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A RADON-NIKODYM TYPE THEOREM

Christiane Godet-Thobie and Anca Croitoru

Abstract

In [6] and [7], the authors introduced and studied an integral for
multifunctions with respect to a multimeasure which contains differ-
ent multivalued integrals as particular cases. If Pk(X) is the family
of nonempty compact subsets of a locally convex algebra X, both the
multifunction and the multimeasure take values in a subset X̃ of Pk(X)
which satisfies certain conditions. In this paper, we continue this work
and establish a Radon-Nikodym theorem, using a method of Maynard
[13] which bases on the notion of exhaustion.

Introduction

The study of multifunctions was intensified and diversified in the last period
thanks to their multiple applications in mathematical economics, theory of
games, optimization and optimal control.

In [6] and [7], we constructed an integration theory for multifunctions with
respect to multimeasures. If Pk(X) is the family of nonempty compact subsets
of a locally convex algebra X, then the multifunctions and the multimeasures
take values in a subset X̃ of Pk(X) which satisfies certain conditions. For dif-
ferent choices of the space X, of the multifunctions and of the multimeasures,
this set-valued integral contains, like particular cases, the classical integrals
of Dunford [10], Brooks [3] and the integrals introduced in Sambucini [14],
Croitoru [4].
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One of the most interesting problems in the theory of integration is the
existence of a Radon-Nikodym derivative. In this paper, we obtain a Radon-
Nikodym type theorem in the context of the integration theory constructed
in [6]. According to this result, we can express a multimeasure Γ like a set-
valued integral of a multifunction with respect to a multimeasure ϕ, under
a condition of absolute continuity: Γ � ϕ. In this case, the construction of
the Radon-Nikodym derivative follows the method of Maynard [13], using the
notion of exhaustion.

1 Terminology and notations

The terminology and different notations are those of [6] and [7]. Let S be a
nonempty set, A an algebra of subsets of S. Let X be a Hausdorff locally
convex commutative algebra and let Q be a filtering family of seminorms
which defines the topology of X and satisfies the following property for every
x, y ∈ X and every p ∈ Q:

(*) p(xy) ≤ p(x)p(y).

1.1. Examples

(a) X = {f | f : T → IR} where T is a nonempty set.
Let Q = {pt|t ∈ T} where pt(f) = |f(t)|, for every f ∈ X

(b) X = {f | f : T → IR is bounded} where T is a topological space.
Let K = {K ⊂ T |K is compact} and Q = {pK |K ∈ K} where, for every
f ∈ X, pK(f) = sup

t∈K
|f(t)|.

(c) X = {f | f : T → IR is continuous } = C(T ) where T is a topological
space. Let K = {K ⊂ T |K is compact} and Q = {pK |K ∈ K} where,
for every f ∈ X, pK(f) = sup

t∈K
|f(t)|.

(d) As a particular case, we may consider X = L1(R) which is a Banach
algebra with the sum and the convolution as operations.

We denote by Pk(X) = Pk the family of all nonempty compact subsets
of X. For every p ∈ Q and every A, B ∈ Pk, let hp(A,B) be the Hausdorff
semimetric defined by p on Pk analogously to the definition of Hausdorff metric
[12]. We define ‖A‖p = hp(A,O) = sup

x∈A
p(x) where O = {0}. It is known that

{hp}p∈Q is a filtering family of semimetrics on Pk which defines a Hausdorff
topology on Pk.
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For greater convenience of the reader, we now recall some definitions and
properties which be used in the following.

1.2. Definition.
M : A→ Pk is said to be an additive multimeasure if:
(i) M(∅) = O,
(ii) M(A∪B) = M(A) +M(B), for every A,B ∈ A such that A∩B = ∅.

1.3. Examples and applications.
I. If ν1, ν2 are two finite measures defined on A, so that ν1 ≤ ν2 and ν2 is

a probability measure, then one obtains a particular multimeasure M : A →
P0([0, 1]), M(A) = [ν1(A), ν2(A)], ∀A ∈ A, which is the simplest example of a
probability multimeasure. We recall that a multimeasure M : A → P0([0, 1])
is said to be a probability multimeasure if 1 ∈ M(S). These probability mul-
timeasures are used in control, robotics and decision theory (in Bayesian esti-
mation).

II. We now give an example of such a multimeasure used by Wasserman
[16] in robust Bayesian inference. In this paper, Wasserman generalizes pre-
vious works of Shafer [15] and Dempster [8] who defines the upper and lower
probabilities generated by a multifunction. Following [16] p.454-455, let Θ
be a Polish space with Borel σ-algebra B(Θ) and let X be a convex compact
metrizable subset of a locally convex topological vector space with Borel σ-
algebra B(X). Let µ be a probability measure on (X,B(X)) and let Γ be
a multifunction defined on X with values in Pf (Θ) the family of nonempty
closed subsets of Θ. For each A ⊂ Θ, we denote

A∗ = {x ∈ X; Γ(x) ⊂ A} and A∗ = {x ∈ X; Γ(x) ∩A 6= ∅}.

Now, if, as in [16], we define on (Θ,B(Θ)) the belief function Bel and the
plausibility function Pl by, for any A ∈ B(Θ),

Bel(A) = µ(A∗) and Pl(A) = µ(A∗),

then we can consider the set Π of all probability measures P satisfying, for
any A ∈ B(Θ)), Bel(A) ≤ P (A) ≤ Pl(A). It can be shown that Π is non
empty and that, for every A ∈ B(Θ),

Bel(A) = inf
P∈Π

P (A) and Pl(A) = sup
P∈Π

P (A).

So, Bel and Pl may be thought as the lower and upper bounds of the family of
the selections measures of the multimeasure M such that, for every A ∈ B(Θ),
M(A) = [Bel(A), P l(A)].
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The next definition is a natural extension of the concept of the variation
of a vector measure [10].

1.4. Definition.
Let M : A → Pk. For every p ∈ Q, the p-variation of M is the non-

negative (possibly infinite) set function vp(M, ·) defined on A as follows:

vp(M,A) = sup

{
n∑
i=1

‖M(Ei)‖p

∣∣∣∣∣ (Ei)
n
i=1 ⊂ A, Ei ∩ Ej = ∅ for i 6= j,

n⋃
i=1

Ei = A,n ∈ IN∗

}
,∀A ∈ A.

If M is an additive multimeasure, then vp(M, ·) is finitely additive for every
p ∈ Q. We say that M is with bounded p−variation iff vp(M, ·) is bounded
for every p ∈ Q.

In the sequel, multimeasures and multifunctions take their values in a subset
X̃ of Pk satisfying the conditions:
• X̃ is complete with respect to {hp}p∈Q,

• O ∈ X̃,
• A+B,A ·B ∈ X̃, for all A,B ∈ X̃,
• A · (B + C) = A ·B +A · C, for all A,B,C ∈ X̃.

1.5. Examples

(a) X̃ = {{f}|f ∈ X} for X like in Example 1.1, (a) and (b).

(b) X̃ = {A | A ⊂ [0,+∞[, A is nonempty compact convex} for X = IR.

(c) X̃ = {[f, g] | f, g ∈ X, 0 ≤ f ≤ g} for X like in 1.1-(a), where [f, g] =
{u ∈ X | f ≤ u ≤ g} = {u ∈ X |f(t) ≤ u(t) ≤ g(t), for every t ∈ T} and
[f, f ] = {f}.

(c) X̃ is the family of nonempty compact subsets of X like in Example 1.1
(c).

In the sequel, we also suppose that ϕ : A → X̃ is an additive multimeasure
such that its p−variation vp(ϕ, ·), denoted by νp, is bounded and there exists
at least one p ∈ Q such that (S,A, νp) is complete (cf. [10]-III).
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1.6. Definition
A multimeasure Γ : A → X̃ is said to be absolutely continuous with

respect to the multimeasure ϕ if, for every p ∈ Q and ε > 0, there exists
δ(p, ε) = δ > 0 such that for every E ∈ A,

νp(E) < δ ⇒ vp(Γ, E) < ε

that is denoted: Γ� ϕ.

Now we recall some integral notions already used in [6] and [7].

If F : S → X̃ is the simple multifunction F =

n∑
i=1

Bi · XAi
, where Bi ∈ X̃,

Ai ∈ A, i ∈ {1, 2, ..., n}, Ai ∩ Aj = ∅ for i 6= j,

n⋃
i=1

Ai = S and XAi is the

characteristic function of Ai, the integral of F over E ∈ A with respect to ϕ
is: ∫

E

Fdϕ =

n∑
i=1

Bi · ϕ(Ai ∩ E) ∈ X̃.

1.7. Definition (Definition 2.2 of [6])

A multifunction F : S → X̃ is called ϕ-totally measurable in semi-
norm if for every p ∈ Q, there is a sequence (F pn)n of simple multifunctions

F pn : S → X̃ such that hp(F
p
n , F )

νp−→ 0.

1.8. Definition (Definition 2.3 of [6])

A multifunction F : S → X̃ is called ϕ−integrable in seminorm if, for
every p ∈ Q, there exists a sequence (F pn)n of simple multifunctions, F pn : S →
X̃, satisfying the following conditions:

(i) hp(F
p
n , F )

νp−→ 0 (that is: F is ϕ-totally measurable in seminorm),

(ii) hp(F
p
n , F ) is νp−integrable, for every n ∈ IN,

(iii) lim
n→∞

∫
E

hp(F
p
n , F )dνp = 0, for every E ∈ A,

(iv) For every E ∈ A, there exists IE ∈ X̃ such that, for every p ∈ Q,

lim
n→∞

hp

(∫
E

F pndϕ, IE

)
= 0.

We denote IE =

∫
E

Fdϕ and call it the integral of F on E with respect

to ϕ. The sequence (F pn)n is said to be a p−defining sequence for F .
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1.9. Remark (Connections with previous integrals)

I. In the above definition of ϕ-integrability in seminorm, the p-defining
sequence depends on the seminorm. This setting is weaker and differs from
that of [5], where the defining sequence is independent of the seminorm.

II. In [6] and [7], we have shown that this integral contains different classical
integrals or multivalued integrals ( [1], [2], [3], [4], [10] and [14]) and has some
of the classical properties of an integral.
For examples:

(a) If X is a real Banach algebra, then we obtain the integral defined in [4].

(b) If X = R, X̃ = {A|A ⊂ [0,+∞), A is a nonvoid compact convex set}
and ϕ = {µ} (where µ is finitely additive), then we obtain the integral
(defined in [14]) of the multifunction F with respect to µ.

The next convergence theorem of Vitali type (Theorem 3.1 of [7]) will be
used in the next section.

1.10. Theorem(Vitali)

Let F : S → X̃ be a multifunction and, for every p ∈ Q, (F pn)n∈IN∗ be

a sequence of ϕ−integrable in seminorm multifunctions F pn : S → X̃ . We

denote, for every E ∈ A, every n ∈ IN∗ and every p ∈ Q, Γpn(E) =

∫
E

‖F pn‖pdνp
and, for every p ∈ Q, we suppose the following conditions:

(i) hp(F
p
n , F )

νp−→ 0,

(ii) Γpn � νp, uniformly in n ∈ IN∗ (i.e. for every p ∈ Q and ε > 0, there is
δ(p, ε) = δ > 0 such that Γpn(E) < ε for all E ∈ A with νp(E) < δ and
for every n ∈ IN∗).

Then the multifunction F is ϕ−integrable in seminorm and, for every E ∈
A, lim

n→∞

∫
E

F pndϕ =

∫
E

Fdϕ.

2 Radon-Nikodym type theorem

In this section, the approach to be used in obtaining a Radon-Nikodym theo-
rem will be analogous to that of Maynard in [13]. We begin by recalling some
definitions.
In the sequel, we denote A+ = {E ∈ A | νp(E) > 0,∀p ∈ Q}.
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2.1. Definition
(i) A finite or countable family of pairwise disjoint sets (Ei)i ⊂ A+ will be
called an uniform exhaustion of S if for every ε > 0, there exists n0 ∈ N

such that νp

(
S\

n0⋃
i=1

Ei

)
< ε for every p ∈ Q.

(ii) A set property P is said to be uniformly exhaustive on E ∈ A if there
exists an uniform exhaustion (Ei)i of E such that every Ei has P .

2.2. Definition
A set property P is called ”uniform null difference” if whenever A,B ∈

A+, from νp(A4B) = 0 for every p ∈ Q, it follows that either A and B both
have P or neither does.

2.3. Theorem
Let P be an uniform null difference property such that P is uniformly

exhaustive on S. Then there exists I ⊂ N∗ and (Ei)i∈I an uniform exhaustion
of S, such that every Ei has P and S =

⋃
i∈I

Ei.

Proof
Since P is uniformly exhaustive on S, there exists I ⊂ N∗ and (Ai)i∈I an
uniform exhaustion of S, such that every Ai has P. Thus, we have:

(1) ∀ε > 0,∃n0(ε) = n0 ∈ N∗ such that νp(S\
n0⋃
i=1

Ai) < ε, ∀p ∈ Q.

Let A0 = S\
⋃
i∈I

Ai. By the inclusion A0 ⊂ S\
n0⋃
i=1

Ai and from (1), it results

that ν∗p(A0) < ε,∀ε > 0 (where ν∗p(A0) = inf{νp(C)|A0 ⊂ C,C ∈ A}, cf.
Dunford and Schwartz [10]-III). So ν∗p(A0) = 0. If there is q ∈ Q such that
(S,A, νq) is complete, from ν∗q (A0) = 0, it follows that A0 ∈ A and, for every
p ∈ Q, νp(A0) = 0.
Let (Ei)i∈I be the family of sets defined by: E1 = A0 ∪A1 ∈ A and for i ≥ 2,
Ei = Ai ∈ A. We have, for every p ∈ Q, for i = 1, νp(E1) ≥ νp(A1) > 0 and
for every i ≥ 2, νp(Ei)=νp(Ai) > 0. Evidently, S =

⋃
i∈I

Ei.

Let ε > 0. For n0 of (1) we have
n0⋃
i=1

Ei = A0 ∪
n0⋃
i=1

Ai.

By the inclusion S\
n0⋃
i=1

Ei ⊂ S\
n0⋃
i=1

Ai and from (1), it follows:

νp

(
S\

n0⋃
i=1

Ei

)
≤ νp

(
S\

n0⋃
i=1

Ai

)
< ε, ∀p ∈ Q
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which assures that (Ei)i∈I is an uniformly exhaustion of S. Now, for every
i ≥ 2, Ei = Ai has P . So, we have only to prove that E1 has P. By the
relations:

E14A1 = (A0 ∪A1)4A1 = A0\A1 ⊂ A0

it follows
νp(E14A1) ≤ νp(A0) = 0, ∀p ∈ Q

and νp(E14A1) = 0, for every p ∈ Q. Since P is uniform null difference and
A1 has P , we obtain that E1 has P .

Now, we give two properties of a set-valued integral Γ, properties which will
be of use in the next Radon-Nikodym theorem.

2.4. Theorem
Let F : S → X̃ be a ϕ-integrable in seminorm bounded multifunction and

Γ(E) =
∫
E
Fdϕ, E ∈ A ( Γ is a multimeasure according to Theorem 2.8-(a)

of [6]). Then we have:
(i) Γ� ϕ;
(ii) for every p ∈ Q, there exists rp > 0 such that, for every E ∈ A with
νp(E) > 0, ‖Γ(E)‖p ≤ rp νp(E).

Proof
(i) It follows from Theorem 2.8-(c) of [6].
(ii) Since the boundedness of F , for every p ∈ Q, there exists rp > 0 such that:

(2) ‖F (s)‖p ≤ rp, ∀s ∈ S.

From (2) and Theorem 2.7-(b) of [6], for each E ∈ A with νp(E) > 0, we have:

‖Γ(E)‖p =

∥∥∥∥∫
E

Fdϕ

∥∥∥∥
p

≤
∫
E

‖F‖pdνp ≤ rp νp(E).

The next sentence follows from classical properties of the variation of a
vector measure ([9], [10]).

2.5. Proposition
If Γ is a multimeasure which satisfy condition (ii) of Theorem 2.4, then Γ

is a multimeasure with bounded p−variation.

We now give a definition of approximate average ranges which is adapted from
that of [13] for set-valued case.



A RADON-NIKODYM TYPE THEOREM 153

2.6. Definition
For a multifunction Γ : A→ X̃, p ∈ Q, ε > 0 and E ∈ A, let:

Dp(Γ, E, ε) = {C ∈ X̃ | hp(Γ(B), νp(B) · C) ≤ ενp(B),∀B ∈ A, B ⊂ E},
D̃p(Γ, E, ε) = {C ∈ X̃ | hp(Γ(B), ϕ(B) · C) ≤ ενp(B),∀B ∈ A, B ⊂ E}.

The next proposition give examples of uniform null difference properties which
will used in this paper. Its demonstration is adapted from that of Theorem
3.6 of [5].

2.7. Proposition
Let Γ be an additive multimeasure with bounded p−variation which is ab-

solutely continuous with respect to ϕ. Then,
(i) Dp(Γ, E, γ) 6= ∅,
(ii) D̃p(Γ, E, γ) 6= ∅ and

(iii) Dp(Γ, E, γ) ∩ D̃p(Γ, E, γ) 6= ∅
are uniform null difference properties.

Proof
It is clear it is sufficient to prove (i) and (ii).
(i) Since Γ� ϕ, for every p ∈ Q and every ε > 0, there exists δ(p, ε) = δ > 0
such that, for every E ∈ A such that νp(E) < δ, ‖Γ(E)‖p ≤ vp(Γ, E) < ε.
Now, we have to show that, if A and B ∈ A+ such that νp(A4B) = 0 for
every p ∈ Q , Dp(Γ, A, γ) = Dp(Γ, B, γ) for each p ∈ Q. Now we fix one p ∈ Q
and consider C ∈ Dp(Γ, A, γ).

C ∈ X̃ and, for every B ∈ A, B ⊂ A, hp(Γ(B), νp(B)C) ≤ γνp(B).
Let H ∈ A, H ⊂ B. Since νp(A4B) = 0, νp(H\A) ≤ νp(B\A) = 0 and
νp(H) = νp(H ∩A) +νp(H\A) ≤ νp(H ∩A) +νp(B\A) = νp(H ∩A) ≤ νp(H).
So, νp(H) = νp(H ∩A) for every H ∈ A, H ⊂ B.
From H ∩A ⊂ A, it follows hp(Γ(A∩H), νp(A∩H) ·C) ≤ γνp(A∩H). Since
νp(H\A) = 0 < δ, ‖Γ(H\A)‖p < ε and this for all ε. So, ‖Γ(H\A)‖p = 0.
Now, we can write:
hp(Γ(H), νp(H) ·C) = hp(Γ(H ∩A) + Γ(H\A), (νp(H ∩A) + νp(H\A)) ·C) ≤
≤ hp(Γ(H ∩ A), νp(H ∩ A) · C) + ‖Γ(H\A)‖p ≤ γνp(H ∩ A) = γνp(H). So
for every H ∈ A, H ⊂ B, we have hp(Γ(H), νp(H) · C) ≤ γνp(H). That is:
C ∈ Dp(Γ, B, γ). The inclusion Dp(Γ, B, γ) ⊂ Dp(Γ, A, γ) is similarly proved
by exchange of A and B. So, the first part ” Dp(Γ, E, γ) 6= ∅ is an uniform
null difference property” is proved.
(ii) For the second property, with same notations as in the first part, if H ∈
A, H ⊂ B, since, for every p ∈ Q, νp(A4B) = 0, it follows from ‖ϕ(H\A)‖p ≤
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νp(H\A) = 0, as in the first part, that ‖Γ(H\A)‖p = 0 and hp( Γ(H), ϕ(H) ·
C ) = hp( Γ( H ∩A ), ϕ(H ∩A) · C ) + ‖Γ( H\A )‖p ≤
≤ γνp(H ∩A) = γνp(H). The proof is finished as in the first part.

2.8. Theorem
Let F : S → X̃ be a ϕ-integrable in seminorm bounded multifunction and

Γ(E) =
∫
E
Fdϕ, E ∈ A. Then,

∀p ∈ Q, ∀ε > 0 and ∀E ∈ A such that νp(E) > 0, there exists B ∈ A, B ⊂ E

νp(B) > 0 such that D̃p(Γ, B, ε) 6= ∅.

Proof
Since F is ϕ−integrable in seminorm, for every p ∈ Q, there exists (F pn)n a

p−defining sequence of simple multifunctions F pn : S → X̃. So,

(i) hp(F
p
n , F )

νp−→ 0,

(ii) hp(F
p
n , F ) is νp−integrable, for every n ∈ IN,

(iii) lim
n→∞

∫
E

hp(F
p
n , F )dνp = 0, for every E ∈ A.

Thanks to (i), there exists a strictly increasing sequence (nk)k∈N∗ ⊂ N such
that νp({s ∈ S | hp(F pnk

(s), F (s)) > 1
2k }) ≤ 1

2k . LetApk = {s ∈ S | hp(F pnk
(s), F (s)) >

1
2k }. If we denote Gpk = F pnk

X{Ap
k
, Gpk is a simple function and for every

k ∈ N∗, hp(Gpk, F ) is νp -measurable. It is easy to see that for every ε > 0
and every k ∈ N∗, νp({s ∈ S|hp(Gpk(s), F (s)) > ε}) ≤ νp(A

p
k) + νp({s ∈

S|hp(F pnk
(s), F (s)) > ε}). So hp(G

p
k, F )

νp−→ 0. And, with notations of Theo-
rem 2.4,∫
S

hp(G
p
k, F )dνp =

∫
Ap

k

‖F‖pdνp +

∫
{Ap

k

hp(G
p
k, F )dνp ≤ rpνp(A

p
k) +

1

2k
νp(S).

Then, lim
k→∞

∫
S

hp(G
p
k, F )dνp = 0 and lim

k→∞

∫
E

hp(G
p
k, F )dνp = 0, ∀E ∈ A.

Since νp(E) > 0 and lim
k→∞

νp(A
p
k) = 0, lim

k→∞
νp(E ∩ {Apk) = νp(E). So, there

exists k0 such that, for every k ≥ k0, νp(E ∩ {Apk) > 0.

If Gpk =

l∑
i=1

CiXAi , νp(E ∩ {Apk) =

l∑
i=1

νp(E ∩ {Apk ∩ Ai) and there exists at

least one i = i0(k) = i0 such that νp(E ∩ {Apk ∩Ai0) > 0.
Denoting B = E ∩ {Apk ∩Ai0 , for every H ∈ A, H ⊂ B, we have
hp(Γ(H), ϕ(H) · Ci0) = hp(

∫
H
Fdϕ,

∫
H
Gpkdϕ) ≤

∫
H
hp(G

p
k, F )dνp ≤ 1

2k νp(H)

That is: Ci0 ∈ D̃p(Γ, B,
1
2k ). And, since, for every ε > 0, there exists k ≥ k0

such that 1
2k ≤ ε, we can conclude that Ci0 ∈ D̃p(Γ, B, ε).
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2.9. Remark
Let Γ : A→ X̃ be a bounded multimeasure such that:

(3) for every ε > 0 and every p ∈ Q, Dp(Γ, E, ε) ∩ D̃p(Γ, E, ε) 6= ∅

is an uniformly exhaustive property on every E ∈ A+.

Since (3) and Theorem 2.3, for every p ∈ Q and ε > 0, there is (Ep,εi )i an
uniform exhaustion of each E ∈ A+, such that E =

⋃
i

Ep,εi and:

Dp(Γ, E
p,ε
i , ε) ∩ D̃p(Γ, E

p,ε
i , ε) 6= ∅, ∀i.

By induction, following the same way as in Hagood [11], we can obtain a
sequence Ep,nα (n ∈ N, α ∈ Nn) of uniform exhaustions of S such that:

(4) Dp(Γ, E
p,n
α , 2−n) ∩ D̃p(Γ, E

p,n
α , 2−n) 6= ∅, ∀α ∈ Nn, n ∈ N,

(5)
Ep,nα =

⋃
i∈N

Ep,nα,i , where
(
Ep,n+1
α,i

)
i

is an uniform exhaustion of

Ep,nα , ∀α ∈ Nn, n ∈ N,

(6) S =
⋃
α

Ep,nα and (Ep,nα )α is an uniform exhaustion of S, ∀n ∈ N.

From (6), for ε = 1
n , there exists k(n) = k ∈ N such that:

(7) νp

(
S\

k⋃
i=1

Ep,ni

)
<

1

n
.

If we consider Gpn =
k∑
i=1

Cp,ni · XEp,n
i

+O · X
S\

k⋃
i=1

Ep,n
i

, where

Cp,ni ∈ Dp(Γ, E
p,n
i , 2−n) ∩ D̃p(Γ, E

p,n
i , 2−n), Gpn is simple and therefore ϕ-

integrable in seminorm. The sequence (Gpn)n is called associate to Γ.

2.10. Theorem(Radon-Nikodym)

Let Γ : A→ X̃ be a multimeasure satisfying the three following conditions:
(i) Γ� ϕ,
(ii) for every p ∈ Q, there exists rp > 0 such that ‖Γ(E)‖p ≤ rpνp(E), for
every E ∈ A with νp(E) > 0,
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(iii) for every p ∈ Q and ε > 0, the property ”Dp(Γ, E, ε) ∩ D̃p(Γ, E, ε) 6=∅”
is an uniform exhaustive property on every E ∈ A+, and the sequence (Gpn)n,
associate to Γ (see Remark 2.9), is convergent in νp-measure.

Then there exists a ϕ-integrable in seminorm multifunction F : S → X̃, such
that Γ(E) =

∫
E
Fdϕ, for every E ∈ A.

Proof
Thanks to Propositions 2.7 and 2.5, Γ has a bounded p-variation and, for every
p ∈ Q and ε > 0, the property ”Dp(Γ, E, ε) ∩ D̃p(Γ, E, ε) 6= ∅”
is an uniform null difference property on every E ∈ A+. So, we can use
Theorem2.3.
According to Remark 2.9, the sequence (Gpn)n, associate to Γ, is given by:

Gpn =

k∑
i=1

Cp,ni · XEp,n
i

+O · X
S\

k⋃
i=1

Ep,n
i

,

where

(8) Cp,ni ∈ Dp(Γ, E
p,n
i , 2−n) ∩ D̃p(Γ, E

p,n
i , 2−n).

Since (iii), there exists a multifunction F : S → X̃ such that:

(9) hp(G
p
n, F )

νp−→ 0.

From (8) and (ii), it results:

(10) ‖Cp,ni ‖p = hp(C
p,n
i , O) =

1

νp(E
p,n
i )

hp(νp(E
p,n
i )Cp,ni , O) ≤

≤ 1

νp(E
p,n
i )

hp(νp(E
p,n
i )Cp,ni ,Γ(Ep,ni )) +

1

νp(E
p,n
i )
‖Γ(Ep,ni )‖p ≤ 2−n + rp.

Since (10), we have for every E ∈ A:

∫
E

‖Gpn‖pdνp=
∫
E

k∑
i=1

‖Cp,ni ‖pXEp,n
i
dνp=

k∑
i=1

∫
E

‖Cp,ni ‖pXEp,n
i
dνp ≤

(11)
≤

k∑
i=1

(2−n + rp)

∫
E

XEp,n
i
dνp = (2−n + rp)

k∑
i=1

νp(E ∩ Ep,ni ) =

= (2−n + rp)νp(E).
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If we consider now δ(p, ε) = δ = ε
2−n+rp

> 0, then for every E ∈ A with

νp(E) < δ, using (11), we obtain
∫
E
‖Gpn‖pdνp < ε. So, we have:

(12) for every p ∈ Q and ε > 0, there exists δ(p, ε) = δ > 0
such that for every E ∈ A with νp(E) < δ, it follows

∫
E
‖Gpn‖pdνp < ε.

From (9) and (12), using Theorem 1.10 (Vitali), it results that F is ϕ-integrable
in seminorm and:

(13) lim
n→∞

∫
E

Gpndϕ =

∫
E

Fdϕ, ∀E ∈ A.

Now we prove that Γ(E) =
∫
E
Fdϕ,∀E ∈ A. Let us fix ε > 0, p ∈ Q and let

δ(p, ε3 ) = δ > 0 given from (i). According to (13), let n ∈ N∗ such that 1
n < δ

and:

(14) hp(

∫
E

Gpndϕ,

∫
E

Fdϕ) <
ε

3
.

Then we have:

hp(Γ(E),

∫
E

Fdϕ) ≤ hp

(
Γ(E),Γ(

k⋃
i=1

(E ∩ Ep,ni ))

)
+

+hp

(
Γ(

k⋃
i=1

(E ∩ Ep,ni )),

k∑
i=1

Cp,ni · ϕ(E ∩ Ep,ni )

)
+

+hp

(∫
E

Gpndϕ,

∫
E

Gdϕ

)
︸ ︷︷ ︸

< ε
3 , cf.(14)

< ‖Γ(E\
k⋃
i=1

(E ∩ Ep,ni ))‖p+

+

k∑
i=1

hp(Γ(E ∩ Ep,ni ), Cp,ni · ϕ(E ∩ Ep,ni )) +
ε

3
≤

≤ v(Γ, E\
k⋃
i=1

(E ∩ Ep,ni ))︸ ︷︷ ︸
< ε

3 , cf. (i) and (7)

+2−n
k∑
i=1

νp(E ∩ Ep,ni ) +
ε

3
<

<
2ε

3
+ 2−nνp(E) ≤ 2ε

3
+ 2−nνp(S) < ε,

which shows that Γ(E) =
∫
E
Fdϕ,∀E ∈ A.
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2.11. Remark
In the previous Theorem of Radon-Nikodym type (in [5]) the first three

conditions fulfilled by Γ are the following:

(a) Γ is uniformly bounded;

(b) Γ� νp, uniformly in p ∈ Q;

(c) there exists r > 0 such that ‖Γ(E)‖ ≤ rνp(E), for every E ∈ A with
νp(E) > 0 and for every p ∈ Q.

As we may observe, Theorem 2.10 applies to a wider class of multimeasures
Γ, that are not necessarily uniformly bounded.

Acknowledgements. The authors thank the referees for their valuable
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