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AN INTEGRAL GEOMETRY PROBLEM
ALONG GEODESICS AND A

COMPUTATIONAL APPROACH

İsmet Gölgeleyen

Abstract

In this paper, we prove the existence, uniqueness and stability of the
solution of an integral geometry problem (IGP) for a family of curves of
given curvature. The functions in the statement of the curvature depend
on two variables, which is occured especially in the case of IGP along
geodesics. To prove the solvability of the problem, we reduce the IGP to
an overdetermined inverse problem for the transport equation. We also
develop a new symbolic algorithm to compute the approximate solution
of the problem and present two computational experiments to show the
accuracy of the algorithm. The results show that the proposed approach
provides highly accurate solutions and it is robust against data noises.

1 Introduction

Since the famous paper by I. Radon in 1917, it has been agreed that integral
geometry problems (IGPs) consist in determining some function or a more
general quantity (chomology class, tensor field, etc.), which is defined on a
manifold, given its integrals over submanifolds of a prescribed class, [18]. It
can be formulated as follows:

Let λ (x) be a sufficiently smooth function which is defined in n-dimensional
space and assume that {Γ (r)} is a family of smooth manifolds in this space
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which depend on the paraemeter r = (r1, r2, ..., rk). Suppose that the integrals
∫

Γ(r)

λ (x) dσ = J (r)

are known, where dσ is the measure element on Γ (r) and x = (x1, x2, ..., xn).
Here, it is required to determine the function λ (x), provided that J (r) is
given.

In this work, we consider an integral geometry problem (IGP) in the case
of one-dimensional manifolds Γ (r), or more precisely, in the case where Γ (r)
are curves and dσ is the arc length element of a curve. We invesigate the
solvability conditions and approximate solution of the IGP for a family of
curves of given curvature. The case when the curvature depends on ϕ in a
special manner as K(x, ϕ) = f2(x) cos ϕ−f1(x) sin ϕ was previously discussed
in [4]. Here, we consider more general functions K(x, ϕ). The functions in
the statement of the curvature depend on two variables, which is especially
occured in the case of IGP along geodesics. Therefore, IGP along geodesics are
considered as a special case in the second section of the paper. Also the way
of specifying dependence of λ upon ϕ (or determining L̂, see section 3) and
the spaces where the problem is investigated are new. In the last section, a
new symbolic algorithm based on the Galerkin method is developed to compute
approximate solution of the problem and some computational experiments are
presented which show that the proposed algorithm gives efficient and reliable
results. The proposed approximation method is important, because there has
been no numerical study for such IGPs and the related inverse problems.

The main method proposed here for investigating the solvability of IGP
is to reduce it to the equivalent Dirichlet type problem for a third order dif-
ferential equation. Such a reduction is demonstrated for Problem 1 below.
Here, it is assumed that a family of regular curves {Γ} passing from each
point x ∈ D and in any direction ν = (cos ϕ, sin ϕ) is given by curvature
K (x, ϕ) = F1 (x, ϕ) cos ϕ + F2 (x, ϕ) sin ϕ, and there exists a curve passing
from every x ∈ D in the arbitrary direction ν, with endpoints on the boundary
of D. Moreover, the curves are specified using the angle variables ϕ = (ϕ1, ϕ2),
and these angles are defined as the solution to the Cauchy problem:

∂ϕ̃

∂s
= F (x, ϕ̃) , ϕ̃ (0) = ϕ,

where ϕ̃ = (ϕ1, ϕ2) and F = (F1, F2).
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2 Statement of the Problem

Problem 1. Determine a function λ(x) in a bounded domain D from the
integrals of λ along the curves of a given family of curves {Γ}.

It is assumed that there exists a unique sufficiently smooth curve in {Γ}
with endpoints on the boundary of D, passing through the point x in direction
v. Suppose lengths of these curves in D are bounded above by the same
constant. Take the curve l+(x, ϕ) with the endpoint x ∈ D, direction ν =
(cos ϕ, sin ϕ) and with the other endpoint on ∂D and also with the curvature
K (x, ϕ) at the point x. The curve l+(x, ϕ) is a part of a curve with the same
property that belongs to {Γ}. We introduce an auxiliary function

u(x, ϕ) =
∫

l+(x,ϕ)

λds, (1)

where λ (x) ∈ C
(
R2

)
vanishes outside D and ds is the arc length element along

l+(x, ϕ). If we differentiate (1) at the point x in the direction ν, i.e., differen-
tiating with respect to the parameter s we obtain the following transport-like
equation

Lu ≡ ux1 cos ϕ + ux2 sin ϕ + uϕ
∂ϕ

∂s
= λ(x), (2)

in Ω = {(x, ϕ) : x ∈ D ⊂ R2, ϕ ∈ (0, 2π), ∂D ∈ C3}, where ∂ϕ
∂s = K (x, ϕ)

and F1, F2 ∈ C3
(
D̄

)
. From the nature of IGP, we have

u|Γ1 = u0(x, ϕ), u(x, ϕ) = u(x, ϕ + 2π). (3)

where Γ1 = ∂D × (0, 2π).

Problem 2. Given the function K(x, ϕ), determine a pair of functions
(u, λ) defined in Ω from the transport-like equation (2) and conditions (3).

Given the function K, we construct a set of curves {Γ} such that K is the
curvature of the curve that passes through x ∈ D in the direction (cos ϕ, sin ϕ).
It is always possible to construct such a set of curves for a sufficiently smooth
function K(x, ϕ) with certain convexity properties. Integrating both sides of
equality (2) along the curve l+(x, ϕ) and observing (3), we arrive at Problem
1. Thus we have proved that Problem 1 is equivalent to the Problem 2 in the
corresponding spaces. Reduction of an IGP to a Dirichlet problem was first
carried out by Lavrent’ev and Anikonov in [13].

IGPs and inverse problems for transport equation are important both from
theoretical and practical points of view. For example, IGP provide mathemat-
ical background for computerized tomography (CT), [17]. In CT, the object
under investigation is exposed to radiation at different angles, and the ra-
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diation parameters are measured at the points of observation. The results
are digitized and processed by computers which calculate spatial distribution
of quantitative physical parameters of the object. The obtained results are
then visualized by means of special devices. The basic equation in the math-
ematical model of CT can be written in general form by the first equation
in the introduction, where Γ (r) is the ray connecting the source point of the
object radiation with the observation point, λ (x) characterizes the object un-
der study. CT has important applications in many fields, some of them are
geophysics, astronomy, seismology, diagnostic radiology, etc.

Transport equations arise in radiative transfer, spread of neutrons, plasma
theory, sound propagation, and in other fields of physics. Historically, the ear-
liest work in transport theory was performed in connection with astrophysical
problems. They are related to radiative transfer. Analysis of temperature dis-
tribution and radiative fields in the photospheres of stars is a classical problem.
Transport problems are actively used in many other areas of contemporary
physics such as radiative transfer in gas dynamics and the theory of highly
intensive shock waves. Radiative transport is of great importance in plasma
theory and processes in laser and quantum generators. Transport problems
are also employed in investigating spreading of sound waves, electrical charges
in gases and in a number of other phenomena, [1].

3 Main Definitions and Notations

In this section, some necessary definitions and notations are presented which
will be used throughout the paper. We use some standard function spaces
below such as Ck(Ω), L2(Ω) and Hk(Ω) which are described in detail, for
example, in [15, 16].

Definition 1. By C3
π(Ω) we denote the space of all real-valued functions

u (x, ϕ) ∈ C3(Ω) which are 2π-periodic with respect to the argument ϕ in
the domain Ω, i.e., the values of the function u and its derivatives up to third
order at ϕ = 0 are equal to those at ϕ = 2π. We define the following scalar
product in C3

π(Ω):

(u, z)1,c =
∫

Ω

[uz + (ux1 + F1uϕ) (zx1 + F1zϕ) + (ux2 + F2uϕ) (zx2 + F2zϕ)] dΩ,

dΩ = dx1dx2dϕ, and introduce the norms

‖u‖1,c = [(u, u)1,c]1/2, ‖u‖1 = [(u, u)1,c +
∫

Ω

u2
ϕdΩ]1/2.

The completions of the set C3
π(Ω) with respect to the norms ‖·‖1,c and ‖·‖Hm(Ω)
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(m = 1, 2, 3) are denoted by Hπ
1,c(Ω) and Hπ

m(Ω), respectively,[3].

Definition 2. The set of functions ψ (x, ϕ) ∈ C3
π(Ω) such that ψ = 0 on Γ1

is denoted by C3
π0 (Ω). The spaces H̊π

1,c(Ω) and H̊π
m(Ω) are the completions of

the set C3
π0 with respect to the norm ‖ · ‖1,c and ‖ · ‖Hm(Ω) (m = 1, 2, 3), [3].

Definition 3. Let us introduce the following designations:

Au = L̂Lu =
∂2

∂l∂ϕ
(Lu),

∂

∂l
= sin ϕ

(
∂

∂x1
+ F1

∂

∂ϕ
+

∂F1

∂ϕ
+ F2

)
− cosϕ

(
∂

∂x2
+ F2

∂

∂ϕ
+

∂F2

∂ϕ
− F1

)
.

The conjugate of the operator ∂
∂l in the sense of Lagrange can be obtained as

follows:
(

∂

∂l

)∗
= − sin ϕ

(
∂

∂x1
+ F1

∂

∂ϕ

)
+ cos ϕ

(
∂

∂x2
+ F2

∂

∂ϕ

)
.

By Γ′′(A) we denote the set of functions u(x, ϕ) ∈ L2(Ω) with the property that
for any u ∈ Γ′′(A) there exists a function y ∈ L2(Ω) such that ∀η ∈ C∞0 (Ω)

(u,A∗η)L2(Ω) = (y, η)L2(Ω)

and y = Au. Here (u, v)L2(Ω) is a scalar product of functions u and v in L2(Ω),
A∗ is the differential expression conjugate to A in the sense of Lagrange, and
C∞0 (Ω) is the set of all functions defined in Ω which have continuous partial
derivatives of order up to all k < ∞, whose supports are compact subsets of
Ω. So the equality y = Au is satisfied in the sense of generalized functions.

Definition 4. The subset Γ(A) ⊂ Γ′′(A) is such that for any u ∈ Γ(A) there
is a sequence {uk} ⊂ C3

π0 with the following properties:
i) uk → u weakly in L2(Ω)
ii) (Auk, uk)L2(Ω) → (Au, u)L2(Ω) as k →∞.

Let Γ′(A) be the closure of C3
π0 with respect to the norm ‖u‖Γ(A) = ‖u‖+

‖Au‖ , where ‖.‖ is the norm in L2(Ω). Then the inclusions

Γ′(A) ⊂ Γ(A) ⊂ Γ′′(A) ⊂ L2(Ω), H̊π
3 (Ω) ⊂ Γ′′(A) ∩ H̊π

1,c(Ω) ⊂ Γ(A) ⊂ L2(Ω)

hold.
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4 Existence, Uniqueness and Stability of the Solution

At present, there are a great number of publications devoted to the uniqueness
of solutions to IGP, while the problem of existence has been given much less
attention. Since the underlying operator of the related IGP is compact and its
inverse operator is unbounded, the issue of existence of solution of the problem
is basically unsolvable, as it is the case of all inverse/ill-posed problems. In
other words, the main difficulty in studying the solvability of such problems is
overdeterminancy. To overcome this difficulty, a new method of investigating
the solvability of overdetermined inverse problems was firstly proposed by
Amirov (1986) for transport equation.

The way of proving the solvability of Problem 2 can be outlined as follows:
the class of the unknown functions λ is extended so that the IGP becomes
well posed for the new class. And this extension is not arbitrary: it should
contain the functions depending only on x (as in classical problems of integral
geometry), [3]. In other words, we immerse equation (2) into a system of two
equations (4) and (6) in which a new unknown function λ̃ is involved and
λ̃ = λ̃(x, ϕ). Here, ϕ-dependence of the function λ̃(x, ϕ) is via a nontrivial
manner, because this function is assumed to satisfy the new equation (6).

Hence, Problem 2 is replaced by the following determined problem:

Problem 3. Determine the functions ũ (x, ϕ) and λ̃(x, ϕ) defined in the
domain Ω that satisfy the equations

Lũ = λ̃(x, ϕ), (4)
ũ|Γ1 = ũ0, ũ(x, 0) = ũ(x, 2π), (5)

L̂λ̃ = 0 (6)

provided that the function K is known. Equation (6) is satisfied in the gen-

eralized functions sense, i.e., (λ̃,
(
L̂

)∗
η)L2(Ω) = 0 for any η ∈ C∞0 (Ω),

where
(
L̂

)∗
is the conjugate operator to L̂ in the Lagrange sense, if λ̃(x, ϕ)

does not depend on ϕ, then λ̃ satisfies condition (6).
It is important to mention here that, if u0 ∈ C3(Γ1), u(x, ϕ) ∈ Γ (A) ∩

Hπ
1 (Ω), λ (x) ∈ C3(D̄), and (u, λ) is the solution of Problem 2 then from the

equality L̂λ̃ = 0 (because of λ = λ(x)) it follows that (u, λ) is also a solution
to Problem 3.

Suppose that, a priori we know a function ue
0 to be the exact data of Prob-

lem 1 related to a function λ depending only on x. Then, utilizing ue
0, we can

construct a solution λ̆ to Problem 1. By uniqueness of a solution, λ̆ coincides
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with λ(x). If we know the approximate data ua
0 with ‖ue

0 − ua
0‖H3(∂Ω) ≤ ε, we

can construct an approximate solution λa(x, ϕ) such that ‖λ− λa‖L2(Ω) ≤ Cε.
Recall that, if λ depends only on x and ua

0 does not satisfy the ”solvability
conditions”, the solution λa depending only x does not exist. Here the data
are specified on ∂Ω and C > 0 is not dependent on ue

0 and ua
0 . In other words,

we construct a regularizing procedure for Problem 1.
Since ũ0 ∈ C3 (Γ1) and ∂D ∈ C3 then by Theorem 2, p. 130 in [16], there is

a function Ψ ∈ C3 (Ω) such that Ψ|Γ1
= ũ0. And with the aid of substitution

ū = ũ − Ψ, Problem 3 can be reduced to the following one with homogenous
data on Γ1.

Problem 4. Determine a pair of functions (ū, λ̃) defined in Ω and satis-
fying the equations

Lū = λ̃ + G, (8)
ū|Γ1

= 0, ū(x, 0) = ū(x, 2π), (9)

L̂λ̃ = 0, (10)

provided that the functions K and G are known, where G = −LΨ.
The following theorem states the existence, uniqueness and stability of the

solution of Problem 4. The uniqueness of the solution of Problem 3 follows
from Theorem 1, since the corresponding homogeneous versions of both prob-
lems are the same. Hence, if

(
ũ, λ̃

)
is a solution to Problem 3, then because of

uniqueness of solution to Problem 3, the function ũ = ū + w does not depend
on choice of Ψ (also on G) and it depends only on ũ0. For the notational
simplicity, we will denote ū by u and λ̃ by λ.

Theorem 1. Assume that F1(x, ϕ), F2(x, ϕ) ∈ C2(D̄ × (0, 2π)) and the
inequality F1x2 −F2x1 + F1ϕF2−F1F2ϕ > 0 holds for all x ∈ D̄ then Problem
4 has a unique solution (u, λ), such that u ∈ Γ(A) ∩ H̊π

1 (Ω), λ ∈ L2(Ω). Also,
the inequality

‖u‖H̊π
1 (Ω) + ‖λ‖L2(Ω) ≤ C(‖G‖L2(Ω) + ‖Gϕ‖L2(Ω)) (11)

holds, where G ∈ Hπ
2 (Ω), C > 0 depends on F1, F2 and the Lebesgue measure

of D, and D̄ is the closure of D.

Remark 1. If F1 = F1(x), F2 = F2(x) then for the validity of Theorem 1 it
is enough condition F1x2 − F2x1 > 0.

Proof. Firstly we will prove uniqueness of a solution to Problem 4. Suppose
that (u, λ) is a solution to the homogeneous version of Problem 4 (G = 0)
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such that u ∈ Γ(A) ∩ H̊π
1 (Ω) and λ ∈ L2(Ω). Equation (8) and condition (10)

imply Au = 0. Since u ∈ Γ(A), there exists a sequence {uk} ⊂ C3
π0 such that

uk → u weakly in L2(Ω) and (Auk, uk)L2(Ω) → 0 as k →∞. It can be easily
verified that

(Auk) uk =
(
L̂Luk

)
uk =

(
∂
∂l

(
∂

∂ϕLuk

))
uk = ∂

∂ϕLuk

(
∂
∂l

)∗
uk

+ ∂
∂x1

(
uk

(
∂

∂ϕLuk

)
sin ϕ

)
− ∂

∂x2

(
uk

(
∂

∂ϕLuk

)
cosϕ

)

+ ∂
∂ϕ

(
uk

(
∂

∂ϕLuk

)
(F1 sinϕ− F2 cosϕ)

)
, (12)

and

2 ∂
∂ϕLuk

(
∂
∂l

)∗
uk

= 2 [ukx1ϕ cosϕ− ukx1 sin ϕ + ukx2ϕ sin ϕ + ukx2 cos ϕ

+(F1 cosϕ + F2 sin ϕ)ukϕϕ + (cos ϕ (F1ϕ + F2) + sin ϕ (F2ϕ − F1))ukϕ]
× [−(sinϕ) (ukx1 + F1ukϕ) + cos ϕ (ukx2 + F2ukϕ)]

= (ukx1 + F1ukϕ)2 + (ukx2 + F2ukϕ)2 − ∂
∂x2

[ukϕ(ukx1 + F1ukϕ)]

+(F1x2 − F2x1 + F1ϕF2 − F1F2ϕ)u2
kϕ + ∂

∂x1
[ukϕ(ukx2 + F2ukϕ)]

+ ∂
∂ϕ [(ukx2 + F2ukϕ)2 sin ϕ cos ϕ + ukϕ(F1ukx2 − F2ukx1)

−(ukx1 + F1ukϕ)2 sin ϕ cosϕ + (ukx1 + F1ukϕ)(ukx2 + F2ukϕ) cos 2ϕ].

If we integrate (12) over the domain Ω, since uk ∈ C3
π0 the divergent terms

will disappear, so we get

2 (Auk, uk)L2(Ω) =
∫

Ω

[(ukx1 + F1ukϕ)2 + (ukx2 + F2ukϕ)2+

+(F1x2 − F2x1 + F1ϕF2 − F1F2ϕ)u2
kϕ]dΩ . (13)

It can be seen that the quadratic form

J(∇uk) = (ukx1 + F1ukϕ)2 + (ukx2 + F2ukϕ)2 + (F1x2 − F2x1 + F1ϕF2 −
− F1F2ϕ)u2

kϕ = u2
kx1

+ F 2
1 u2

kϕ + 2F1ukx1ukϕ + u2
kx2

+ F 2
2 u2

kϕ

+2F2ukx2ukϕ + (F1x2 − F2x1 + F1ϕF2 − F1F2ϕ)u2
kϕ

is positive definite in (ukx1 +F1ukϕ), (ukx2 +F2ukϕ), ukϕ under the condition
that F1x2 − F2x1 + F1ϕF2 − F1F2ϕ > 0 for all (x, ϕ) ∈ Ω. Taking into account
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the estimates

2F1ukx1ukϕ ≥ −εu2
kx1

− ε−1F 2
1 u2

kϕ, 0 < ε < 1

2F2ukx2ukϕ ≥ −εu2
kx2

− ε−1F 2
2 u2

kϕ

and the conditions of the theorem, we obtain

J(∇uk) ≥ (1− ε)
(
u2

kx1
+ u2

kx2

)
+

(
1− ε−1

)
Ku2

kϕ + η0u
2
kϕ

≥ (1− ε) |∇xuk|2 +
(
η0 + K

(
1− ε−1

))
u2

kϕ,

where η0,K ∈ R such that F1x2 − F2x1 + F1ϕF2 − F1F2ϕ ≥ η0 > 0 and
F 2

1 +F 2
2 ≤ K. For sufficiently close value of ε to 1 we have η0 +K

(
1− ε−1

)
>

η0

2
, hence

J(∇uk) ≥ (1− ε) |∇xuk|2 +
η0

2
u2

kϕ ≥ γ0

(
|∇xuk|2 + u2

kϕ

)
, (14)

where γ0 = min
{

(1− ε),
η0

2

}
. Since the domain D is bounded and uk = 0

on Γ1, it can be easily obtained that ‖uk‖2L2(Ω) ≤ C0

∫
Ω

|∇xuk|2 dΩ, so we have

‖uk‖2L2(Ω) ≤ C
∫
Ω

J(∇uk)dΩ, where C = C0γ
−1
0 and C0 > 0 is independent of

k and depends on Lebesgue measure of D. Consequently, by virtue (13) and
the definition of Γ(A) we have

‖u‖2L2(Ω) ≤ lim
k→∞

‖uk‖2L2(Ω) ≤ C lim
k→∞

∫

Ω

J(∇uk)dΩ = 2C lim
k→∞

(Auk, uk)L2(Ω) = 0.

(15)
From (15), it folllows that ‖u‖2L2(Ω) = 0, i.e., u = 0 and from (8), λ = 0.
Hence, the uniqueness of the solution of the problem is proven.

We now prove the existence of a solution (u, λ) of the problem in the set:
(Γ(A) ∩ H̊π

1 (Ω))× L2(Ω).
Consider the following auxiliary problem:
Find u defined in Ω that satisfies

Au = F, (16)
u|Γ1 = 0, u(x, 0) = u(x, 2π), (17)

where F = L̂G.
Select a set {e1, e2, e3, ...} ⊂ C3

π0 which is complete and orthonormal in
L2(Ω). We may assume here that the linear span of this set is everywhere
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dense in H̊π
1,c(Ω). In fact, the space H̊π

1,c(Ω) ∩ H̊1(Ω) being seperable, there
exists a countable set {ϕi}∞i=1 ⊂ C3

π0 which is everywhere dense in this space.
If necessary, this set up can be extended to a set which is everywhere dense
in L2(Ω). Orthonormalizing the latter in L2 (Ω), we obtain {e1, e2, e3, ...}.We
denote the orthogonal projector of L2 (Ω) onto Mn by Pn, where Mn is the
linear span of {e1, e2, ..., en}.

An approximate solution to problem (16)-(17) is sought in the form

uN =
N∑

i=1

αNiei(x, ϕ); αN = (αN1 , αN2 , ..., αNN ) ∈ RN .

The unknown coefficients αNi are determined from the following system of
linear algebraic equations:

∫

Ω

L̂(LuN −G)ejdΩ = 0, j = 1, 2, ..., N, dΩ = dx1dx2dϕ. (18)

We now prove that under the assumptions of the theorem, system (18) has
a unique solution for any G ∈ Hπ

2 (Ω). For this purpose, we consider the
homogeneous version of system (18) (G = 0). Let’s substitute ᾱN for αN ,
multiply the jth equation by 2ᾱNj and sum with respect to j from 1 to N ,
then we obtain

2
∫

Ω

L̂LūN ūNdΩ = 0, (19)

where ūN =
N∑

i=1

ᾱNiei. Then equality (13) yields

∫

Ω

[(ūNx1+F1ūNϕ)2+(ūNx2+F2ūNϕ)2+(F1x2−F2x1+F1ϕF2−F1F2ϕ)ū2
Nϕ]dΩ = 0.

(20)
Using the fact that, J(∇ūN ) is positive definite and ūN = 0 on Γ1, from(20) we
have ūN = 0 in Ω. Since the system {ei}, (i = 1, 2, ...) is linearly independent,
we get ᾱNi = 0, i = 1, 2, ..., N . Thus, the homogeneous version of system (18)
has only trivial solution and therefore the original inhomogeneous system (18)
has a unique solution αN for any G ∈ Hπ

2 (Ω).

Now we estimate the solution uN of system (18) in terms of the right hand
side G. If we multiply the jth equation of (18) by 2αNj and sum from 1 to N
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with respect to j, then we obtain

2
∫

Ω

uN L̂LuNdΩ = 2
∫

Ω

uN L̂GdΩ. (21)

Observing that uN ∈ C3
π0 and transferring operator ∂

∂l in L̂ to the function
uN , the right hand side of (21) can be estimated as follows:

2

∣∣∣∣∣∣

∫

Ω

uN L̂GdΩ

∣∣∣∣∣∣
≤ α0

∫

Ω

G2
ϕdΩ + α−1

0

∫

Ω

((
∂

∂l

)∗
uN

)2

dΩ.

Since the left hand side of (21) equals
∫
Ω

J(∇uN )dΩ, from (21) for sufficiently

large α0 > 0, we get

∫

Ω

J(∇uN )dΩ ≤ α0

∫

Ω

G2
ϕdΩ + α−1

0

∫

Ω

((
∂

∂l

)∗
uN

)2

dΩ.

Hence, using the inequality (14), we obtain

‖uN‖H̊π
1 (Ω) ≤ C ‖Gϕ‖L2(Ω) , (22)

where the constant C doesn’t depend on N . Thus, the set of functions {uN}
is bounded in H̊π

1 (Ω). Since H̊π
1 (Ω) is a Hilbert space, the set {uN} is weakly

compact in it. Therefore, there exists a subsequence (we again denote it by
{uN}) such that uN → u weakly in H̊π

1 (Ω) as N →∞, so it follows that

‖u‖H̊π
1 (Ω) ≤ C ‖Gϕ‖L2(Ω) .

Since u ∈ H̊π
1 (Ω), by the definition of H̊π

1 (Ω), we have u|Γ1 = 0. From estimate
(22), it can be easily proved that there exists a subsequence of {uN}, which
is again denoted by {uN}, such that uNx1 , uNx2 and uNϕ converge weakly in
L2(Ω) to ux1 , ux2 and uϕ respectively. Transferring the operator L̂ to ej in
(18) and taking into account the conditions uN , wj ∈ C3

π0 and G ∈ Hπ
2 (Ω), we

have ∫

Ω

(LuN −G)(L̂)∗ejdΩ = 0, N ≥ j.

Since the linear span of {ej} is eveywhere dense in the space H̊π
1,c(Ω), passing
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to the limit as N →∞ we get
∫

Ω

(Lu−G)(L̂)∗ζdΩ = 0, (23)

for every ζ ∈ H̊π
1,c(Ω). If we set λ = Lu−G, from (23) we see that λ satisfies

condition (6) for any ζ ∈ C∞0 (Ω) ⊂ H̊π
1,c(Ω), and the following estimate is

valid:
‖λ‖L2(Ω) ≤ C ‖u‖H̊π

1 (Ω) + ‖G‖L2(Ω) .

Thus, by using the inequality ‖u‖H̊π
1 (Ω) ≤ C ‖Gϕ‖L2(Ω), we obtain (11). In

the expressions above , C stands for different constants that depend only on
the given functions and Lebesgue measure of the domain D. Consequently, we
have found a solution (u, λ) to problem 4, where u ∈ H̊π

1 (Ω) and λ ∈ L2(Ω).
Now it will be proven that u ∈ Γ(A). Since u ∈ L2(Ω) and G ∈ Hπ

2 (Ω),
from (23) it follows that F = Au ∈ L2(Ω) in the generalized sense, i.e., u ∈
Γ′′(A). Indeed, for any ζ ∈ C∞0 (Ω) we have

(u,A∗ζ)L2(Ω) = (u, L∗(L̂)∗ζ)L2(Ω) = (Lu, (L̂)∗ζ)L2(Ω) = (G, (L̂)∗ζ)L2(Ω) =

(F, ζ)L2(Ω) , where F =L̂G ∈ L2(Ω).
To complete the proof, it remains to show the convergence (AuN , uN )L2(Ω) →

(Au, u)L2(Ω) as N →∞. From (18), it follows that PNAuN = PNF. Since the
system {e1, e2, ..., eN , ...} is orthogonal and complete in L2(Ω), PNF converges
strongly to F in L2(Ω) as N → ∞, i.e., we get PNAuN → F = Au strongly
in L2(Ω) as N → ∞. Then, (PNAuN , uN )L2(Ω) → (Au, u)L2(Ω) as N → ∞
because {uN} weakly converges to u in L2(Ω) as N →∞. By the definitions
of PN and uN (since PN is self adjoint in L2(Ω), see p 481 in [12]) we obtain

(PNAuN , uN )L2(Ω) = (AuN , P∗NuN )L2(Ω) = (AuN , PNuN )L2(Ω) = (AuN , uN )L2(Ω) .

Hence (AuN , uN )L2(Ω) → (Au, u)L2(Ω) as N → ∞ which completes the
proof of Theorem 1.

Now we consider a special case of Problem 1.

5 Solvability of an IGP along Geodesics

In this section we investigate the solvability of an integral geometry problem
along geodesics and the related inverse problem for a special kinetic equation.
We take the curve passing from every x ∈ D in the arbitrary direction ν =
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(cos ϕ, sin ϕ) given by curvature K (x, ϕ) = F1 (x, ϕ) cos ϕ + F2 (x, ϕ) sin ϕ,
with end points on the boundary of D. Moreover, we consider the Cauchy
problem for the system

z̈i = −
2∑

i,j,k=1

Γi
jkżj żk, (24)

with the data
zi (0) = zi

0, żi (0) = żi
0 = ξi

0, i = 1, 2, (25)

where żi =
dzi

dt
.

System (24) coincides with the equation for the geodesics under the as-
sumption that the parameter of a curve is chosen to be proportional to the
natural one (see, [9]). It is possible to choose such parameter if the tangent
vector of the curve is nonzero. Thus, we shall assume that |ż| 6= 0 in (24).

Problem 1′. Given the integrals of λ along the geodesics of a given family
of curves {Γ}, determine λ (x) in the domain D.

We take a geodesic γ (x, ξ) with endpoint x ∈ D and “direction” ξ at x.
The geodesic γ (x, ξ) is the projection of the solution of the Cauchy problem
(24)-(25) with the data zi

0 = xi, ξi
0 = ξi, x = (x1, x2), ξ = (ξ1, ξ2), onto the

domain D. By assumption, this geodesic intersects the boundary of D. We
introduce a function u(x, ξ) as follows and write the integral of λ over the part
of γ (x, ξ) that lies in D (denoted by γD (x, ξ)):

u =
∫

γD(x,ξ)

λdS, (26)

where λ is the same function as in Problem 1′ and dS is the arc length element
of the geodesic γD. Differentiating (26) at the point x in the “direction” ξ, i.e.,
differentiating (26) with respect to the parameter t and taking into account
that γ (x, ξ) is the solution of the Cauchy problem (24)-(25) in D with the
data xi, ξi,

Lu ≡
2∑

i=1

ξi ∂u

∂xi
−

2∑

i,j,k=1

Γi
jkξjξk ∂u

∂ξi
= λ (x) , (27)

is obtained, where Γi
jk is the symmetric connection (Christoffel symbols), [9].

Utilizing the change of variables ξ1 = r cosϕ, ξ2 = r sin ϕ yields to

uξ1
= − sin ϕ

r
ũϕ + cos ϕũr,

uξ2
=

cosϕ

r
ũϕ + sin ϕũr,
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where u (x, ξ) ≡ ũ (x, r, ϕ). Hence, equation (27) takes the following form:

Lũ ≡ r cosϕ
∂ũ

∂x1
+ r sin ϕ

∂ũ

∂x2
+

+
[(

Γ1
12 sin2 ϕ +

(
Γ1

11 − Γ2
12

)
cosϕ sin ϕ− Γ2

11 cos2 ϕ
)
cos ϕ+

+
(
Γ1

22 sin2 ϕ +
(
Γ1

21 − Γ2
22

)
cos ϕ sin ϕ− Γ2

21 cos2 ϕ
)
sin ϕ

]
rũϕ(28)

− [(
Γ1

11 cos2 ϕ +
(
Γ1

12 + Γ2
11

)
cos ϕ sin ϕ + Γ2

12 sin2 ϕ
)
r2 cosϕ

+
(
Γ1

21 cos2 ϕ +
(
Γ1

22 + Γ2
21

)
cosϕ sin ϕ + Γ2

22 sin2 ϕ
)
r2 sin ϕ

]
ũr

= λ̃ (x, r) .

Here, if we take r = 1, ũr = 0 and for the notational simplicity, denote ũ, λ̃
by u and λ, respectively, from (28), we obtain

Lu ≡ ux1 cosϕ+ux2 sin ϕ+(F1 (x, ϕ) cos ϕ + F2 (x, ϕ) sin ϕ)uϕ = λ(x), (29)

where

F1 (x, ϕ) = Γ1
12 sin2 ϕ +

(
Γ1

11 − Γ2
12

)
cosϕ sin ϕ− Γ2

11 cos2 ϕ,

F2 (x, ϕ) = Γ1
22 sin2 ϕ +

(
Γ1

21 − Γ2
22

)
cosϕ sin ϕ− Γ2

21 cos2 ϕ.

Problem 2′. Given the function K(x, ϕ), find a pair of functions (u, λ)
from equation (29), provided that the equations

u|Γ1 = u0, u(x, 0) = u(x, 2π), (30)

in Ω = {(x, ϕ) : x ∈ D ⊂ R2, ϕ ∈ (0, 2π), ∂D ∈ C3}.

Here,

L̂u =
∂2

∂l∂ϕ
u =

∂

∂l
uϕ,
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∂

∂l
= sin ϕ

(
∂

∂x1
+

(
Γ1

12 sin2 ϕ +
(
Γ1

11 − Γ2
12

)
cosϕ sin ϕ− Γ2

11 cos2 ϕ
) ∂

∂ϕ

+
(
Γ1

11 − Γ2
12

)
cos 2ϕ +

(
Γ1

12 + Γ2
11

)
sin 2ϕ

+ Γ1
22 sin2 ϕ +

(
Γ1

21 − Γ2
22

)
cos ϕ sinϕ− Γ2

21 cos2 ϕ
)

− cos ϕ

(
∂

∂x2
+

(
Γ1

22 sin2 ϕ +
(
Γ1

21 − Γ2
22

)
cos ϕ sin ϕ− Γ2

21 cos2 ϕ
) ∂

∂ϕ

+
(
Γ1

21 − Γ2
22

)
cos 2ϕ +

(
Γ1

22 + Γ2
21

)
sin 2ϕ

− Γ1
12 sin2 ϕ +

(
Γ2

12 − Γ1
11

)
cos ϕ sinϕ + Γ2

11 cos2 ϕ
)
,

and the conjugate of the operator ∂
∂l in the sense of Lagrange is

(
∂

∂l

)∗
= − sin ϕ

(
∂

∂x1
+

(
Γ1

12 sin2 ϕ +
(
Γ1

11 − Γ2
12

)
cosϕ sinϕ− Γ2

11 cos2 ϕ
) ∂

∂ϕ

)

+cos ϕ

(
∂

∂x2
+

(
Γ1

22 sin2 ϕ +
(
Γ1

21 − Γ2
22

)
cos ϕ sin ϕ− Γ2

21 cos2 ϕ
) ∂

∂ϕ

)
.

Problem 3′. Given the integrals of λ(x, ϕ) along the geodesics with end-
point x ∈ ∂D and direction ξ = (cos ϕ, sin ϕ) at x, determine the functions
u (x, ϕ) and λ(x, ϕ) defined in the domain Ω that satisfy the equations

Lu = λ(x, ϕ), (31)
u|Γ1 = u0, u(x, 0) = u(x, 2π), (32)

L̂λ = 0, (33)

provided that the function K is known.

Problem 4′. Find a pair of functions (u, λ) defined in Ω and satisfying
the equation

Lu = λ + G,

provided that the functions K and G are known, u satisfies condition (32),
and for λ condition (33) holds.

Now, we establish the solvability theorem for IGP along geodesics. For
this aim, we first estimate the term F1x2 − F2x1 + F1ϕF2 − F1F2ϕ as follows:

F1x2 − F2x1 + F1ϕF2 − F1F2ϕ = a sin2 ϕ + b sin ϕ cosϕ + c cos2 ϕ,
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where

a =
((

Γ1
12

)
x2
− (

Γ1
22

)
x1
− Γ1

11Γ
1
22 − Γ1

12Γ
2
22 +

(
Γ1

12

)2
+ Γ2

12Γ
1
22

)
,

b =
((

Γ1
11 − Γ2

12

)
x2

+
(
Γ2

22 − Γ1
21

)
x1
− 2Γ1

12Γ
2
21 + 2Γ2

11Γ
1
22

)
,

c =
((

Γ2
21

)
x1
− (

Γ2
11

)
x2
− Γ1

11Γ
2
21 − Γ2

11Γ
2
22 +

(
Γ2

12

)2
+ Γ2

11Γ
1
21

)
.

From the condition F1x2 −F2x1 +F1ϕF2−F1F2ϕ > 0, we have the inequal-
ities

a > 0 and 4ac− b2 > 0. (34)

In the case when F1 = F2, this condition takes the following form
(
Γ1

12

)
x2
− (

Γ1
12

)
x1

> 0,

4
((

Γ1
12

)
x2
− (

Γ1
12

)
x1

) ((
Γ2

11

)
x1
− (

Γ2
11

)
x2

)
−

((
Γ1

11 − Γ2
12

)
x2

+
(
Γ2

12 − Γ1
11

)
x1

)2

> 0.

Hence, for F1 = F2, we give the new version of Theorem 1:

Theorem 1′. Let the inequalities
(
Γ1

12

)
x2
− (

Γ1
12

)
x1

> 0,

4
((

Γ1
12

)
x2
− (

Γ1
12

)
x1

) ((
Γ2

11

)
x1
− (

Γ2
11

)
x2

)
−

((
Γ1

11 − Γ2
12

)
x2

+
(
Γ2

12 − Γ1
11

)
x1

)2

> 0,

hold for all x ∈ D̄ and G ∈ Hπ
2 (Ω) then Problem 4 ′ has a unique solution

(u, λ), that satisfies the conditions u ∈ Γ(A) ∩ H̊π
1 (Ω), λ ∈ L2(Ω), and the

inequality

‖u‖H̊π
1 (Ω) + ‖λ‖L2(Ω) ≤ C(‖G‖L2(Ω) + ‖Gϕ‖L2(Ω))

holds, where C > 0 depends on F1,F2 and the Lebesgue measure of D and D̄
is the closure of D.

Proof. The proof can be carried out in a similar way to that of Theorem 1.
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6 A Symbolic Algorithm for the Approximate solution
of the Problem

In this section, we construct a symbolic algorithm for computing an approxi-
mate solution pair

(
ūN , λ̃N

)
of Problem 4. The approximate solution to the

problem is sought in the following form:

ūN =
N∑

i,j,k=0

(
αi,j,kvi,j,k + βi,j,kwi,j,k

)
µ, (35)

in the domain Ω = D× (0, 2π), where, for example, D = (−1, 1)× (−1, 1) and

µ = µ (x1, x2) =
{ (

1− x2
1

) (
1− x2

2

)
, |x| ≤ 1

0, |x| > 1 , (36)

are choosen. The unknown coefficients αi,j,k and βi,j,k, i, j, k = 0, ..., N in
(35), are determined from the following system of linear algebraic equations:

N∑

i,j,k=0

(
A

(
αi,j,kvi,j,k + βi,j,kwi,j,k

)
µ, vi′,j′,k′µ

)
L2(Ω)

= (F, vi′,j′,k′µ)L2(Ω) , (37)

N∑

i,j,k=0

(
A

(
αi,j,kvi,j,k + βi,j,kwi,j,k

)
η, wi′,j′,k′µ

)
L2(Ω)

= (F, wi′,j′,k′µ)L2(Ω) , (38)

where i′, j′, k′ = 0, ..., N . In (35), {vi,j,k}∞i,j,k=0 and {wi,j,k}∞i,j,k=0 are complete
systems in L2 (Ω) where vi,j,k = xi

1x
j
2 sin(kϕ) and wi,j,k = xi

1x
j
2 cos(kϕ).

Algorithm 1.

INPUT : Order of calculation N , given functions in the curvature:
F1 (x1, x2, ϕ), F2 (x1, x2, ϕ) and the known function in the right hand side of
equation (8): G.

OUTPUT : Approximate solution UN and λN

Step 1 Construct the left hand side of system (37) for each (i′, j′, k′)
LeftSys1(i′, j′, k′) := 0,
for i = 0, ..., N,for j = 0, ..., N,for k = 0, ..., N
LeftSys1(i′, j′, k′) :=

LeftSys1(i′, j′, k′) +
(
A

(
αi,j,kvi,j,k + βi,j,kwi,j,k

)
µ, vi′,j′,k′µ

)
L2

Step 2 Construct the left hand side of system (38) for each (i′, j′, k′)
LeftSys2(i′, j′, k′) := 0,
for i = 0, ..., N , for j = 0, ..., N , for k = 0, ..., N
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LeftSys2(i′, j′, k′) :=
LeftSys2(i′, j′, k′) +

(
A

(
αi,j,kvi,j,k + βi,j,kwi,j,k

)
µ, wi′,j′,k′µ

)
L2

Step 3 Construct the linear algebraic equations (37)-(38)
System := {}, F := L̂G

for i = 0, ..., N , for j = 0, ..., N , for k = 0, ..., N

System := System ∪
{

LeftSys1 (i′, j′, k′) = (F, vi′,j′,k′µ)L2(Ω) ,

LeftSys2 (i′, j′, k′) = (F, wi′,j′,k′µ)L2(Ω)

}

Step 4 Solve the systems and find the coefficients {αi,j,k} ,
{
βi,j,k

}
Step 5 Compute (UN , λN )

for i = 0, ..., N , for j = 0, ..., N , for k = 0, ..., N

UN = UN +
(
αi,j,kvi,j,k + βi,j,kwi,j,k

)
µ

λN = L (UN )−G

Step 6 Output (UN , λN ) end.

7 Computational Experiments

Proposed solution algorithm has been implemented in the computer algebra
system Maple and tested for several inverse problems. Two examples are pre-
sented below. In the computational experiments, we use noisy data Gσ, which
is obtained by adding a random perturbation to the exact data G according to
the formula Gσ = G

(
1 +

ασ

100

)
, where α is a random number in the interval

[-1,1] and σ is the noise level in percents.

Example 1. In the domain Ω = { (x1, x2, ϕ)|x1 ∈ (0, 1) , x2 ∈ (0, 1) , ϕ ∈ (0, 2π)},
according to the given functions,

F (x1, x2, ϕ) =
1
2

(
(x1 + x2) (1 + 2x1x2)−

(
x2

1 + 4x1x2 + x2
2

))
sin 2ϕ

+
1
2

(x1 − x2) (x1 − 1 + x2 (1− 2x1)) cos 2ϕ+x1 (x1 − 1) (
(
x2

2 + 1
)
(x2 − 1)

+x2) sin ϕ +
1
2
x1x2 (x1 + x2) (x1 − 1) (1− x2) (sin ϕ− cos ϕ) (1 + cos 2ϕ)

+x2 (x2 − 1)
(
2x1 + x1x2 − x2

1x2 − 1
)
cos ϕ,

F1 (x1, x2, ϕ) = x1 cos ϕ and F2 (x1, x2, ϕ) = −x2 sin ϕ, computed solution
pair of the problem is

U1 =
(
x1 − x2

1

) (
x2 − x2

2

)
(1 + cos ϕ + sin ϕ),

λ1 =
1
2

((
x2

1 − x1

)
(2x2 − 1) +

(
x2

2 − x2

)
(2x1 − 1)

)
,

which is also the exact solution of the problem. On Figure 1 below, a
comparison between exact solution and the approximate solution of the inverse
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Figure 1: Computed approximate solutions for different noise levels.

problem for different noise levels (σ = 0%, 10%, 15%, 20%) is presented by one
dimensional cross sections (x1 = 0.3, ϕ =

π

2
).

Example 2. Let the domain Ω = (−1, 1)× (−1, 1)× (0, 2π) and the functions
F (x1, x2, ϕ) = 2 cos ϕ

(
e−x1x2(1− x2

1) sin2 ϕ + x1

(
1− x2

2

) (
x2

2 − ex2
(
x2

2 − 1
)))

+cos2 ϕe−x1
(
1− x2

2

)
(
(
1− x2

1

) (
2 cos2 ϕ

(
(x2 + 2)2 + x2

1 + 1
)

−3 (x2 + 2)2 − x2
1 − 1) + sin ϕ

(−x2
1 + 2x1 + 1

))
+ sin ϕ(1− x2

1)(2x2

(
2x2

2 − 1
)

−ex2x1

(
x2

2 + 2x2 − 1
)
),

F1 (x1, x2, ϕ) = −(x2
1 + 1) cos ϕ and F2 (x1, x2, ϕ) = (x2 + 2)2 sinϕ are given.

According to these known data, computed approximate solutions (U1, U3) of
the problem at N = 1 and N = 3 are shown in Figure 2: (a),(b) respectively.

Here, the exact solution is

u (x1, x2, ϕ) = (1− x2
1)

(
1− x2

2

) (
x2

1e
x2 − cos ϕ sin ϕe−x1 − x2

2

)
,

λ (x1, x2, ϕ) = e−x1
(
x2

1 − 1
) (

x2
2 − 1

)
(x2 + 2)2.

As it can be seen from Figure 2, approximate solution at N = 3 is very closed
to the exact solution. Similar accuracy is obtained for λ.
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Figure 2: A comparison between the approximate (yellow graph) and exact
solution
u (x, p) (blue graph) of the problem at ψ = π: (a) N = 1, (b) N = 3.

Figure 3: Computed solutions for different noise levels and the exact solution
of the inverse problem.
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Figure 3 above displays the one dimensional cross sections (x1 = 0.4, ϕ =
π) of computed approximate solutions at N = 3 for different noise levels
(σ = 0%, 10%, 15%, 20%) superimposed with the exact solution u (x1, x2, ϕ)
of the inverse problem.

Consequently, the computational experiments show that proposed method
provides highly accurate and reliable results. Strong random noise in the input
data is acceptable without bad deterioration of the solution.
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support and precious suggestions.
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