Free reduction: Let α be an edge-path containing a subpath of the form
ee−1. Let β be the edge-path obtained by deleting this subpath. We call the
passage from α to β a free reduction.

2. Short-cut : Let v0, v1, v2, v3, v4, v5 be the vertices of a 2-cell in K. The
passage from one edge-path to another, obtained

a. either by replacing an occurrence of an edge-path [v0, v1] by the edge-path
[v0, v5][v5, v4][v4, v3][v3, v2][v2, v1],

b. or by replacing an occurrence of an edge-path [v0, v1] [v1, v2] by the edge-
path [v0, v5][v5, v4][v4, v3][v3, v2],

c. or by replacing an occurrence of an edge-path [v0, v1] [v1, v2][v2, v3][v3, v4]
by the edge-path [v0, v5][v5, v4],

d. or by replacing an occurrence of an edge-path [v0, v1] [v1, v2][v2, v3][v3, v4]
[v4, v5] by the edge-path [v0, v5],

is called a short-cut.

3. Elementary exchange: Let v0, v1, v2, v3, v4, v5 be the vertices of a 2-cell in
K. The passage from one edge-path to another, obtained by replacing an oc-
currence of an edge-path [v0, v1][v1, v2][v2, v3] by the edge-path [v0, v5][v5, v4][v4, v3],
is called an elementary exchange.

One can notice that none of the elementary operations alter the endpoints
of an edge-path. Free reductions and short-cuts change the length of an edge-
path, whereas elementary exchanges do not. This will be important. If we
can pass from one edge-path α to another edge-path β via a finite sequence of
elementary exchanges, then we call the edge-paths α and β exchangeable and
we write α ≡ β. An edge-path α is strongly reduced if for any edge-path β,
exchangeable with α, β does not admit a free reduction or short-cut.

The following theorem proves that in a hexagon 2-complex with the 12-
property, one can essentially pass from one edge-path to any path-homotopic
edge-path, via a finite sequence of elementary operations.

Theorem 3.2. Let K be a 2-dimensional hexagon complex with the 12-
property. Let β be a strongly reduced edge-path in K. If α is any edge-path
that is path-homotopic to β, then there exists a finite sequence of elementary
operations passing from α to β.

Proof. We apply elementary operations on α until it becomes strongly
reduced. We must show that there exists a finite sequence of elementary
exchanges from α to β.
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Since α and β are path-homotopic, the edge-path αβ−1 is null-homotopic.
So there exists a van Kampen diagram (D,φ) for αβ−1. D is a hexagon
disk. We choose a van Kampen diagram for αβ−1 of minimal area. Since
the diagram (D,φ) is reduced and the edge-paths α and β in K are strongly
reduced, D has no boundary vertex with degree smaller than 2.

Because K has the 12-property and (D,φ) is a reduced van Kampen dia-
gram for a closed edge-path in K, D also has the 12-property. Let v0, v1, v2, v3

and v4 be boundary vertices of D. Since ( 5
2 − degvi) ≤ 1

2 , 0 ≤ i ≤ 4, Lemma
3.1 implies that

3 ≤ ( 5
2 − degv0) + ( 5

2 − degv1) + ( 5
2 − degv2) + ( 5

2 − degv3)+

+( 5
2 − degv4) +

∑
v∈∂D,v/∈{v0,v1,v2,v3,v4}

( 5
2 − degv) ≤

≤ 5
2 +

∑
v∈∂D,v/∈{v0,v1,v2,v3,v4}

( 5
2 − degv).

So D has an exterior vertex v /∈ {v0, v1, v2, v3, v4} such that degv ≤ 2. Because
degv = 2, the open star of v in D contains one 2-cell.

Because α and β are strongly reduced, we can not perform short-cuts or
free reductions on them. By deleting the open star of v in D, we obtain a disk
D′ = D \ Stv. So D′ is constructed by performing an elementary exchange
on, say α. We reach hence another edge-path γ. So γ ≡ α.

Since elementary exchanges do not change the length of edge-paths, the
diagram (D′, φ) is a van Kampen diagram for αβ−1 as well. But the disk
D′ has one 2-cell less than D, a contradiction because D has minimal area.
Therefore, by performing an elementary exchange either on α or on β, we
reach either β or α. So α ≡ β.

Let K be a 2-dimensional hexagon complex. Let e, e′ be two directed edges
in K such that i(e) = i(e′) = v. We denote by ρ(e, e′) the length of a shortest
edge-path in Lk(v,K) joining t(e) and t(e′). We define ρ(e, e′) to be infinite,
if there does not exist an edge-path joining t(e) and t(e′) in K. We call an
edge-path e1...en in K a locally geodesic if ρ(e−1

i , ei+1) ≥ 6 for all 1 ≤ i < n.
The term ’locally’ does not have its traditional meaning. Instead, it suggests
that such an edge-path can not be deleted by any elementary operations on K.
So there exists an edge-path between any two points in K joined by a locally
geodesic, no matter the elementary operations we perform on the complex.
By its definition, a locally geodesic edge-path does not admit any elementary
operations. So, if K is a 2-dimensional hexagon complex with the 12-property,
any closed locally geodesic edge-path in K is, by Theorem 3.2, essential.
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Applying Theorem 3.2, the collapsibility of any finite, simply connected,
hexagon 2-complex with the 12-property, follows.

Corollary 3.3. Let K be a finite simply connected 2-dimensional hexagon
complex that has the 12-property. Then K is collapsible.

Proof. Suppose that there exists a connected subcomplex of K, L, that
has more than one vertex and that does not admit any elementary collapses. If
L is 1-dimensional, its fundamental group is nontrivial. If L is 2-dimensional,
each 0- and 1-cell of L is contained in at least two cells of L. Because a lo-
cally geodesic edge-path does not permit any elementary collapses, by choosing
edges in succession, we can construct in L a locally geodesic edge-path α. L
being finite, α is eventually closed. Hence, because L inherits from K the
12-property, Theorem 3.2 implies that α is not null-homotopic in L. The
fundamental group of L is therefore nontrivial. But |K| is simply connected;
the fundamental group of any connected subcomplex of K is therefore trivial.
This implies a contradiction. So any connected subcomplex of K admits an
elementary collapse. K being finite, there exists a finite sequence of elemen-
tary collapses, starting with K, which eventually terminates in a one-point
subcomplex. So K collapses to a point.

We show further that locally finite simply connected hexagon complexes of
dimension 2 with the 12-property, possess a simple combinatorial structure.

Corollary 3.4. Let K be a locally finite simply connected 2-dimensional
hexagon complex with the 12-property. Then K is a monotone union of a
sequence of collapsible subcomplexes.

Proof. Let v0 be a fixed vertex in K. For each integer n, let Ln be the
full subcomplex of K generated by the vertices that can be joined to vo by an
edge-path of length at most n. Thus, for each n, Ln is finite and connected.
Since K =

⋃∞
n=1 Ln, the corollary follows due to the above result, once we

have shown that, for each n, |Ln| is simply connected.
Let α = e1...en be a closed edge-path in Ln with endpoints at v0. We

denote by vi = t(ei) = i(ei+1) and by γi an edge-path in K from vo to
vi of minimal length. We consider the edge-path γ = e1γ

−1
1 γ1e2γ

−1
2 γ2...

en−1γ
−1
n−1γn−1en in Ln that freely reduces to α.

Because |K| is simply connected, the edge-paths γiei+1 and γi+1 are path-
homotopic. Because K has the 12-property, Theorem 3.2 implies that there
exists, for each i, a finite sequence of elementary operations passing from
γiei+1 to γi+1. Each edge-path in this sequence lies in Ln. The edge-path γ
is therefore null-homotopic in Ln and so is α. |Ln| is hence simply connected.
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Since finite, 2-dimensional hexagon complex with the 12-property are col-
lapsible, the weaker condition of contractibility does also characterize these
spaces.

Corollary 3.5. Let K be a finite simply connected 2-dimensional hexagon
complex with the 12-property. Then K is contractible.
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