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INDUCED REPRESENTATIONS OF
GROUPOID CROSSED PRODUCTS

Massoud Amini

Abstract

We use Green-Riefel machinary to induce representations from a
closed subgroupoid crossed product to the groupoid crossed product
with a lower semicontinuous bundle of C∗-algebras .

1 Introduction

Marc Rieffel has provided us a powerful machine for inducing representa-
tions from a closed subalgebra to a C∗-algebra [Ri] which generalizes the well-
known Mackey machine [M]. Jean Renault has generalized the Mackey ma-
chine to closed subgroupoids of a locally compact groupoid [R, section 2.2].
Phillip Green has sucessfully used the Rieffel machinary to induce representa-
tions from the crossed product of a closed subgroup to the group crossed prod-
uct with a C∗-algebra [G]. We use Green-Riefel machinary to induce represen-
tations from a closed subgroupoid crossed product to the groupoid crossed
product with a lower semicontinuous bundle of C∗-algebras . Our approach
heavily relies on calculations in [R].

2 Groupoid crossed product

Recall that a groupoid is a small category whose arrows are invertible. If G is
a groupoid, G0 is the set of objects and G2 is the set of composable pairs, and
s, r are the source and range maps from G onto G0. In particular

G2 = {(x, y) ∈ G×G : r(y) = s(x)}.
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Also we write

Gu = {x ∈ G : r(x) = u}, Gu = {x ∈ G : s(x) = u} (u ∈ G0).

G is a topological groupoid if the product map from G2 (with induced product
topology) to G and the inversion map from G onto G are continuous. If
moreover the topology of G is locally compact (each point in G has a relatively
compact Hausdorff neighborhood), the unit space G0 is Hausdorff, and the
source and range maps are open, we call it a locally compact groupoid. Note
that G is not necessarily Hausdorff.

Groupoids act on bundles of C∗-algebras in the following sense defined
by P-Y. Le Gall [L]. We first need to explain the concept of C0(X)-algebras
due to G.G. Kasparov. For a locally compact space X, a C0(X)-algebra is a
C∗-algebra A with a morphism ρ from C0(X) into the center Z(M(A)) of the
multiplier algebra of A such that ρ(C0(X))A = A. It is more convenient to
omit ρ and consider A as an C0(X)-bimodule with f.a = a.f = ρ(f)a. Given
open subset Ω of X, the closed ideal AΩ = C0(Ω).A is a C0(Ω)-algebra. Next
for each closed subset F of X we consider the quotient A/AX\F . We write Au

for A{x}, x ∈ X. Now we could identify A with the C∗-algebra bundle {Ax}.
In general this is not a continuous bundle, but one can show that it is always
upper semi-continuous. If p : Y → X is a continuous map between locally
compact spaces, and A is a C0(X)-algebra, then we can naturally construct a
C0(Y )-algebra p∗(A) by considering the C0(Y ×X)-algebra B = C0(Y )⊗A and
putting p∗A = BGp , where Gp ⊆ Y ×X is the graph of p [L]. A morphism φ :
A → B of C0(X)-algebras is a homomorphism of C∗-algebras which is C0(X)-
linear. Alternatively we can say that we have a C∗-algebra homomorphism
φx : Ax → Bx, at each fiber at x ∈ X.

Now we can define the action of a locally compact Hausdorff groupoid G
with unit space X = G0 on a C0(X)-algebra A is an isomorphism α : s∗A →
r∗A of C0(G)-algebras (or equivalently a bundle of C∗-algebra isomorphisms
αx : As(x) → Ar(x)) such that αxy = αx ◦ αy, for each (x, y) ∈ G2. When G is
not Hausdorff, we have to modify this definition as follows: We assume that for
each open Hausdorff subset U of G, there is an isomorphism αU : s|∗UA → r|∗UA
of C0(U)-algebras such that for any pair U ⊆ V of Hausdorff open subsets of
G, αU = αV |U . Now for each x ∈ G and each open Hausdorff neighborhood
U of x, the restriction of αU to As(x) is independent of U and is denoted by
αx. Now we assume that αxy = αx ◦ αy, for each (x, y) ∈ G2.

Next we can define the crossed product of A by G as follows. Let B =
∪u∈XAu. Consider the space of compactly supported continuous sections
Cc(G,A. More precisely, this is the space of all continuous functions f : G → B
with compact support, such that f(x) ∈ As(x)(x ∈ G)}. This could naturally
be identified with Cc(G).s∗A. When G is not Hausdorff we need to modify
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by putting Cc(G,A) to be the linear span (in
∏

x∈As(x)
) of the union of all

sets Cc(U).s|∗UA, where U runs over all open Hausdorff subsets of G. Now we
define the convolution and involution for f, g ∈ Cc(G,A) as follows

f ∗ g(x) =
∫

αy−1(f(xy−1)g(y)dλs(x)(y) (x ∈ G)

and
f∗(x) = αx−1(f(x−1)∗) (x ∈ G).

It is easy to see that these are well defined and Cc(G, A) is an ∗-algebra under
these operations. We define the norm of f ∈ Cc(G,A) by

‖f‖1 = supu∈X{max{
∫
‖f(x)‖dλu(x),

∫
‖f(x)‖dλu(x)}}.

Again when G is not Hausdorff we have to modify this as follows. We consider
a covering {Ui}i∈I of G consisting of open Hausdorff subsets of G and take
the disjoint union Ω of Ui’s, namely Ω = {(x, i) ∈ G × I : x ∈ Ui}, and note
that there is a continuous map sΩ : Ω → X defined by (x, i) 7→ s(x). Then for
each g ∈ Cc(Ω, s∗ΩA) we put

‖g‖1 = supu∈X{max{
∑

i∈I

∫
‖g(x, i)‖dλu(x),

∑

i∈I

∫
‖g(x, i)‖dλu(x)}},

then for each g as above one can easily see that the function defined on G by
φ(g)(x) =

∑
i g(x, i) is in Cc(G,A) and the map φ : Cc(Ω, s∗ΩA) → Cc(G,A)

is surjective. Finally for each f ∈ Cc(G,A) we define

‖f‖1 = inf{‖g‖1 : g ∈ Cc(Ω, s∗ΩA), φ(g) = f}.
Now Cc(G,A) with this norm and above operations is a normed ∗-algebra,
and the full crossed product Aoα G of A by G is the completion of Cc(G,A)
with respect to the above norm.

The construction of the reduced crossed product is based on the regular
representation of the groupoid dynamical system. For each u ∈ X, consider
the Hilbert Au-module L2(Gu, λu)⊗Au which is the completion of the space
Cc(Gu, Au) with respect to the Au-valued inner product 〈g, h〉 = g∗ ∗ h(u).
Next define

Lu(f)(g) = f ∗ g (f ∈ Cc(G,A), g ∈ Cc(Gu, Au)),

this extends to a bounded operator on the Hilbert C∗-module L2(Gu, λu)⊗Au,
and thereby yields a ∗-representation of AoαG. Now the reduced crossed prod-
uct Aoα,r G of A by G is the quotient of the full crossed product AoαG by the
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family {Lu} of the regular representations of the groupoid dynamical system
{A,α, G}. The details of this construction and two alternative formulations
could be found in [KS].

Now we discuss the representation theory of the crossed product Aoα G.
Our main objective is to show that there is a one-to-one correspondence be-
tween the representations of the C∗-algebra AoαG, and the so called covariant
representations of the system {A,α,G}. This has been proved in a somewhat
more general setting in [R2], but we give an alternative proof which is adapted
to the language of C0(X)-algebras.

3 Induced representations

In this section we use the Rieffel machine to induce representations of B =
Aoα H up to representations of K = Aoα G.

Let G be a locally compact groupoid with unit space X = G0 and Haar
system {λu}u∈X and H be a closed subgroupoid of G containing X and
admitting a Haar system {λu

H}u∈X . Consider the relation on G defined by
x ∼ y if and only if s(x) = s(y) and xy−1 ∈ H. This is an equivalence
relation and the quotient space Y = H\G is Hausdorff and locally compact,
the quotient map q : G → Y is open, and the source map induces a surjective
, continuous and open map s : Y → X [R,2.2.1]. Next consider the relation
on G2 defined by (x, y) ∼ (x

′
, y
′
) if and only if y = y

′
and xx

′−1 ∈ H, then
the quotient space Z = H\G2 is a locally compact groupoid with unit space
Z0 = Y and Haar system {δẋ × λs(ẋ)}ẋ∈Y [R, 2.2.3]. Indeed

H\G2 = {(ẋ, y) ∈ Y ×G : s(x) = r(y)}
and s(ẋ, y) = (ẋ, s(x)) and r(ẋ, y) = ((xy)., r(y)) are identified with ẋ, (xy)˙ ∈
Y , respectively.

Now assume that A is a C0(X)-algebra and there is an action α of G on
A.

Proposition 3.1. (i) H0 = X and H acts on A by restriction of α.
(ii) Let s : Y → X be as above, then s∗A is a C0(Y )-algebra and H\G2

acts on s∗A by the diagonal action α2

α2
(ẋ,y)(a) = αy−1(a) (x, y ∈ G, a ∈ Ar(y)).

Proof (i) is trivial and (ii) follows from Example (d) after Proposition 3.1
in [L] and the fact that As(s(ẋ,y)) = As(ẋ) = Ar(y) and As(r(ẋ,y)) = As((xy)̇ ) =
As(y) .

Let K = A oα G, B = A oα H, and E = s∗A oα2 H\G2 be the cor-
responding crossed products and K0 = Cc(G,A), B0 = Cc(H, A) and E0 =
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Cc(H\G2, s∗A) be the corresponding dense pre-C∗-algebras . Let B0 and E0

act on K0 from both sides via

φ.f(x) =
∫

f(h−1x)αx−1h(φ(h))dλ
r(x)
H (h)

f.φ(x) =
∫

φ(h−1)αh(f(xh))dλ
s(x)
H (h)

ψ.f(x) =
∫

f(y−1)αx−1(ψ(ẋ−1, xy))dλs(x)(y)

f.ψ(x) =
∫

αx−1y(ψ(ẏ, y−1x))αx−1y(f(y))dλr(x)(y)

where φ ∈ B0, ψ ∈ E0, and f ∈ K0. One can easily check that these functions
belong to K0.

Lemma 3.2. For each φ, ψ ∈ B0, and f, g ∈ K0 we have
(i) (φ ∗ ψ).f = φ.(ψ.f)
(ii) f.(φ ∗ ψ) = (f.φ).ψ
(iii) φ.(f.ψ) = (φ.f).ψ
(iv) f ∗ (φ.g) = (f.φ) ∗ g
(v) (φ.f)∗ = f∗.φ∗

(vi) ‖φ.f‖I ≤ ‖φ‖I .‖f‖I .
The same relations hold if φψ ∈ E0. Moreover if φ ∈ B0 and ψ ∈ E0 then
(vii) φ.(f.ψ) = (φ.f).ψ .

Proof The proofs are straightforward and follows exactly like the proof of
[R, 2.2.4]. For instance (ii) for B0 could be checked as follows

f.(φ ∗ ψ)(x) =
∫

(φ ∗ ψ)(y−1)αy(f(xy))dλ
s(x)
H (y)

=
∫ ∫

αh(φ(y−1h))ψ(h−1)αy(f(xy))dλ
s(x)
H (h)dλ

s(x)
H (y),

on the other hand

(f.φ).ψ(x) =
∫

ψ(h−1)(f.φ)(xh))dλ
s(x)
H (h)

=
∫ ∫

ψ((h−1)αh(φ(y−1))αhy(f(xhy))dλ
s(xh)
H (y)dλ

s(x)
H (h)

=
∫ ∫

ψ((h−1)αh(φ(y−1h))αy(f(xy))dλ
s(x)
H (h)dλ

s(x)
H (y),
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Similarly (i) for E0 works as follows

(φ ∗ ψ).f(x) =
∫

f(y−1)αx−1((φ ∗ ψ)(ẋ−1, xy)dλs(x)(y)

=
∫ ∫

f(y−1)αx−1(φ(ẋ−1, xyz)αyz(ψ((yz)˙ , z−1))dλs(y)(z)dλs(x)(y)

on the other hand

φ.(ψ.f)(x) =
∫

(ψ.f)(z−1)αx−1(φ(ẋ−1, xz)dλs(x)(z)

=
∫ ∫

f(y−1)αz(ψ(ż, z−1y))αx−1(φ(ẋ−1, xz)dλs(z−1)(y)dλs(x)(z)

=
∫ ∫

f(y−1)αyz(ψ((̇yz)˙ , z−1))αx−1(φ(ẋ−1, xyz)dλs(y)(z)dλs(x)(y).

Also to check (v) for E0 note that for f ∈ K0 and φ ∈ E0 we have f∗(x) =
αx−1(f(x−1)∗) and φ∗(ẋ, y) = α2

(ẋ,y)−1(φ(ẋ, y)−1)∗) = αy(φ((xy)˙ , y−1)∗). Hence

(φ.f)∗(x) = αx−1((φ.f)(x−1)∗)

=
∫

αx−1(f(y−1)∗)αx−1(αx(φ(ẋ, x−1y)∗))dλs(x−1)(y)

=
∫

αx−1(f(y−1)∗)αx−1x(φ(ẋ, x−1y)∗)dλr(x)(y),

on the other hand

(f∗.φ∗)(x) =
∫

αx−1y(f∗(y)αx−1y(φ∗(ẏ, y−1x)))dλr(x)(y)

=
∫

αx−1y(f∗(y)αx−1y(φ∗(ẏ, y−1x)))dλr(x)(y)

=
∫

αx−1y(αy−1(f(y−1)∗))αx−1y(αy−1xφ(ẋ, x−1y)∗))dλr(x)(y)

=
∫

αx−1(f(y−1)∗)αx−1x(φ(ẋ, x−1y)∗)dλr(x)(y).

Finally let’s check (vii). All the other relations are checked similarly.

φ.(f.ψ)(x) =
∫

(f.ψ)(h−1x)αx−1h(φ(h))dλ
r(x)
H (h)

=
∫ ∫

αx−1hy(ψ(ẏ, y−1h−1x))αx−1hy(f(y))αx−1h(φ(h))dλs(h)(y)dλ
r(x)
H (h),



INDUCED REPRESENTATIONS OF GROUPOID CROSSED PRODUCTS 29

also

(φ.f).ψ(x) =
∫

αx−1y(ψ(ẏ, y−1x))αx−1y(φ.f)(y))dλr(x)(y)

=
∫ ∫

αx−1y(ψ(ẏ, y−1x))αx−1y(f(h−1y))αx−1yαy−1h(φ(h))dλ
r(y)
H (h)dλr(x)(y)

=
∫ ∫

αx−1hy(ψ((hy)˙ , y−1h−1x))αx−1hy(f(y))αx−1h(φ(h))dλs(h)(y)dλ
r(x)
H (h),

but for r(y) = s(h) we have hyy−1 = hs(h) = h ∈ H, so (hy)˙ = ẏ and so both
sides are equal.

Lemma 3.3. For each bounded representation L of K0 there is a unique
bounded representation LH of B0 such that L(φ.f) = LH(φ)L(f) and L(f.φ) =
L(f)LH(φ), for each φ ∈ B0 and f ∈ K0.

Proposition 3.4. (i) K0 is a B0-bimodule and a E0-bimodule such that their
actions on opposite sides commute.

(ii) B0 acts as a ∗-algebra of double centralizers on the algebra K0. This
action extends to the C∗-algebra K and gives a ∗-homomorphism of B into the
multiplier algebra M(K).

Proof (i) and the first part of (ii) are already proved. Also by above lemma
we have a norm-decreasing faithful ∗-homomorphism of B0 into M(K), which
extends to a ∗-homomorphism of B into M(K).

Next we define an E0-valued and a B0-valued inner product on K0 by

〈f, g〉B0(h) =
∫

αh−1(f(y−1)∗)g(y−1h)dλr(h)(y)

〈f, g〉E0(ẋ, x−1y) =
∫

αy−1h(f(x−1h))αx−1h(g(y−1h))dλ
r(x)
H (h),

The fact that these are functions in B0 and E0 could easily be checked. More-
over we have

Lemma 3.5. For each f, g, k ∈ K0, φ ∈ B0, and ψ ∈ E0

(i) 〈f, g.φ〉B0 = 〈f, g〉B0 ∗ φ and 〈ψ.f, g〉B0 = 〈f, ψ∗.g〉B0

(ii) 〈ψ.f, g〉E0 = ψ ∗ 〈f, g〉E0 and 〈f, g.φ〉E0 = 〈f.φ∗, g〉E0

(iii) f.〈g, k〉B0 = 〈f, g〉E0 .k.
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Proof This is proved like in [R]. For instance let us check (iii).

f.〈g, k〉B0(x) =
∫
〈g, k〉B0(h

−1)αh(f(xh))dλ
s(x)
H (h)

=
∫ ∫

αh(g(y−1)∗)k(y−1h−1)αh(f(xh))dλs(h)(y)dλ
s(x)
H (h),

whereas

〈f.g〉E0 .k(x) =
∫

k(y−1)αx−1(〈f, g〉E0(ẋ
−1, xy))dλs(x)(y)

=
∫ ∫

k(y−1)αx−1(αxh(f(xh))αxh(g(y−1h)∗)dλ
r(x−1)
H (h)dλs(x)(y)

=
∫ ∫

k(y−1)αh(f(xh))αh(g(y−1h)∗)dλ
s(x)
H (h)dλs(x)(y)

=
∫ ∫

k(y−1h−1)αh(f(xh))αh(g(y−1)∗)dλs(h)(y)dλ
s(x)
H (h).

We need the following lemma which is taken from [R,2.2.2].

Lemma 3.6. There is a Bruhat approximate cross-section for G over Y , that
is a continuous function b : G → C whose support has compact intersection
with the saturation HD of any compact subset D of G and is such that

∫
b(h−1x)dλ

r(x)
H (h) = 1 (x ∈ G).

Also one can truncate b so that b ∈ Cc(G) but then we only have
∫

b(h−1x)dλ
r(x)
H (h) = 1 (x ∈ D).

Consider the inner products 〈, 〉B0 and 〈, 〉E0 defined in previous section.
Following [R,2.2.5] we have

Lemma 3.7. The linear span of the range of 〈, 〉B0 contains a left bounded
approximate identity for B0 with the inductive limit topology. The same state-
ment holds for E0.

Proof (i) Let {au
j }j∈J be an approximate identity of Au, such that au

j ≥ 0,
‖au

j ‖ ≤ 1 , for each j ∈ J, u ∈ X. We may assume that there is a neighborhood
N of X = G0 in G such that

‖αx(as(x)
j )− a

r(x)
j ‖ < ε (x ∈ N).
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Let C be a compact subset of Y = H\G and ε〉0. Choose a compact set
K ⊆ G such that q(K) = C, where q : G → H\G is the quotient map. There
is a locally finite cover of G consisting of open relatively compact sets Vi such
that V −1

i Vi ⊆ N , for each i. Let {bi} be the partition of unity subordinate to
it. Let b be a trancated Bruhat approximate cross section so that b ∈ Cc(G)
and ∫

b(h−1x)dλ
r(x)
H (h) = 1 (x ∈ K).

Put hi = bib. Then for each i, hi ∈ Cc(G) and supp(hi) ⊆ Vi. Also there is
finitely many Vi’s, say V1, . . . , Vn such that

n∑

i=1

∫
hi(h−1x)dλ

r(x)
H (h) = 1 (x ∈ K).

For each i, there is a function ki ∈ Cc(G0) such that ki(u) = (
∫

hi(y)dλu(y))−1

(u ∈ s−1(K)). Then for each x ∈ C, h ∈ Hr(x) we have

∫
ki(s(h))hi(h−1xy)dλs(x)(y) =

∫
ki(s(h))hi(y)dλs(h)(y) = 1.

Hence
n∑

i=1

∫ ∫
ki(s(h))hi(h−1x)hi(h−1xy)dλs(x)(y)dλ

r(x
H (h)

=
n∑

i=1

∫
hi(h−1x)dλ

r(x)
H (h) = 1.

Let j ∈ J and put fi(x) = ki(r(x))1/2hi(x)(ar(x)
j )1/2, x ∈ G, i = 1, . . . , n.

Then clearly fi ∈ K0 and

〈f̃i, f̃i〉E0(ẋ, y) =
∫

αx−1h(f̃i(x−1h)αx−1h(f̃i((xy)−1h)∗)dλ
r(x)
H (h)

=
∫

αx−1h(ki(s(h))hi(h−1x)hi(h−1xy)as(h)
j )dλ

r(x)
H (h)

=
∫

ki(s(h))hi(h−1x)hi(h−1xy)αx−1h(as(h)
j )dλ

r(x)
H (h),

which is equal to 0 unless y ∈ N .
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Now for γ = (C, N, j, ε) put fγ =
∑n

i=1〈f̃i, f̃i〉E0 , then

∫
‖fγ(ẋ, y)‖dλs(x)(y) ≤

n∑

i=1

∫
‖〈f̃i, f̃i〉E0(ẋ, y)‖dλs(x)(y)

≤
n∑

i=1

∫ ∫
ki(s(h))hi(h−1x)hi(h−1xy)‖αx−1h(as(h)

j )‖dλ
r(x)
H (h)dλs(x)(y)

≤
n∑

i=1

∫ ∫
ki(s(h))hi(h−1x)hi(h−1xy)dλ

r(x)
H (h)dλs(x)(y) = 1,

and

‖
∫

fγ(ẋ, y)dλs(x)(y)− a
s(x)
j ‖ =

‖
n∑

i=1

∫ ∫
ki(s(h))hi(h−1x)hi(h−1xy)αx−1h(as(h)

j )− a
s(x)
j )dλ

r(x)
H (h)dλs(x)(y)‖

≤
n∑

i=1

∫ ∫
ki(s(h))hi(h−1x)hi(h−1xy)‖αx−1h(as(x−1h)

j )

− a
r(x−1h)
j ‖dλ

r(x)
H (h)dλs(x)(y)

≤ ε

n∑

i=1

∫ ∫
ki(s(h))hi(h−1x)hi(h−1xy)dλ

r(x)
H (h)dλs(x)(y) = ε.

Now direct γ’s by γ ≤ γ
′

iff C
′ ⊆ C, K

′ ⊇ K, j
′ ≥ j, and ε

′ ≤ ε, then given
f ∈ E0 and ε〉0, put K = p(supp(f)), where p : H\G2 → H\G is the map
(ẋ, y) 7→ ẋ. By a compactness argument we may choose j ∈ J and C ⊆ G
such that

‖ar(y)
j f(ẋ0, y)− f(ẋ0, y)‖ < ε

and

‖αyz(f((x0yz)˙ , z−1)− f(ẋ0, y)‖ < ε

for each x0, y ∈ G, z ∈ C with r(z) = s(y). Take γ0 = (C, N, j, ε) for K,C, j,
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and ε as above, then for each γ ≥ γ0 we have

‖fγ ∗ f(ẋ0, y)− f(ẋ0, y)‖ = ‖
∫

fγ(ẋ0, yz)αyz(f((x0yz)˙z−1)dλs(y)(z)− f(ẋ0, y)‖

≤
∫
‖fγ(ẋ0, yz)‖‖αyz(f((x0yz)˙z−1)d− f(ẋ0, y)‖dλs(y)(z)

+ ‖
∫

fγ(ẋ0, yz)dλs(y)(z).f(ẋ0, y)− f(ẋ0, y)‖

≤ ε

∫
‖fγ(ẋ0, yz)‖dλs(y)(z)

+ ‖
∫

fγ(ẋ0, yz)dλs(y)(z)− a
r(y)
j ‖.‖f(ẋ0, y)‖

+ ‖ar(y)
j f(ẋ0, y)− f(ẋ0, y)‖

≤ 2ε + ε‖f(ẋ0, y)‖.
Hence fγ ∗ f → f in the inductive limit topology.

Next we show that {fγ} is a bounded approximate identity for the left
action of E0 on K0. Given f ∈ K0 and ε〉0, let C = q(supp(f)). Then as
above choose j and N so that

‖as(y)
j f(y)− f(y)‖ < ε, ‖f(z−1)− f(y)‖ < ε,

for each y ∈ G and z ∈ N with r(z) = s(y). Taking γ0 = (C, K, j, ε), for each
γ ≥ γ0 we have

‖fγ .f(y)− f(y)‖ = ‖
∫

f(z−1)αy−1(fγ(ẏ−1, yz))dλs(y)(z)− f(y)‖

≤
∫
‖fγ(ẏ−1, yz)‖‖f((z−1)− f(y)‖dλs(y)(z)

+ ‖
∫

αy−1(fγ(ẏ−1, yz)dλs(y)(z).f(y)− f(y)‖

≤ ε

∫
‖fγ(ẏ−1, yz)‖dλs(y)(z)

+ ‖
∫

αy−1(fγ(ẏ−1, yz)dλs(y)(z)− a
s(y)
j ‖.‖f(y)‖+ ‖as(y)

j f(y)− f(y)‖

≤ ε + ‖
∫

fγ(ẏ−1, yz)dλs(y)(z)− αy−1(as(y)
j )‖.‖f(y)‖+ ε

≤ 2ε + ε‖f(y)‖.
(ii) Choose {au

j } as above. Let ε〉0 and K be a compact subset of X such
that

‖αh−1((ar(h)
j )1/2)− (as(h)

j )1/2‖ < ε (h ∈ s−1(K) ∩H).
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Let N be a r-relatively compact neighborhood of X = G0 in G [R]. Then there
is an r-relatively compact neighborhood U of G0 in G and a non negative real
valued continuous function g on G such that UU−1 ⊆ N , supp(g) ⊆ U , and
supp(g) ∩HL is compact, for each compact subset L of G, and

∫
g(h−1x)dλ

r(x)
H (h) = 1 (x ∈ r−1(K) ∩ U).

Choose k ∈ Cc(G0) such that k(u) = (
∫

h(y)dλu(y))−1 (u ∈ s−1(K)). Then
given j ∈ J , put f(x) = k(r(x))g(x)(ar(x)

j )1/2 (x ∈ G). For γ = (K,N, j, ε)
then put gγ = 〈f̃ , f̃〉B0 , then

gγ(h) =
∫

αh−1(f̃(y−1)∗)f̃(y−1h)dλr(h)(y)

=
∫

αh−1(f̃(y−1h−1)∗)f̃(y−1)dλr(h)(y)

=
∫

k(r(y))g(hy)g(y)αh−1((ar(h)
j )1/2)(as(h)

j )1/2dλr(h)(y),

which is 0 unless y ∈ N . Also clearly
∫ ∫

k(r(y))g(hy)g(y)dλs(h)(y)d(λH)u(h) = 1,

and so for each u ∈ K we have

‖
∫

gγ(h)d(λH)u(h)− au
j ‖

= ‖
∫ ∫

k(r(y))g(hy)g(y)αh−1((ar(h)
j )1/2)(as(h)

j )1/2dλr(h)(y)d(λH)u(h)− au
j ‖

= ‖
∫ ∫

k(r(y))g(hy)g(y)(αh−1((ar(h)
j )1/2)(as(h)

j )1/2

− a
s(h)
j )dλr(h)(y)d(λH)u(h)‖

≤
∫ ∫

k(r(y))g(hy)g(y)‖(as(h)
j )1/2‖‖αh−1(ar(h)

j )1/2)

− (as(h)
j )1/2‖dλr(h)(y)d(λH)u(h)‖

≤ ε

∫ ∫
k(r(y))g(hy)g(y)dλs(h)(y)d(λH)u(h) = ε.

Hence given g0 ∈ B0, let K = s(supp(g0)) and by compactness choose j and
N so that

‖as(h)
j g(h)− g(h)‖ < ε, ‖αy(g(hy))− g(h)‖ < ε,
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for each h ∈ H, y ∈ N ∩ r−1 ◦ s(K)) with r(y) = s(h). Put γ0 = (K,N, j, ε),
for K, N, j, and ε as above, then for each γ ≥ γ0 we have

‖g0 ∗ gγ(h)− g0(h)‖ = ‖
∫

αy(g0(hy))gγ(y−1)dλ
s(h)
H (y)− g0(h)‖

≤
∫
‖gγ(y−1)‖‖αy(g0(hy))− g0(h)‖dλ

s(h)
H (y)

+ ‖
∫

gγ(y−1)dλ
s(h)
H .g0(h)− g0(h)‖

≤ ε

∫
‖gγ(y−1)‖dλ

s(h)
H (y)

+ ‖
∫

gγ(y−1)dλ
s(h)
H − a

s(h)
j ‖.‖g0(h)‖+ ‖as(h)

j g0(h)− g0(h)‖
≤ 2ε + ε‖g0(h)‖.

Hence g0 ∗ gγ → g0 in the inductive limit topology.
Next we show that {gγ} is a bounded approximate identity for the left

action of B0 on K0. Given g0 ∈ K0 and ε〉0, let K = s(supp(g0)). Choose an
r-relatively compact neighborhood U of G0 in G such that UU−1 ⊆ N and
r(U) = G0. (Here we need the fact that H is standard). Then as above choose
j and N so that

‖as(x)
j g0(x)− g0(x)‖ < ε, ‖αy(g0(xy)− g0(x)‖ < ε,

for each x ∈ G and y ∈ N ∩ r−1 ◦ s(K) with r(y) = s(x). Taking γ0 =
(K,N, j, ε), for each γ ≥ γ0 we have

‖g0.gγ(x)− g0(x)‖ = ‖
∫

αy(g0(xy))gγ(y−1)dλ
s(x)
H (y)− g0(x)‖

≤
∫
‖gγ(y−1)‖‖αy(g0(xy))− g0(x)‖dλ

s(x)
H (y)

+ ‖
∫

gγ(y−1)dλ
s(x)
H .g0(x)− g0(x)‖

≤ ε

∫
‖gγ(y−1)‖dλ

s(x)
H (y)

+ ‖
∫

gγ(y−1)dλ
s(x)
H − a

s(x)
j ‖.‖g0(x)‖+ ‖as(x)

j g0(x)− g0(x)‖
≤ 2ε + ε‖g0(x)‖.

Corollary 3.8. The linear span of the range of 〈, 〉B0 is dense in B0 and B.
Same is true for E.
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Lemma 3.9. The inner products 〈, 〉B0 and 〈, 〉E0 are positive.

Proof Consider any f ∈ K0, then by the notation of the proof of the above
lemma, fγ .f =

∑n
i=1〈f̃i, f̃i〉E0 .f tends to f in the inductive limit topology.

Hence by Lemma 3.5(iii)

〈f, fγ .f〉E0 = 〈f,

n∑

i=1

〈f̃i, f̃i〉E0 .f〉B0

=
n∑

i=1

〈f, f̃i.〈f̃i.f〉B0〉B0 =
n∑

i=1

〈f, f̃i〉B0 .〈f, f̃i〉∗B0
≥ 0.

But clearly 〈f, fγ .f〉E0 → 〈f, f〉E0 in the inductive limit topology, and so in
the C∗-topology, so 〈f, f〉E0 ≥ 0. The proof for B0 is similar.

Lemma 3.10. For each φ ∈ B0, ψ ∈ E0 and f ∈ K0

(i) 〈f.φ, f.φ〉E0 ≤ ‖φ‖2〈f, f〉E0

(ii) 〈ψ.f, ψ.f〉B0 ≤ ‖ψ‖2〈f, f〉B0 ,
where the norms on the right hand side are the C∗-norms of B and E,

respectively.

Definition 3.11. The closed subgroupoid H is called standard if there is a
locally finite cover of G consisting of open sets {Vi} such that q(Vi) = G0 = X,
where q : G → H\G is the quotient map.

Proposition 3.12. The subgroupoid G0 of G is standard.

Lemma 3.13. IF H is standard then there is a bounded approximate identity
in the range of 〈, 〉B0 for the right action of B0 on K0.

Theorem 3.14. If H is standard, then K0 is an E0-B0 imprimitivity bimodule
in the sense of Rieffel.

Proof It is clear that the B0-valued and E0-valued inner products are
positive. The rest of conditions needed in [Ri] are already proved.

Corollary 3.15. If H is standard, then A oα H and s∗A oα2 H\G2 are
strongly Morita equivalent.

Corollary 3.16. If H is standard, each representation of A oα H can be
induced up to a representation of s∗Aoα2 H\G2.

Proof This follows from above theorem and Rieffel’s tensor product con-
struction [R, 6.15].



INDUCED REPRESENTATIONS OF GROUPOID CROSSED PRODUCTS 37

Now if we note that Aoα G acts on s∗Aoα2 H\G2 as double centralizers,
then we obtain a representation of Aoα G from the above induced representa-
tion . An alternative way of getting such a representation is using generalized
conditional expectations in the sense of Rieffel. The following definition is due
to Jean Renualt [R, 1.3.27].

Definition 3.17. We say that G has sufficiently many non-singular Borel G-
sets if for every measure µ on G0 with induced measure ν on G, every Borel
set in G of positive ν-measure contains a non-singular Borel G-set of positive
µ ◦ r-measure.

Examples are the transformation groups, r-discrete groupoids, and tran-
sitive principal groupoids [R, 1.3.28]. Now consider the restriction map P :
K0 → B0, then following [R, 2.2.9] we have

Lemma 3.18. For each representation {µ, H, L} of H let ∆H be the modular
function of µ relative to the Haar system {λu

H}u∈X and put

π(f, ζ)(x) =
∫

f(x−1k)L(k)ζ ◦ s(k)∆− 1
2

H (k)dλ
r(x)
H (k),

let b be a Bruhat cross-section for G over Y = H\G and ν =
∫

λudµ(u), then
for each ζ, η ∈ L2(H, µ) and f, g ∈ K0 we have

〈L ◦ P (g∗ ∗ f)ζ, η〉 =
∫

b(x)〈π(f, ζ), π(g, η)〉dν(x).

Theorem 3.19. If G is second countable and H, G both have sufficiently many
non-singular Borel G-sets, then the restriction map P : Cc(G,A) → Cc(H, A)
is a generalized conditional expectation.

Corollary 3.20. If G is second countable and H, G both have sufficiently
many non-singular Borel G-sets, then each representation of A oα H can be
induced up to a representation of A oα G and these C∗-algebras are strongly
Morita equivalent.

Corollary 3.21. If G is second countable and has sufficiently many non-
singular Borel G-sets with respect to two Haar systems, then the corresponding
crossed products of G and A are strongly Morita equivalent.

4 Applications

In this final section we give some applications of the induction procedure
described in previous section. Following [G] to each C∗-algebra D we associate
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the space I(D) of all closed two sided ideals of D with the topology coming
from the subbase consisting of the sets QI = {J ∈ I(D) : J ∩ Ic 6= ∅}, where
I ∈ I(D) and Ic is the complement of I. The restriction of this topology to
Prim(D) is the Jacobson hull-kernel topology. Then any E-B-imprimitivity
bimodule induces a canonical bijection of ideal spaces I(B)I(E) which is also
a homeomorphism [G].

Coming back to the situation of the previous section, let H be a closed
subgroupoid of the locally compact groupoid G acting by α on a C∗-bundle
A. For a representation L = π × σ of the crossed product Aoα G, let ResG

HL
be the representation of AoαH given by the covariant representation (π, σ|H).
As before we set B = A oα H, E = s∗A oα2 H\G2, and K = A oα G, and
let P : B → M(K) be the canonical homomorphism obtained in the previous
section. Consider the corresponding induced maps

ResG
H = P ∗ : I(Aoα G) → I(Aoα H),

and
ExtGH = P∗ : I(Aoα H) → I(Aoα G).

Lemma 4.1. For any representation L of AoαG, ResG
H(kerL) = ker(ResG

HL).

Proof This follows from the fact that L is non degenerate.

Recall from the previous section that we have a canonical homomorphism
Q : K → M(E).

Proposition 4.2. If H\G2 is amenable, then Q : K → M(E) is faithful and
IndG

H(0) = (0).

Proof Let L = π×σ be a faithful representation of Aoα G in H. Let L
′
be

the representation of E = s∗Aoα2 H\G2 in H⊗L2(H\G, L2(H\G2, λ2)) given
by the covariant representation (σ ⊗ Λ, π ⊗ M), where λ is the Λ is the left
regular representation of H\G2 in L2(H\G2, λ2)) and M is the multiplication
representation of C0(H\G,L2(H\G2, λ2)) also in L2(H\G2, λ2)). We claim
that L

′′
= Res(ExtL

′
) is faithful. Let (π

′′
, σ

′′
) be the corresponding covariant

representation . Take D = L(A oα G) ⊗ Λ(C∗(G)), then M(D) ⊆ B(H ⊗
L2(H\G2, λ2)), σ

′′
= σ ⊗ Λ, and π

′′
= π ⊗ 1. Therefore σ

′′
(G) ∪ π

′′
(A) ⊆

L(M(AoαG)⊗Λ(M(C∗(G))) ⊆ M(D). Hence L(AoαG) ⊆ M(D), and so L :
Aoα G → M(D) is a homomorphism. Let Λ0 be the direct sum of Λ with the
trivial representation on a one dimensional space H1. By our hypothesis that
H\G2 is amenable, Λ0 factors through Λ(C∗(G)), and so can be regarded as a
representation of Λ(C∗(G)). Let 1 be the identity representation of L(Aoα G)
and extend 1 ⊗ Λ0 to M(D), still denoted with the same notation, then put
L0 = L

′′ ◦ 1⊗Λ0. This is a representation of Aoα G which clearly contains a
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sub representation on H⊗H1 equivalent to L. As L is faithful by assumption,
so is L

′′
, as claimed and the first statement is proved. The second statement

now follows easily.

Corollary 4.3. If H\G2 is amenable and Aoα H is nuclear, then Aoα G is
also nuclear. In particular, for H = G0, the amenability of G2 and nuclearity
of Aoα G0 imply the nuclearity of Aoα G.

Proof Let C be an arbitrary C∗-algebra , we show that the maximal and
minimal tensor products of A oα G by C are equal. Now G acts on the
bundle A ⊗max C via the inner tensor product of the action on A with the
trivial action on C. A covariant representation L of this system is a triple
(πA, πC , σ), where (πA, σ) is a covariant representation of (A,α,G), and πC

is a representation of C whose image commutes with Λ(G) and πA(A) (and
hence with πA × σ((A ⊗max C) o G) ). As L(A ⊗max C) o G) is generated
by Λ(C∗(G)).πA(A)πC(C) and so by πA × σ((A ⊗max C) o G)πC(C), it fol-
lows easily that (A⊗max C)oG is naturally isomorphic to (AoG)⊗max C.
Similarly (A ⊗max C) o H is isomorphic to (A o H) ⊗max C. Choose faith-
ful representations L1 of A o H and π1 of C, then our assumption that
A o H is nuclear implies that L2 = L1 ⊗ π1 is a faithful representation of
(AoH)⊗maxC, which could be viewed as a faithful representation of (A⊗max

C) o H. Put L = IndG
HL2. Let K

′
0 be the imprimitivity bimodule of the

(A ⊗max C, α × tr,H) − (A ⊗max C, α × tr,G) induction process. Then K
′

contains a dense subspace of the form K0 ⊗C, where K0 is the imprimitivity
bimodule of the (A,α, H)-(A,α,G) induction process. Hence L decomposes
as IndG

HL1 ⊗ π1. But by above proposition, L and IndG
Hπ1 are both faithful,

hence (AoG)⊗max C and (AoG)⊗min C coincide.

Remark 4.4. There is an alternative proof showing the injectivity of the en-
veloping von Neumann algebra.
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